
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 48 (5) (2019), 1570 – 1589

DOI : 10.15672/hujms.507579

Research Article

Implementation of improved grasshopper
optimization algorithm to solve economic load

dispatch problems

Muhammad Sulaiman∗1, Masihullah1, Zubair Hussain1, Sohail Ahmad1,
Wali Khan Mashwani2, Muhammad Asif Jan2, Rashida Adeeb Khanum3

1Department of Mathematics, Abdul Wali Khan University Mardan, KP, Pakistan
2Department of Mathematics, Kohat University of Science and Technology, KP, Pakistan

3Jinnah College for Women, University of Peshawar, Pakistan

Abstract
The costs of different fuels are increasing gradually, for operation of power production
units. Thus new optimization techniques are needed to tackle the complex problems of
Economic Load Dispatch (ELD). Metaheuristics are very helpful for policy and decision
makers in achieving the best results by minimizing the cost function. In this paper, we
have updated the Grasshopper Optimization Algorithm (GOA) with a better initializa-
tion strategy to balance the search capability of GOA. The new algorithm is named as
Improved Grasshopper Algorithm (IGOA). GOA is inspired by the swarms of grasshop-
per and mimics their biological behavior. Furthermore, IGOA is used to solve the ELD
problems by tacking four case studies from literature. The objective in these problems is
to find best decision variables for dispatching the available power with lowest cost, bet-
ter efficiency and more reliability. To validate the efficiency of our proposed algorithm,
we have tested it by solving 4 case studies of ELD with 1263MW, 600MW, 800MW and
2500MW demands respectively. IGOA is better in terms of convergence rate and quality
of solutions obtained for the problems considered in literature for other metaheuristics.

Keywords. constrained optimization, metaheuristics, improved grasshopper
optimization algorithm (IGOA), economic load dispatch

1. Introduction
In the operation of power production plants, fuel costs play an important role and

therefore scientists try to optimally dispatch the required load to their users. In problem
of ELD minimum costs of power generations are determined to meet the required demand
in a given time interval. The problem of ELD involves several constraints to determine
the lowest cost of operation. Thus by minimizing the total cost of operation we achieve
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a balance in power production and dispatch to its users by significantly reducing the
transmission losses.

In earlier studies, the problem of ELD was modeled as a single quadratic function and
was solved using lambda iteration method, gradient based methods, as in [32]. Gener-
ally, these approaches have hitches in finding an overall optimum, usually offering local
optimum solution only. Furthermore, traditional approaches require priori information
regarding the continuity and differentiability of objective function belonging to the given
optimization model. To overcome these shortcomings, quite a lot of nature inspired op-
timization techniques were designed and implemented. Particle swarm optimization [10]
is one of the famous meta-heuristics applied to solve ELD problem. Other approaches
used for solving ELD problems are evolutionary programming (EPs) [26], tabu search
and multiple tabu search (TS, MTS)[20], differential evolution (DE)[16, 17], hybrid DE
(DEPSO) [27], artificial bee colony algorithm (ABC) [12], simulated annealing (SA) [4],
biogeography-based optimization [5], genetic algorithms [33], intelligent water drop algo-
rithm [21], harmony search (HS) [9], hybrid harmony search [18], differential HS (DHS)
[31], gravitational search algorithm [28], firefly algorithm [34], hybrid gravitational search
[7] and cuckoo search (CS) [3] have been successfully applied to ELD problems.

As stated in theorem of no free lunch [11], that a single optimization technique cannot
handle all types of optimization problems, which leads to the designing of new and updated
optimization algorithms. Grasshopper optimization algorithm (GOA) [24] is published in
2017, which simulates the idea of the way grasshopper swarms search for their food.
This paper aims at an improvement introduced into the GOA to solve ELD problems
efficiently and prevent the algorithm from getting trapped in local optima. The Improved
Grasshopper Optimization Algorithm (IGOA) is based on a novel initialization strategy.
In order to test the efficiency of IGOA, we have compared our statistical results with its
earlier version GOA and other state-of-the-art algorithms, including, GA, ESO, PSO, DE,
HS, HHS.

The rest of this paper is organized as follows; section 2 demonstrates the ELD problem
formulation considering objective function, generation limit constraint and power balance
constraint. In section 3, the Grasshopper Optimisation Algorithm (GOA) and Improved
GOA are described. In section 4, simulation results are presented that illustrate the
potential of the proposed algorithm. Finally, section 6 concludes the paper.

2. Problem formulation
In the following section a detailed mathematical model for the problem of economic

load dispatch is presented.

2.1. Objective function
The objective function in ELD is to minimize the costs incurred due to the generation

of energy, which is a summation of all fuel costs of energy generated by all units. The
mathematical form of the objective function is given in Equation 2.1 below:

Min Ct =
n∑

i=1
αi + βiMi + γiM

2
i , (2.1)

where Ct denotes the total cost of energy production and n denotes power units involved
in power generation. The constant coefficients in the objective function are denoted by
the symbols αi, βi, γi and Mi represents the output of the ith unit. By including the valve
point effects, we get following objective function:

Min Ct =
n∑

i=1
αi + βiMi + γiM

2
i +

∣∣∣δi sin(ϵi(Mmin
i − Mi))

∣∣∣ , (2.2)
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where δi and ϵi are leading coefficients of the valve points for each unit. Mmin
i is the lower

generation limit of the ith unit.
Practically, several types of fuels may be used for a generation unit. For a unit with N th

fuel option, Equation (2.1) is modified as:

CT i =



αi1 + βi1pi + γi1M2
i fuel 1 Mmin

i ≤ Mi ≤ Mi1,
αi2 + βi2pi + γi2M2

i fuel 2 Mmin
i ≤ Mi ≤ Mi2,

...

...
αiN + βiN pi + γiN M2

i fuel N Mmin
i ≤ Mi ≤ MiN ,

(2.3)

where CT i denotes the objective function for the cost of fuel of the ith unit. The coefficients
αiN , βiN and γiN are cost coefficients of the ith generation unit operating on N type of
fuel. Power units installed in multiple areas leads to the problem of Multi-area Economic
Dispatch (MAED) Problem, where the objective function is a total of costs incurred by
generating units in all areas. Thus,

Min CT =
Na∑
i=1

CT i, (2.4)

where CT i is the total cost of the ith area and Na is the number of areas.

2.2. Constraints
Constraints imposed on the cost objective in ELD problems are given in the following

sections:

2.2.1. Generation limit constraint. Each generating unit has a power production
capacity which is given as,

mmin
i ≤ mi ≤ mmax

i . (2.5)

2.2.2. Power balance constraint.
n∑

i=1
Mi = MD + ML, (2.6)

where MD and ML denote the demand and transmission of network losses. For calcu-
lation of network losses, the B-coefficient method [6] is generally implemented by power
production industries. In the B-coefficient method, the losses due to transmission lines is
presented as a quadratic function as given below,

ML =
n∑

i=1

n∑
j=1

MiBijMj +
n∑

i=1
B0iMi + B00. (2.7)

3. Grasshopper optimisation algorithm (GOA)
Exploration and exploitation are the two major tendencies of those algorithms which

happens to be initialized randomly. This method has been likened to the mood of life
of grasshopper, which has several modes of life and shapes as shown in Figure 1. Being
gregarious by nature, grasshopper has the social behavior of collective living. Not only in
adult mature life, but even in the nymph stage several grasshopper live together. Popping
up and down, they devour almost any vegetation, and in the aerial mode, they again
swarm together in great coveys. Slow, steady movement and steps are the distinguish-
ing features of the larvae when passing through metamorphosis. In total contrast to this
mode of locomotion, when grasshopper attains to adult life the slow, steady locomotion is
changed for jumping and random motion. In addition to these features and peculiarities,
search for food source is another prominent feature of the insect [23]. During exploration
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the searchers ought to move in a random, and unsteady manner. But on the other hand,
local thoughtful motion of grasshoppers fulfils the process of exploitation. A new, original
algorithm, nature-inspired and intuitive called GOA has modelled this behavior mathe-
matically. This new model employs this grouping behavior of grasshopper as shown in
[29].

Xi = Si + Gi + Ai, (3.1)
where Xi is ith grasshopper’s position during locomotion, Si denotes social interaction
between the grasshoppers, Gi is the force of gravity on the ith grasshopper, Ai shows
vertical motion in the air.

For random behaviour, the above equation can be written as Xi = r1Si + r2Gi + r3Ai,
where r1, r2, and r3 are random numbers in [0, 1]. We get a formula for social interaction
as,

Si =
n∑

j=1, j ̸=i

s(dij)d̂ij , (3.2)

where dij is the distance measured between the ith and the jth grasshopper,
while dij = |xj − xi|, s is a function which denote the strength of social forces between
these grasshoppers, as shown in Equation (3.3), d̂ij = xj−xi

dij
it depicts unit vector starting

from the ith grasshopper to the jth grasshopper. The function s, defining social forces can
be calculated as :

s(r) = fe
−r

l − e−r, (3.3)
where f show the intensity of the mutual attraction between the grasshopper and l is the
attractive length scale.

Figure 1. Real grasshopper and life cycle of grasshoppers, [24].

Figure 2. left) Function s when l = 1.5 and f = 0.5 (right) Range of function s
when x is in [1, 4], [24].
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Figure 3. Behaviour of the function s when varying l or f , [14]

To show its impact on the mutual interaction of grasshoppers the following Figure 2 is
very helpful. The graph shows distance from 0 to 15, and the units are -0.12 to 0.02. At
point (0, 2.079) repulsion occurs. The graph shows that when a particular grasshopper is
at a distance of 2.079 units from anther grasshopper, the attraction and repulsion among
the grasshopper are mutually balanced, and known as comfort zone. As evident from
the graph, attraction is on the increase from 2.079 unit up to nearly 4, and then decline
starts. By changing the l and f parameters in Equation (3.3), it denotes different social
behaviours of grasshoppers. By varying l and f independently, a graph of the function s
has been drawn in Figure 3. This clearly depicts the effects of these parameters, l and
f change significantly the comfort zone, repulsion region as well as the attraction region.
For very small values of l and f attraction and repulsion regions happens to be very small.
From all these values we have chosen l = 1.5 and f = 0.5. The function s, as illustrated
in Figure 4, depicts the conceptual model of the mutual interaction of grasshoppers and
comfort zone. As Figures 2 and 3 depict, function s has the ability to divide the space
between the two grasshoppers into three regions i.e. repulsion region, attraction region and
comfort zone [13]. When the distance is greater than 10 between the two grasshoppers,
the result become zero. It is clear that this function S has no ability for application of
strong forces, when the grasshoppers are distant from one another. In order to resolve
this problem the distance of grasshopper in [1,4] interval has been graphed as shown in
the Figure 2, at the right side. We can calculate the G component as in Equation (3.1),

Gi = −gêg, (3.4)
in this equation g denotes gravitational constant and êg depicts a unity vector, pointing
in the direction of the centre of earth. Similarly, we can calculate the component A in
Equation (3.1) as,

Ai = uêw, (3.5)
in this equation, u denotes a constant drift, and it is a unity vector pointing in the direction
of velocity of wind. Now by substituting the respective value of S, G, and A in Equation
(3.1)

Xi =
n∑

j=1, j ̸=i

s(Xj − Xi)
Xj − Xi

dij
− gêg + uêw, (3.6)

this is the expanded form of the Equation (3.1). No sooner the nymphs starts to trod on
the land, there ought to be a limit to their position. Equation (3.6) can be used as sim-
ulation for the interaction between grasshoppers in swarm only. By using this Equation
(3.6) behaviour of two different insect swarms in 2-dimension and 3-dimensions have been
graphically drawn in Figures 7 and 8. It is prerequisite for this kind of experiment that



Implementation of improved grasshopper optimization 1575

Figure 4. Attraction, repulsion and comfort zone among grasshoppers, [1].

almost 20 artificially created grasshopper move overtime duration of 10 units.

Figure 5. Behaviour of swarm in a 2D space, [24].

Figure 6. Behaviour of swarm in a 3D space [24].

Equation (3.6) tries to bring closer together the initially disordered population into
well-knit and well ordered swarm. This is shown in the 2-dimensional Figure 5. After
lapse of 10 units of time, the comfort zone is attained by the grasshopper and then cease
to move anymore. Likewise Figure 6, is a depiction of this same behavior in 3-dimensions.
It is evident from these facts that the mathematical model is fully capable of simulating a
covey of grasshoppers in 2, 3 or higher dimensions. In spite of so much close simulation,



1576M. Sulaiman, Masihullah, Z. Hussain, S. Ahmad, W.K. Mashwani, M. A. Jan, R. A. Khanum

optimization problems cannot be directly solved by this mathematical model. The main
reason is that the grasshopper attain the comfort zone in no time and the locust group’s
concentration in to a specified point is not possible.
Considering this short coming, a modified version of Equation (3.6) has been proposed
which is able to solve optimization problems by producing better solution. This proposed
equation is the following;

Figure 7. Behaviour of swarm in a 2D space, [24].

Figure 8. Behaviour of swarm in a 3D space, [24].

Xd
i = c

 n∑
j=1, j ̸=i

c
ubd − lbd

2
s

(∣∣∣Xd
j − Xd

i

∣∣∣ ,
) Xj − Xi

dij

 + T̂d, (3.7)

where ubd is the upper bound in the Dth dimension, lbd is the lower bound in the Dth

dimension s(r) = fe
−r

l − e−r, T̂d is the value of the Dth dimension in the target (best
solution found so far), and c is a decreasing coefficient to shrink the comfort zone, repulsion
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zone, and attraction zone. Note that S is almost similar to the S component in Equation
(3.1). In this equation gravity (G) component has been removed. Moreover, it has been
assumed that the wind flows in the direction of the target i.e. T̂d.

Looking at the Equation (3.7), the grasshopper’s next position depend on its present
position, as well as the position of the other grasshoppers. In order to know for certain
the search agents location all around the target, status of all the grasshoppers have been
considered.

In contrast with PSO where two vectors for each particle, i.e. position and velocity
vector are used for its location and specification, in GOA only one vector i.e. of position
vector is used. Moreover, GOA has a slight edge over PSO in connection with the updating
the position of a search agent.

In PSO only current position, global best and personal best are taken into consideration,
while in case of GOA. Besides these, position of all other search agents are also taken into
consideration. So it is clear from this that in case of PSO, other particles are not involved
for updating the particle’s position, but on the other hand in the case of GOA, all other
search agents are involved to define the location of every one of the search agent. The main
reasons behind inserting the adaptive parameter c in Equation (3.7) are these. Inertial
weight w in PSO and c in Equation (3.7) are similar things. It is responsible for slowing
down the grasshopper’s movements around the target, i.e. balance the exploration and
exploitation of all the grasshopper (any other searcher) all around the targeted region. The
other c, incorporated in the equation, is responsible for decreasing the attraction, comfort
and repulsion zones between the grasshoppers. The component cubd−lbd

2 s(|Xj − Xi|) in
Equation (3.7) has greatly enhanced the work ability of the model. The space which the
grasshopper explore and exploits greatly diminished in a linear way by the incorporation
of the term, cubd−lbd

2 . Moreover, the component s(|xj − xi|) has been inserted in order
to determine whether to repel the grasshopper from or attract towards the target during
exploration and exploitation stages respectively.

The component c which occupies almost the middle of the equation serves to mitigate
considerably the repulsive and attractive forces between different grasshopper individuals.
It is taken as proportional to number of times the repulsion and attraction occurs. On the
other hand, the term c which occupies the outer position, serves to reduce the search cov-
erage when the iteration counting increases much more. Briefly speaking, the component
in the above Equation (3.7) takes into consideration the location of the other grasshoppers
and active interaction of the grasshopper with nature. The function of the second term,
T̂d is the moving tendency of the grasshopper towards the food source. Likewise, param-
eter c also simulates reduction in the velocity of the grasshopper, while approaching food
source and devouring it. In order to get random behaviour in both interaction with other
grasshopper or nature, as well as to show special inclination towards food source, individ-
ual terms should be multiplied with random valves. This new formulation has enabled the
researcher to fully explore and then exploit the specific research space. For tuning the level
of exploration to the level of exploitation the search agents must have some mechanism
at their disposal. In the larval stage of their life cycle, grasshoppers at first move at in
search of food near about their habitat, but once the wings are competed, they make air
flights of varying scales, land explore new sources of food.

Stochastic optimization algorithms has the scheme that exploration is started prior
exploitation. It is due to the need for to search out some search space, holding chances of
food source. Search agents are obliged to search locally to find out global optimum to a
very near approximation. In order to make a balance between exploration and exploitation
the c parameter is decreased in proportion to the number of repetition.
When with passage of time the iteration count increases, this kind of mechanism greatly
promote the exportation. In proportion to the number of iterations, the coefficient c
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greatly reduces the comfort zone. It is calculated in the following manner:

c = cmax − l
cmax − cmin

L
, (3.8)

where cmax is the maximum value, cmin is the minimum value, l indicates the current
iteration, and L is the maximum number of iterations.
In this paper, we use 1 and 0.00001 for cmax and cmin respectively. The parameter c,
greatly affects the locomotion and tendency of convergence of the grasshopper as shown
in Figures 5 and 6. More than 90 iterations have been taken and the sub-figures accom-
panying these figures, well illustrate the positions of the grasshoppers.

Although in this model grasshoppers are made to move towards a target in a gradual
manner over the span of several iterations, but in the realm of real search space, no target
exists as we cannot know where the global best solution is located. So in each individual
step of the optimization, new target for the grasshopper must be sought out. This piecewise
optimization is of great assistance for the GOA. Through it the most suitable target in
the search space is solved and the real global optimization is attained.

3.1. Improved GOA
The quality of population is an important factor which can directly or indirectly effect

the strength of an algorithm in searching the given domain for an optimal solution. Also
having an initialization process with random generation of candidate solutions is not an
effective idea in every case, specially when the search space is large. Hence we have
updated the GOA by dividing the capabilities of the algorithm in two parts, as shown in
Figure 9, which is named as Improved GOA or IGOA.

In first part, the algorithm initializes with a fixed random population for certain number
of evaluations, using Equation 3.9,

Ui = Lbi + (Ubi − Lbi) ∗ rand(0, 1), (3.9)

In the second part, the algorithm is focused and initialized with the best so far spots
found during the earlier evaluations. This strategy is shown to be very efficient in getting
the best results with the less number of function evaluations and time to solve the problems.

4. Results and discussion
In the following section, we have tested IGOA by solving 4 standard case studies of

ELD as in [15]. It is obvious from literature, that many researchers have solved these case
studies by using other optimization techniques as in [30]. We have implemented IGOA to
solve these problems and our results are compared with other standard algorithms.

4.1. Experimental settings
To check the robustness of our technique we have repeated our simulations 100 times,

size of population was fixed as 40, and total number of generations were limited to 100. Our
results are compared with GA, ESO, DE, HS, HHS, FFA, BBO, LI, HM, ALO. Moreover,
details about the four case studies are given in the following sections:

4.2. Case study 1
This system contains 6 thermal generators and power demand is 1263 MW. The pro-

hibited working zones are given in Table 1. Best objective values are presented in Table
3. In Table 4 performances of different algorithms are compared, such as, Grasshopper
Optimization Algorithm (GOA), Improved Grasshopper Optimization Algorithm (IGOA),
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Figure 9. Pseudocode of the IGOA algorithm.

Genetic Algorithms (GA) [35], Evolutionary Strategy Optimisation (ESO) [19], Differen-
tial Evolution (DE) [16], Particle Swarm Optimization (PSO) [10], Harmony Search (HS)
[8] and Hybrid Harmony Search (HHS) [8]. It is observed that both GOA and IGOA per-
forms better than the other methods in terms of the solution quality as shown in Figure
10. The characteristics of the generation units and the B-coefficients (with base capacity
100 MVA) for network losses are given in Table 2 and Bij . The convergence characteristics
of the proposed IGOA are plotted in Figure 11.

Table 1. Prohibited operating zones

Power unit Prohibited zones
01 [210 240] [350 380]
02 [90 110] [140 160]
03 [150 170] [210 240]
04 [80 90] [110 120]
05 [90 110] [140 150]
06 [75 85] [100 105]

Table 2. Data for 6 unit system

Unit αi βi γi Mmax Mmin

01 240 7.0 0.0070 500 100
02 200 10.0 0.0095 200 50
03 220 8.5 0.0090 300 80
04 200 11.0 0.0090 150 50
05 220 10.5 0.0080 200 50
06 190 12 0.0075 120 50
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Bij =



0.0017 0.0012 0.0007 −0.0001 −0.0005 −0.0002
0.0012 0.0014 0.0009 0.0001 −0.0006 0.0001
0.0007 0.0009 0.0031 0.0000 −0.001 −0.0006

−0.0001 0.0001 0.0000 0.0024 −0.0006 −0.0008
−0.0005 −0.0006 −0.001 −0.0006 0.0129 −0.0002
−0.0002 −0.0001 −0.0006 −0.0008 −0.0002 0.0150


,

Bij =
(

0.001 × (−0.3908 −0.1297 0.7047 0.0591 0.2161 −0.6635)
)

,

B00 = 0.0560.

Table 3. Results of Case Study 1 for 1263MW total demand with power losses

Unit GA ESO PSO DE HS HHS GOA IGOA
M1 474.81 447.50 451.56 447.74 449.381 447.496 493.8084 447.82
M2 178.64 173.32 173.44 173.41 173.530 173.314 170.145 184.4384
M3 262.21 263.48 263.99 263.41 263.524 263.445 252.5353 256.9527
M4 134.28 139.06 147.46 139.08 132.049 139.055 117.581 114.0006
M5 151.90 165.48 429.64 165.36 167.262 165.475 172.1718 179.8744
M6 74.18 87.13 71.32 86.94 90.262 87.125 64.6851 88.52058

Total generation (MW) 1276.03 1275.96 1272.46 1275.95 1276.01 1275.91 1271 1271.607
P owerloss 13.02 12.96 12.82 12.96 13.08 12.95 8 8.607

Table 4. In the 100 trial tests, best results obtained by various algorithms (Case
Study 1)

method Generation cost($) CPU time (s)
- Max. Min Average -

GA 15524.0 15459.0 15469.0 41.580a

PSO 15492.0 15450.0 15454.0 14.860a

ESO 15470.0 15408.0 15430.0 0.360a

DE 15450.0 15450.0 15450.0 0.0330a

HS 15449.0 15449.0 14449.0 6.830
HHS 15453.0 15449.0 15450.0 0.140
GOA 15412 15401 15406.5 0.50
IGOA 15408 15393.92 15401.42 0.42

Figure 10. Best results obtained, for case study 1, by different techniques are
compared with GOA and IGOA algorithms
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Figure 11. IGOA takes less than 100 function evaluations by getting better re-
sults for case study 1.

4.3. Case study 2 (3 generating units with load demand of 600MW)
This system contains 3 thermal generators and power demand is 600 MW [22]. The unit

data and B-coefficients for network losses are given in Table 5. In Table 6 performances of
different algorithms are compared, such as, Grasshopper Optimization Algorithm (GOA),
Improved Grasshopper Optimization Algorithm (IGOA), Lambda-iteration method (LI)
[22], Firefly Algorithm (FFA) [22] and Ant Lion Optimizer (ALO) [15]. The comparison
between the generation cost is presented in Table 8. From our results it is obvious that
GOA and IGOA obtained better or similar solutions as compared with other methods
shown in Figure 12. The convergence characteristics of the proposed IGOA are plotted in
Figure 13.

Table 5. Data for 3 unit system

Unit αi βi γi Mmin Mmax

01 1243.5311 38.30553 0.03546 35 210
02 1658.5696 36.32782 0.02111 130 325
03 1356.6592 38.27041 0.01799 125 315

Bij =

 0.000071 0.000030 0.000025
0.000030 0.000069 0.000032
0.000025 0.000032 0.000080

 ,

Table 6. Optimal load dispatch for 3 unit system with power losses

Unit power output (MW) Methods
- FFA ALO GOA IGAO

M1 130.021 130.02 165.92 155.893
M2 250.84 250.85 245.685 251.11
M3 236.43 236.44 202.383 207.0869

Total generation (MW) 617.291 617.31 614 614.0899
P owerloss 17.30 17.3040 14 14.0899



1582M. Sulaiman, Masihullah, Z. Hussain, S. Ahmad, W.K. Mashwani, M. A. Jan, R. A. Khanum

Table 7. In 100 trial tests, best results obtained by various algorithms (Case Study 2)

Method Generation cost ($)
Lambda iteration 30359.3

FFA 30334.0
ALO 30333.9858
GOA 30273
IGOA 30243

Figure 12. Best results obtained, for case study 2, by different techniques are
compared with GOA and IGOA algorithms

Figure 13. IGOA takes less than 100 function evaluations by getting better re-
sults for case study 2.

4.4. Case study 3 (6 generating units with power demand 800MW)
This system contains 6 thermal generators and power demand is 800MW [22]. Gen-

eration limits and B-coefficients matrix of this system are given in Table 8. In table 9
performances of different algorithms are compared, such as, Grasshopper Optimization
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Algorithm (GOA), Improved Grasshopper Optimization Algorithm (IGOA), swarm opti-
mization (PSO) [10], Lambda iteration method (LI) [22], Firefly Algorithm (FFA) [22] and
Ant Lion Optimizer (ALO) [15]. The comparison between the generation cost is presented
in Table 10. The outcome suggests that both GOA and IGOA are more suitable algorithm
as compare to other algorithms in the given case study. Our results are better in terms
of minimum cost as compered with other algorithms, shown in Figure 14. As shown in
Figure 15, IGOA takes less number of function evaluations to get the solutions of required
quality.

Table 8. Data for 6 unit system

Unit αi βi γi Mmin Mmax

01 756.79886 38.53 0.15240 10 125
02 451.32513 46.15916 0.10587 10 150
03 1049.9977 40.39655 0.02803 35 225
04 1243.5311 38.30553 0.03546 35 210
05 1658.5696 36.32782 0.02111 130 325
06 1356.6592 38.27041 0.01799 125 315

The loss co-efficient matrix of 6-Unit system

Bij =



0.0000220 0.00020 0.0000190 0.000025 0.0000320 0.000085
0.000026 0.0000150 0.000024 0.000030 0.000069 0.000032
0.000019 0.000016 0.000017 0.000071 0.000030 0.0000250
0.000015 0.000013 0.000065 0.000017 0.000024 0.000019
0.000017 0.000060 0.000013 0.000016 0.000015 0.000020
0.00014 0.000017 0.000015 0.000019 0.000026 0.000022


,

Table 9. Results of Case Study 3 for 800MW total demand with power losses

Unit power output (MW) Methods
PSO FFA ALO GOA IGOA

M1 32.599 32.5863 32.6003 38.769 47.60463
M2 14.483 14.4843 14.4830 19.9360 35.36481
M3 141.544 141.548 141.5440 55.825 94.712856
M4 136.041 136.045 136.0413 132.3364 74.793288
M5 257.658 257.664 257.6587 311.0588 306.3950
M6 242.003 243.009 243.0033 262.54999 259.5692

P owerLoss 25.3306 25.3312 25.3307 20.476 18.43
Total 41896.62 41896.9 41896.6286 41868 41865

Table 10. In 100 trial tests, best results obtained by various algorithms (Case Study 3)

Method Generation cost ($)
PSO 41896.66

Lambda iteration 41959.0
FFA 41896.9
ALO 41896.6286
GOA 41868.00
IGOA 41865
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Figure 15. IGOA takes less than 100 function evaluations by getting better re-
sults for case study 3.

Figure 14. Best results obtained, for case study 3, by different techniques are
compared with GOA and IGOA algorithm

4.5. Case study 4 (20 generating units with load demand of 2500MW)
This case study consists of 20 thermal generators and power demand is 2500 MW. The

input data and Bij i.e; the loss coefficient are taken from [25], and is given in Table 11. The
obtained output is compared with Biogeography-Based Optimization (BBO) algorithm [2],
Lambda iteration method (LI) [25], Hopfield modeling (HM) [25] and Ant Lion Optimizer
(ALO) [15] in Table 12. The obtained results are better from other algorithms which are
shown in comparison Table 13, Figure 16. As shown in Figure 17, IGOA takes less number
of function evaluations to get the solutions of required quality.



Implementation of improved grasshopper optimization 1585

Table 11. Data for 20 unit system

Unit αi βi γi Mmin Mmax

1 0.00068 18.19 1000 150 600
2 0.00071 19.26 970 50 200
3 0.0065 19.80 600 50 200
4 0.00500 19.10 700 50 200
5 0.00738 18.10 420 50 160
6 0.00612 19.26 360 20 100
7 0.00790 17.14 490 25 125
8 0.00813 18.92 660 50 150
9 0.00522 18.27 765 50 200
10 0.00573 18.92 770 30 150
11 0.00480 16.69 800 100 300
12 0.00310 16.76 970 150 500
13 0.00850 17.36 900 40 160
14 0.00511 18.70 700 20 130
15 0.00398 18.70 450 25 185
16 0.07120 14.26 370 20 80
17 0.00890 19.14 480 30 85
18 0.00713 18.92 680 30 120
19 0.00622 18.47 700 40 120
20 0.00773 19.79 850 30 100

Bij =



8.70 0.43 −4.61 0.36 0.32 −0.66 0.96 −0.60 0.80 −0.10 3.60 0.64 0.79 2.10 1.70 0.80 −3.20 0.70 0.48 −0.70
0.43 8.30 −0.97 0.22 0.75 −0.28 5.04 1.70 0.54 7.20 −0.28 0.98 −0.46 1.30 0.80 0.20 0.52 −.70 0.80 0.20

−4.61 −0.97 9.00 −2.00 0.63 3.00 1.70 −4.30 3.10 −2.00 0.70 −0.77 0.93 4.60 −0.30 4.20 0.38 0.70 −0.20 3.60
0.36 0.22 −2.0 5.30 0.47 2.62 −1.96 2.10 0.67 1.80 −0.45 0.92 2.40 7.60 −0.20 0.70 −1.00 0.86 1.60 0.87
0.32 0.75 0.63 0.47 8.60 −0.80 0.37 0.72 −0.90 0.69 1.80 4.30 −2.80 −0.70 2.30 6.60 0.80 0.20 −3.00 0.50

−0.66 −0.28 3.00 2.62 −0.80 11.8 −4.90 0.30 3.0 −3.0 0.40 0.78 6.40 2.60 −0.20 2.10 −0.40 2.30 1.60 −2.10
0.96 5.04 1.70 1.96 0.37 −4.90 8.24 −0.90 5.90 −0.60 8.50 −0.83 7.20 4.80 −0.90 −0.10 1.30 0.76 1.90 1.30

−0.60 1.70 −4.30 2.10 0.72 0.30 −0.90 1.20 −0.96 0.56 1.60 0.80 −0.40 0.23 0.75 −0.56 0.80 −0.30 5.30 0.80
0.80 0.54 3.10 0.67 −0.90 3.00 5.90 −0.96 0.93 −0.30 6.50 2.30 2.60 0.58 −0.10 0.23 −0.30 1.50 0.74 0.70

−0.10 7.20 −2.0 1.80 0.69 −3 −0.6 0.56 −0.3 0.99 −6.6 3.9 2.3 −0.3 2.8 −0.8 0.38 1.9 0.47 −0.26
3.6 −0.28 0.7 −0.45 1.8 0.4 8.5 1.6 6.5 −6.6 10.7 5.3 −0.6 0.7 1.9 −2.6 0.93 −0.6 3.8 −1.5

0.64 0.98 −0.77 0.92 4.3 0.78 −0.83 0.80 2.3 3.9 5.3 8.0 0.9 2.1 −0.7 5.7 5.4 1.5 0.7 o.1
0.79 −0.46 0.93 2.4 −2.8 6.4 7.2 −0.4 2.6 2.3 −0.6 0.9 11 0.87 −1 3.60 0.46 −0.9 0.6 1.5
2.1 1.3 4.6 7.6 −0.7 2.6 4.8 0.23 0.58 −0.3 0.7 2.1 0.87 3.8 0.5 −0.7 1.9 2.3 −0.97 0.9
1.7 0.8 −0.3 −0.2 2.3 −0.2 −0.9 0.75 −0.1 2.8 1.9 −0.7 −1.0 0.5 11.0 1.9 −0.8 2.6 2.3 −0.1
0.8 −0.2 4.2 0.7 3.6 2.1 −0.1 −0.56 0.23 −0.8 −2.6 5.7 3.6 −0.7 1.9 10.8 2.5 −1.8 0.9 −2.6

−3.2 0.52 0.38 −1 0.8 −0.4 1.3 0.8 −0.3 0.38 0.93 5.4 0.46 1.9 0.8 2.5 8.7 4.2 −0.3 0.68
0.7 −1.7 0.7 0.86 0.2 2.3 0.76 −0.3 1.5 1.9 −0.6 1.5 −0.9 2.3 2.6 −1.8 4.2 2.2 0.16 −0.3

0.48 0.8 −2.0 1.6 −3 1.6 1.9 5.3 0.74 0.47 3.8 0.7 0.6 −0.97 2.3 0.9 −0.3 0.16 7.6 0.69
−0.7 0.2 3.6 0.87 0.5 −2.1 1.3 0.8 0.7 −0.26 −1.5 0.1 1.5 0.9 −0.1 −2.6 0.68 −0.3 0.69 7.0


,

Table 12. Optimal dispatch for Case Study 4 with power losses

Unit BBO LI HM ALO GOA IGOA
M1 513.08920 512.78050 512.78040 512.780 399.04232 600
M2 173.35330 169.10330 169.10350 169.110 149.73828 50.25150
M3 126.92310 126.88980 126.88970 126.890 50 50
M4 103.32920 102.86570 102.86560 102.870 82.281997 50
M5 113.77410 113.63860 113.68360 113.680 55.831 160
M6 73.066940 73.57100 73.57090 73.5680 79.635 20
M7 114.98430 115.28780 115.28760 115.290 120.601 125
M8 116.42380 116.39940 116.39940 116.40 65.84208 50
M9 100.69480 100.40620 100.440630 100.410 86.7785 50
M10 99.999790 106.02670 106.02670 106.020 48.3471 30
M11 148.97700 150.23940 150.23950 150.240 213.9353 300
M12 294.02070 292.76480 292.6770 292.770 500 500
M13 119.57540 119.11540 119.11550 119.120 103.4156 160
M14 30.547860 30.83400 30.83420 30.8310 121.2949 20
M15 116.45460 115.80570 115.80560 115.810 185 185
M16 36.227870 36.25450 36.25450 36.2540 50.1305 20
M17 66.859430 66.85900 66.85900 66.8570 77.456 30
M18 88.547010 87.97200 87.9720 87.9750 56.4623 120
M19 100.98020 100.80330 100.80330 100.80 76.7435 40
M20 54.27250 54.30500 54.3050 54.3050 69.34415 30

Total generation (MW) 2592.1011 2591.9670 2591.9670 2591.967 2591.88 2590.3
powerloss 92.1011 91.9670 91.9669 91.9662 91.88 90.3
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Table 13. In 100 trial tests, best results obtained by various algorithms (Case Study 4)

Method Generation cost ($)
BBO 62456.77926

LI 62456.6391
HM 62456.63441
ALO 62456.63309
GOA 62441
IGOA 62137

Figure 16. Best results obtained, for case study 4, by different techniques are
compared with IGOA algorithm

Figure 17. IGOA takes less than 100 function evaluations by getting better re-
sults for case study 4.

5. Discussion on results
In case study 1, the operating cost obtained by acting GA method is 15459.0$, PSO

method is 15450.0$ ESO method is 15450.0$, DE method is 15450.0$, HS method is
15449.0$ and HHS method is 15449.0$. However, the proposed method IGOA minimize
the cost up to 15393.92$.
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In case study 2, the obtained output of LI method is 30359.3$, FFA method is 30334.0$,
ALO method is 30333.9858$. However, proposed method reduce the cost up to 30243$.
we have obtained best minimized cost with required power demand.

In case study 3, the obtained output from PSO method is 41896.66$, LI method is
41959.0$, FFA method is 41896.9$ and ALO method is 41896.6286$. However, the pro-
posed method achieves minimum cost operating cost that is 41865$.

In case study 4, the generation cost obtained through BBO method is 62456.77926$, LI
method is 62456.6391$, HM method is 62456.63441$ and ALO method is 62456.63309$.
However, proposed method reduce the cost up to 62137$.

6. Conclusion
In this paper, we have proposed a new initialization approach for GOA which is named

as IGOA. ELD problems are considered for testing the new algorithm. To check the
reliability of the IGOA we have taken case studies in ELD problems with nonlinear, com-
plex quadratic functions, limits on the generation units, transmission line capacity, valve
point effects, and different prohibited zones are taken into account to further increase the
complexity of the problem. Our approach is easy to implement, for solving optimization
problems of difficult landscapes. Therefore, we have tested our proposed technique on
several case studies in ELD problems. IGOA has achieved the desirable computational ef-
ficiency, better results, and improved convergence rate. Moreover, IGOA can be examined
by solving ELD problems with discrete domains.
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