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Abstract

The Landau-Lifshitz-Bloch (LLB) equation is an interpolation between Bloch equation valid for high tem-
peratures and Landau-Lifshitz equation valid for low temperatures. Conversely in this paper, we discuss the
behaviours of the solutions of (LLB) equation both as the temperature goes to infinity or 0. Surprisingly in
the first case, the behaviour depends also on the scaling of the damping parameter δ and the volume exchange
parameter a. Three cases are considered and accordingly we get either a linear stationary equation, Bloch
equation or Stokes equation. As for the small temperature behaviour, δ and a being independent of the
temperature, we show that the limit of (LLB) equation is Landau-Lifshitz-Gilbert equation.
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1. Introduction

A macroscopic description of the dynamics of magnetization m of ferromagnets at low temperature as
well as at elevated temperature is given by the Landau-Lifshitz-Bloch (LLB) equation coupled with the
magnetostatic equation satisfied by the magnetic field H. (LLB) equation interpolates between the Landau-
Lifshitz (LL) equation see [1, 3, 6] arising at temperatures θ below the Curie point θc and the Bloch equation
when the temperatures exceed θc see [4]. (LLB) model involves the longitudinal variation of the magnetization
so the saturation constraint |m| = 1 is not conserved as in case of (LL) equation. The (LLB) model first
introduced in [4] has been discussed from the physical point of view in many recent papers see [10, 11] for
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example. The growing interest for this model is sparked by the many applications as the magnetic write
head and the recording medium.

The model equations. We denote by | |, · and × respectively the Euclidean norm, the scalar and the cross
products in R3 and we consider an open bounded domain D ⊂ R3 which is simply connected and regular
with boundary Γ. We denote by ν the unit outward normal to Γ and for T > 0 fixed, we set DT = (0, T )×D
and ΓT = (0, T )× Γ.
The (LLB) equation satisfied by the magnetization m = (m1,m2,m3) and the equation of the demagnetizing
field H = (H1,H2,H3) take the form

∂tm = −gm×H− δ αtr ω × (ω ×H) + δ αl (ω · H)ω in DT ,

m(0) = m0 in D, (ν · ∇)m = 0 on ΓT ,
(1)

div (H +m) = F, H = ∇φ in DT ,

(H +m) · ν = 0 on ΓT ,
(2)

where ω := ω(m) = m
|m| as long as m ̸= 0, H is the effective magnetic field and F is the applied magnetic

field. Omitting the contribution of the anisotropic and the internal exchange fields, the effective magnetic
field H is given, see [4] by

H = a∆m+H. (3)

The parameters g, a > 0 are respectively the gyromagnetic and the volume exchange coefficients, δ > 0 is
the damping parameter and αtr and αl are the transverse and longitudinal damping parameters given by
means of the dimensionless temperature τ = θ/θc, see [4] by

αtr = 1− τ

3
, αl =

2τ

3
, if 0 ≤ τ < 1,

αtr = αl =
2

3
τ, if τ ≥ 1.

Using the relation
H = (H · ω)ω − ω × (ω ×H), (4)

one can rewrite the magnetization equation (1) in the form

∂tm = −gm×H+ δ αtr H− δ (αtr − αl) (ω · H)ω in DT ,

m(0) = m0 in D, (ν · ∇)m = 0 on ΓT ,
(5)

and in view of (4) we see that for τ ≥ 1 this equation simplifies into

∂tm− κ(τ)H = −gm×H,

m(0) = m0 in D, (ν · ∇)m = 0 on ΓT ,
(6)

where we set
κ(τ) =

2

3
δ τ. (7)

Asymptotic behaviours. Our aim in this work is to discuss the behaviour of the system (1)-(2) first as
the dimensionless temperature τ → +∞ and then as τ → 0.
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1. High temperature limits. Three different behaviors are discussed in section 3 when τ → +∞,
corresponding to different relationships of δ and a among τ.

(1.1) In Theorem 2.2, we show that if limτ→+∞ κ(τ) = +∞ and a is fixed then at the limit the effective
magnetic field H vanishes.

(1.2) In Theorem 2.4, we prove that if limτ→+∞ κ(τ) = 0 and a is fixed then at the limit the magneti-
zation m satisfies Bloch equation.

(1.3) In Theorem 2.5, we consider the case when limτ→+∞ κ(τ) = +∞, a = 1
κ(τ) and the applied

magnetic field is rescaled as F = 1√
κ(τ)

F1 then we show that at the limit, the magnetization m

satisfies Stokes equation and the magnetic field H vanishes.
2. Small temperature limit. In section 4 we discuss the behavior as τ → 0 assuming δ and a

(independent of τ) equal to 1 for simplicity. We prove that at the limit, the magnetization m satisfies
the classical Landau-Lifshitz-Gilbert (LLG) equation, see Theorem 2.7.

Structure of the paper. We present our results in the next section, starting by giving some notations
to precise the functional framework and a reminder of the existence result for problem (1)-(2) available in
[7]. We end section 2 by some properties related to the magnetostatic equations which will be useful later.
In section 3, we prove Theorems 2.2, 2.4 and 2.5. First we provide some uniform estimates on the solutions
(mτ ,Hτ ) of problem (1)-(2) allowing to pass to the limit as τ → ∞ in each case. Section 4 is devoted to the
proof of Theorem 2.7 following globally the same steps as before in order to perform the limit as τ → 0. But
regarding to the difficulty related to the possible canceling of the magnetization m, this case requires more
technicalities.

2. Statement of the Main Results

Before stating our main results, let us precise some notations and the hypotheses under consideration
then we will recall the existence result of solutions to problem (1)-(2).

Notations. Let Lp(D), W s,p(D) and Hs(D) be the usual Lebesgue and Sobolev spaces for scalar functions
and let Lp(D),Ws,p(D) and Hs(D) be the associated vectorial functional spaces, all equipped with the usual
norms and we denote by ∥ · ∥ either the L2(D) or L2(D) norm. We define the Hilbert space

M = {m ∈ H1(D), divm = 0, m · ν = 0 on Γ}

equipped with the usual norm of H1(D), see [2] for example and the Hilbert spaces

L2
♯ (D) = {ϕ ∈ L2(D),

∫
D
ϕdx = 0}, H1

♯ (D) = H1(D) ∩ L2
♯ (D).

L2
♯ (D) is equipped with the norm ∥ · ∥ of L2(D) and H1

♯ (D) with the norm ∥∇ϕ∥ (which is equivalent to the
H1-norm thanks to Poincaré-Wirtinger inequality) and the vectorial functional spaces associated are denoted
by L2

♯ (D) and H1
♯ (D).

For a general Banach space V we denote the norm by ∥ · ∥V and the dual space by V ′. A sequence (vn)n ⊂ V
is said to be strongly convergent to v ∈ V , if ∥vn − v∥V → 0 and weakly convergent if for all f ∈ V ′,
f(vn) → f(v) and a sequence (fn)n ⊂ V ′ converges weakly−⋆ to f ∈ V ′ if for all v ∈ V , fn(v) → f(v).
The Bochner spaces associated with V are denoted by Lp(0, T ;V ) and we define as usual the spaces
Hs(0, T ;V ), W s,p(0, T ;V ) and C([0, T ];V ).

To end the notations, we point out that in the sequel C > 0 is a generic constant which depends only on the
domain D and not of the physical parameters appearing in the equations.

Hypotheses. In the sequel we make use of the following assumptions on the data

m0 ∈ H1(D), F ∈ H1(0, T ;L2
♯ (D)). (8)
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In section 4, m0 is also assumed to satisfy the saturation condition

|m0| = 1 a.e. in D. (9)

Solutions to problem (1)-(2). We consider the (LLB) system (1)-(2) and we recall the following existence
result, see [7].

Proposition 2.1. Let τ > 0, m0 ∈ H1(D) and F ∈ C([0, T ];L2
♯ (D)). Then problem (1)-(2) admits a global

solution (mτ ,Hτ ) such that

mτ ∈ C([0, T ];H1(D)) ∩ L2(0, T ;H2(D)) ∩H1(0, T ;L3/2(D)),

Hτ ∈ C([0, T ];H1(D)).

Main theorems. We shall prove that at high or low temperatures, the solutions (mτ ,Hτ ) of problem
(1)-(2) provided by Proposition 2.1 behave according to the different cases already described as follows

Theorem 2.2. Assume hypotheses (8) to be satisfied and a is independent of τ . As τ → +∞, if κ(τ) → +∞
then there exists a subsequence still labeled (mτ ,Hτ ) converging to a limit (m,H) such that

m ∈ L∞(0, T ;H3(D)), H ∈ L∞(0, T ;H1
♯ (D)), (10)

and (m,H) satisfies the linear stationary problem

H = a∆m+H = 0 in DT ,

div (H +m) = F, H = ∇φ in DT ,

(ν · ∇)m = 0, (H +m) · ν = 0 on ΓT .

(11)

Remark 2.3. The results of Theorem 2.2 are far from the attempted Bloch equation for the magnetization.
In order to capture this dynamic we shall use the second scaling of the parameters.

Theorem 2.4. Assume hypotheses (8) to be satisfied and a is independent of τ . As τ → +∞, if κ(τ) → 0,
then there exists a subsequence still labeled (mτ ,Hτ ) converging to a limit (m,H) ∈ L∞(0, T ;H1(D)×H1

♯ (D))
such that (m,H) satisfies Bloch equation coupled to the magnetostatic equation

∂tm = −gm×H with H = a∆m+H in DT ,

div (H +m) = F, H = ∇φ in DT ,

m(0) = m0 in D, (m×∇m) · ν = 0, (H +m) · ν = 0 on ΓT ,

(12)

where (m×∇m)i = m× ∂im, i = 1, 2, 3.

Theorem 2.5. Let m0 ∈ M, a = 1
κ(τ) and F = 1√

κ(τ)
F1 where F1 ∈ H1(0, T ; L2

♯ (D)). As τ → +∞, if

κ(τ) → +∞ then there exists a subsequence (mτ ,Hτ ) converging to (m, 0) with m ∈ L∞(0, T ;M) and there
exists π ∈ L2(0, T ;L2(D)) (which is unique up to a constant) such that (m,π) satisfies Stokes equations with
Navier’s slip boundary conditions

divm = 0 in DT ,

∂tm−∆m+∇π = 0 in DT ,

m(0) = m0 in D, m · ν = 0, ν × (ν × (ν · ∇)m) = 0 on ΓT .

(13)
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Remark 2.6. This result is very surprising. To our knowledge, this is the first time that the Stokes equation
is used to describe the dynamics of the magnetization. In our opinion, this is explained by the fact that the
applied magnetic field is very small.

Theorem 2.7. Assume hypotheses (8) and (9) to be satisfied and a = δ = 1. Then there exists a subsequence
(mτ ,Hτ ) converging as τ → 0 to (m,H) such that

m ∈ L∞(0, T ;H1(D)) ∩W1,3/2(DT ), H ∈ L∞(0, T ;H1
♯ (D)),

and (m,H) is a global weak solution of the Landau-Lifshitz-Gilbert (LLG) equation coupled to the magneto-
static equations

∂tm = −1 + g2

g
m×H+

1

g
m× ∂tm in DT ,

|m|2 = 1 in DT , H = ∆m+H,

div (H +m) = F, H = ∇φ in DT ,

m(0) = m0, |m0|2 = 1 in D,

m× (ν · ∇)m = 0, (H +m) · ν = 0 on ΓT .

(14)

The proofs of Theorems 2.2, 2.4 and 2.5 will be done in section 3 and the proof of Theorem 2.7 in section 4.
To end this section, let us recall some useful results on the magnetostatic equations.

The magnetostatic equations. Let m ∈ C([0, T ];L2(D)) and F ∈ C([0, T ];L2
♯ (D)) be fixed and let

φ ∈ C([0, T ];H1
♯ (D)) be the unique solution of the problem

∇φ = H, div (H +m) = F in DT , (H +m) · ν = 0 on ΓT . (15)

Since
−
∫
D
H ·mdx = ∥H∥2 +

∫
D
F φ, (16)

then by Poincaré-Wirtinger inequality we get the bound

|
∫
D
F φdx| ≤ 1

2
∥H∥2 + C ∥F∥2, (17)

where C > 0 depends only on the domain D, which leads to the estimate

∥H(t)∥ ≤ C (∥m(t)∥+ ∥F (t)∥), t ∈ [0, T ]. (18)

In particular we have

Lemma 2.8. The linear mapping (m,F ) 7−→ H is continuous from L2(0, T ; L2(D)×L2
♯ (D)) into L2(0, T ;L2(D)).

Moreover if m ∈ C([0, T ];H1(D)), writing equation (15) in the form

∆φ = −divm+ F in DT , ∇φ · ν = −m · ν on ΓT , (19)

where divm ∈ C([0, T ];L2(D)) and m · ν ∈ C([0, T ];H1/2(Γ)), then applying elliptic regularity results we
conclude that φ ∈ C([0, T ];H2(D)) so H ∈ C([0, T ];H1(D)) and we have

∥H(t)∥H1(D) ≤ C (∥m(t)∥H1(D) + ∥F (t)∥), t ∈ [0, T ], (20)

where C > 0 depends only on the domain D. Next if m ∈ H1(0, T ;L2(D)) and F ∈ H1(0, T ;L2
♯ (D)) then

we infer that
−
∫
D
H · ∂tmdx =

1

2

d

dt
∥H∥2 +

∫
D
∂tF φdx, (21)

with
|
∫
D
∂tF φdx| ≤ 1

2
∥H∥2 + C ∥∂tF∥2. (22)



K. Hamdache, D. Hamroun, Adv. Theory Nonlinear Anal. Appl. 3 (2019), 174–191. 179

3. High Temperature Limits

We consider the (LLB) system (6)-(2) when τ ≥ 1. In this section we will prove the asymptotic behaviour
results given in Theorems 2.2, 2.4 and 2.5.
To begin, let us give some energy estimates satisfied by the solutions (mτ ,Hτ ) of the problem provided by
Proposition 2.1.

Proposition 3.1. Under hypotheses (8), the following estimates hold for all t ∈ [0, T ],

∥mτ (t)∥2 + 2κ(τ)

∫ t

0
(a∥∇mτ (s)∥2 + 1

2
∥Hτ (s)∥2) ds ≤

∥m0∥2 + C κ(τ)

∫ t

0
∥F (s)∥2 ds,

(23)

a∥∇mτ (t)∥2 + ∥Hτ (t)∥2 + 2κ(τ)

∫ t

0
∥a∆mτ (s) +Hτ (s)∥2 ds ≤

E0 +
1

κ(τ)
∥m0∥2 + C∥F∥2H1(0,T ;L2(D)),

(24)

a∥∇mτ (t)∥2 + ∥Hτ (t)∥2 + 2κ(τ)

∫ t

0
∥a∆mτ (s) +Hτ (s)∥2 ds ≤

(E0 + C∥∂tF∥2L2(DT ))e
T ,

(25)

where C > 0 depends only on the domain D, E0 = a∥∇m0∥2 + ∥H0∥2, H0 being the demagnetizing field
associated to m0 and the source term F (0) that is H0 solves the problem

div (H0 +m0) = F (0), H0 = ∇φ0 in D,

(H0 +m0) · ν = 0 on Γ.
(26)

Proof. For simplicity we drop the index τ in (mτ ,Hτ ).
We multiply the magnetization equation by m then by H ∈ L2(0, T ;L2(D)) and integrate by parts to get

1

2

d

dt
∥m∥2 − κ(τ)

∫
D
(a∆m+H) ·mdx = 0, (27)

and
−
∫
D
∂tm · (a∆m+H) dx+ κ(τ) ∥H∥2 = 0. (28)

Hence (27) leads straightforwardly to estimate (23) using relations (16) and (17). Now using relations (28),
(21) and (22) and setting

E = E(m,H) = a∥∇m∥2 + ∥H∥2, (29)

we get

E(t) + 2κ(τ)

∫ t

0
∥H(s)∥2 ds ≤ E0 +

∫ t

0
(∥H(s)∥2 + C∥∂tF (s)∥2) ds, (30)

which leads to estimate (24) by using (23). To prove (25), we rewrite (30) as

E(t) + 2κ(τ)

∫ t

0
∥H(s)∥2 ds ≤ E0 + C

∫ t

0
∥∂tF (s)∥2 ds+

∫ t

0
E(s) ds, (31)

and use Gronwall lemma which leads to

E(t) ≤ (E0 + C

∫ t

0
∥∂tF (s)∥2 ds)et. (32)
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3.1. The stationary limit.
We will prove Theorem 2.2, so uniform bounds of mτ and Hτ are needed. First the results of Proposition

3.1 allow to deduce that (mτ ,Hτ ) satisfy the estimates below.

Corollary 3.2. We have the estimates

a∥∇mτ∥2L2(DT ) +
1

2
∥Hτ∥2L2(DT ) ≤

1

κ(τ)
∥m0∥2 + C∥F∥2L2(DT ),

a∥∇mτ∥2L∞(0,T ;L2(D)) + ∥Hτ∥2L∞(0,T ;L2(D)) ≤ Fτ
0 ,

∥a∆mτ +Hτ∥2L2(DT ) ≤
1

2κ(τ)
Fτ
0 ,

(33)

where Fτ
0 = E0 + 1

κ(τ)∥m0∥2 + C∥F∥2H1(0,T ;L2(D)) and C > 0 is independent of τ .

Next we will prove the following L∞(0, T ;H1(D)) uniform estimates.

Lemma 3.3. The solutions (mτ ,Hτ ) satisfy the uniform bounds

∥mτ∥2L∞(0,T ;H1(D)) ≤ C
(
E0 +

1

κ(τ)
∥m0∥2 + ∥F∥2H1(0,T ;L2(D))

)
,

∥Hτ∥2L∞(0,T ;H1(D) ≤ C
(
E0 +

1

κ(τ)
∥m0∥2 + ∥F∥2H1(0,T ;L2(D))

)
,

(34)

where C > 0 is independent of τ .

Proof. We need to apply Poincaré-Wirtinger inequality for mτ so we shall estimate its mean value on the
domain D. To this purpose we introduce the notation ⟨f⟩ = |D|−1

∫
D f(x) dx for a scalar or a vectorial

function f , where |D| is the Lebesgue measure of D.
We multiply the magnetostatic equation by xi for i = 1, 2, 3 and integrate by parts to obtain the relation

⟨mτ (t)⟩ = −⟨Hτ (t)⟩ − ⟨xF (t)⟩, (35)

for all t ∈ [0, T ]. Therefore the inequality |⟨xF (t)⟩| ≤ C ∥F (t)∥ implies that

∥⟨mτ ⟩∥L∞(0,T ) ≤ C (∥Hτ∥L∞(0,T ;L2(D)) + ∥F∥L∞(0,T ;L2(D))), (36)

where throughout this demonstration C > 0 denotes different constants depending only on the domain D.
By using Poincaré-Wirtinger inequality ∥mτ − ⟨mτ ⟩∥ ≤ C∥∇mτ∥, we deduce that

∥mτ∥L∞(0,T ;L2(D)) ≤ C
(
∥Hτ∥L∞(0,T ;L2(D)) + ∥F∥L∞(0,T,L2(D))+

∥∇mτ∥L∞(0,T ;L2(D))

)
.

(37)

Hence (33) leads to the first estimate of the lemma and the second one follows by using (20).

Passing to the limit. Using (33) and (34) we infer that

Corollary 3.4. There exist a subsequence still denoted (mτ ,Hτ = ∇φτ ) and (m,H = ∇φ) such that as
τ → +∞, if κ(τ) → +∞ then

mτ ⇀ m weakly − ⋆ in L∞(0, T ;H1(D)),

Hτ ⇀ H weakly − ⋆ in L∞(0, T ;H1(D)) and weakly in L2(DT ),

Hτ = a∆mτ +Hτ → 0 strongly in L2(0, T ;L2(D)),

(38)
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mτ ×Hτ → 0 strongly in L2(0, T ;L3/2(D)), (39)

∆mτ ⇀ ∆m weakly in L2(0, T ;L2(D)), (40)

and
a∆m+H = 0 in DT .

Proof. We have only to prove the two last convergences. To get (39), we use embedding H1(D) ⊂ L6(D)
and inequality

∥mτ ×Hτ∥L2(0,T ;L3/2(D)) ≤ ∥mτ∥L∞(0,T ;L6(D))∥Hτ∥L2(0,T ;L2(D)),

and to prove (40) we write

a∆mτ = Hτ −Hτ ⇀ −H weakly in L2(DT ),

and since a∆mτ → a∆m in the sense of distributions, then the result follows.

Now we introduce the weak formulation of problem (6)-(2). Let Φ ∈ (D([0, T [×D))3 and ϕ ∈ D([0, T ]×D)
be two test functions. The weak formulation of the magnetization equation takes the form

− 1

κ(τ)

∫
DT

mτ · ∂tΦ dxdt+ a

∫
DT

∇mτ · ∇Φ dxdt

−
∫
DT

Hτ · Φ dxdt =
1

κ(τ)

∫
D
m0 · Φ(0) dx

− g

κ(τ)

∫
DT

mτ ×Hτ · Φ dxdt,

(41)

and the weak formulation of the magnetostatic equation writes as∫
DT

(Hτ +mτ ) · ∇ϕdxdt = −
∫
DT

F ϕdxdt. (42)

The results of Corollary 3.4 allow to pass to the limit as τ → ∞ in (41) and (42), since κ(τ) → ∞ we get

a

∫
DT

∇m · ∇Φ dxdt−
∫
DT

H · Φ dxdt = 0, (43)

∫
DT

(H +m) · ∇ϕdxdt = −
∫
DT

F ϕdxdt, (44)

for all Φ ∈ (D([0, T [×D))3 and ϕ ∈ D([0, T ] × D) so integrating by parts we see that (m,H) solves the
problem

a∆m+H = 0 in DT ,

(ν · ∇)m = 0 on ΓT , ⟨H⟩ = 0 in (0, T ),

div (H +m) = F, H = ∇φ in DT ,

(H +m) · ν = 0 on ΓT ,

(45)

so ∆m ∈ L∞(0, T ;H1(D)) which ends the proof of Theorem 2.2.
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3.2. The Bloch limit.
In this paragraph we assume that limτ→+∞ κ(τ) = 0 and a is independent of τ . We aim to prove the

results of Theorem 2.4. First since the solutions (mτ ,Hτ ) of (6)-(2) satisfy the uniform estimates (23) and
(25) given in Proposition 3.1, we infer that

Corollary 3.5. mτ and Hτ are uniformly bounded with respect to τ in L∞(0, T ; H1(D)) and
√

κ(τ) (a∆mτ+
Hτ ) is bounded in L2(0, T ;L2(D)).

The uniform estimate of Hτ in L∞(0, T ;H1(D)) is derived by the same bound of mτ , using inequality
(20). Now we look for a bound of the time derivative of mτ .

Lemma 3.6. ∂tm
τ is uniformly bounded with respect to τ in L2(0, T ; (H2(D))′).

Proof. We write ∂tm
τ = κ(τ)Hτ − gmτ × Hτ − a gmτ × ∆mτ and use the results of Corollary 3.5 and

the embedding H1(D) ⊂ L6(D) to see that the two first terms are uniformly bounded in L2(DT ) and
L∞(0, T ;L3(D)) respectively. Next we write mτ ×∆mτ = div (mτ ×∇mτ ) then since mτ ×∇mτ is bounded
in L∞(0, T ;L3/2(D)) we deduce that mτ ×∆mτ is bounded in L∞(0, T ; (H2(D))′).

Passing to the limit. As previously we will pass to the limit in the weak formulation of (6)-(2) as τ → +∞,
assuming that a is independent of τ and κ(τ) → 0. By using Corollary 3.5 and Lemma 3.6, we deduce using
Aubin’s compactness lemma see [8, 9] and the compact embedding H1(D) ⊂ Lp(D) for all 1 ≤ p < 6, the
following convergence results.

Corollary 3.7. There exists a subsequence (mτ ,Hτ ) and (m,H = ∇φ) such that

mτ ⇀ m weakly − ⋆ in L∞(0, T ;H1(D)),

mτ → m strongly in L2(0, T ;Lp(D)), 1 ≤ p < 6,

Hτ ⇀ H weakly − ⋆ in L∞(0, T ;H1(D)),

κ(τ)Hτ → 0 strongly in L2(0, T ;L2(D)).

(46)

Moreover, we have
Hτ → H strongly in L2(0, T ;Lp(D)), 1 ≤ p < 6,

mτ ×Hτ ⇀ m×H weakly in L2(0, T ;L2(D)),

mτ ×∇mτ ⇀ m×∇m weakly in L2(0, T ;L3/2(D)).

(47)

Proof. It remains to prove the convergences given in (47). By Lemma 2.8, we see that Hτ → H strongly
in L2(0, T ;L2(D)) but since Hτ is bounded in L2(0, T ;L6(D)), the strong convergence of Hτ is true in
L2(0, T ;Lp(D)) with 1 ≤ p < 6. Next the sequence mτ ×Hτ is uniformly bounded in L2(0, T ;L2(D)) and
the strong convergence of mτ and Hτ implies that mτ × Hτ → m × H strongly in L1(0, T ;L2(D)) which
leads to the desired result. Similarly the sequence mτ × ∇mτ is bounded in L2(0, T ;L3/2(D)) then by the
weak-strong convergence principle we deduce the stated convergence.

These results enable us to end the proof of Theorem 2.4. First using Lemma 2.8, we infer that the mag-
netostatic equation is satisfied. Let Φ ∈ (D([0, T [×D))3, we write the weak formulation of the magnetization
equation

−
∫
DT

mτ · ∂tΦ dxdt+ κ(τ)

∫
DT

Hτ · Φ dxdt =

∫
D
m0 · Φ(0) dx+

a g

∫
DT

mτ ×∇mτ · ∇Φ dxdt− g

∫
DT

mτ ×Hτ · Φ dxdt,

(48)
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and we pass to the limit by using the convergence results given in Corollary 3.7 to get

−
∫
DT

m · ∂tΦ dxdt =

∫
D
m0 · Φ(0) dx+

a g

∫
DT

m×∇m · ∇Φ dxdt− g

∫
DT

m×H · Φ dxdt,
(49)

for all Φ ∈ (D([0, T [×D))3. From there, it is easy to conclude that (m,H) satisfies the system of equations
(12). This ends proof of Theorem 2.4.

3.3. The Stokes limit.
Now we shall discuss the behavior of the problem (6)-(2) under hypotheses of Theorem 2.5 so a = 1

κ(τ)

and F = 1√
κ(τ)

F1 and we investigate the case when τ → +∞ and κ(τ) → +∞. With this scaling of F , the

right hand sides of estimates (23) and (24) given in Proposition 3.1 are bounded with respect to τ . Indeed
these inequalities are written as

∥mτ (t)∥2 + 2

∫ t

0
(∥∇mτ (s)∥2 + κ(τ)

2
∥Hτ (s)∥2) ds ≤

∥m0∥2 + C

∫ t

0
∥F1(s)∥2 ds,

(50)

1

κ(τ)
∥∇mτ (t)∥2 + ∥Hτ (t)∥2 + 2κ(τ)

∫ t

0
∥∆mτ (s)

κ(τ)
+Hτ (s)∥2 ds ≤

Eτ
0 +

1

κ(τ)
(∥m0∥2 + C∥F1∥2H1(0,T ;L2(D))),

(51)

where C > 0 depends only on the domain D and Eτ
0 = 1

κ(τ) ∥∇m0∥2+ ∥Hτ
0 ∥2. Here Hτ

0 is the solution of the
problem

divHτ
0 = 1√

κ(τ)
F1(0), Hτ

0 = ∇φτ
0 in D, Hτ

0 · ν = 0 on Γ, (52)

because m0 ∈ M, so ∥Hτ
0 ∥ ≤ C√

κ(τ)
∥F1(0)∥ where C > 0 depends only on the domain D. Therefore

Eτ
0 ≤ 1

κ(τ)
(∥∇m0∥2 + CT ∥F1∥2H1(0,T ;L2(D))), (53)

where CT > 0 depends only on the domain D and T involving the inequality

1

κ(τ)
∥∇mτ (t)∥2 + ∥Hτ (t)∥2 + 2κ(τ)

∫ t

0
∥∆mτ (s)

κ(τ)
+Hτ (s)∥2 ds ≤

1

κ(τ)

(
∥m0∥2H1(D) + CT ∥F1∥2H1(0,T ;L2(D))

)
.

(54)

Hence from estimates (50) and (54), we infer that

Corollary 3.8. Under hypotheses of Theorem 2.5, there exists C,CT > 0 independent of τ such that for all
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t ∈ [0, T ] we have

∥mτ (t)∥2 + 2

∫ t

0
∥∇mτ (s)∥2 ds ≤ ∥m0∥2 + C∥F1∥2L2(0,T ;L2(D)),

∥∇mτ (t)∥2 ≤ ∥m0∥2H1(D) + CT ∥F1∥2H1(0,T ;L2(D)),

∥Hτ (t)∥2 ≤ 1

κ(τ)
(∥m0∥2H1(D) + CT ∥F1∥2H1(0,T ;L2(D))),∫ t

0
∥ 1

κ(τ)
∆mτ (s) +Hτ (s)∥2 ds ≤

1
2κ2(τ)

(∥m0∥2H1(D) + CT ∥F1∥2H1(0,T ;L2(D))).

(55)

Passing to the limit. We use the previous bounds to deduce that

Corollary 3.9. Under hypotheses of Theorem 2.5, there exist a subsequence (mτ ,Hτ = ∇φτ ) and m such
that the following convergences hold when τ → ∞

mτ ⇀ m weakly − ⋆ in L∞(0, T ;H1(D)),

Hτ → 0 strongly in L∞(0, T ;L2(D)),

Hτ = 1
κ(τ)∆mτ +Hτ → 0 strongly in L2(0, T ;L2(D)),

mτ ×Hτ → 0 strongly in L2(0, T ;L3/2(D)).

(56)

Proof. It remains only to prove the last convergence result and for this one, we use the inequality

∥mτ ×Hτ∥L2(0,T ;L3/2(D)) ≤ ∥mτ∥L∞(0,T ;L6(D)) ∥Hτ∥L2(0,T ;L2(D)).

We consider the following weak formulation of the problem. Let Φ ∈ M and ξ ∈ D([0, T [) and let

ϕ ∈ D([0, T ] × D), since Hτ = ∇φτ then
∫
D
Hτ · Φ dx = 0 and the weak formulation of problem (6)-(2)

writes as
−
∫
DT

ξ′(t)mτ · Φ dxdt+

∫
DT

ξ(t)∇mτ · ∇Φ dxdt

=

∫
D
ξ(0)m0 · Φ dx− g

∫
DT

ξ(t)mτ ×Hτ · Φ dxdt,
(57)

−
∫
DT

(Hτ +mτ ) · ∇ϕdxdt =
1√
κ(τ)

∫
DT

F1ϕdxdt. (58)

Passing to the limit by using the convergence results given in (56), we get

−
∫
DT

ξ′(t)m · Φ dxdt+

∫
DT

ξ(t)∇m · ∇Φ dxdt =∫
D
ξ(0)m0 · Φ dx,

(59)

−
∫
DT

m · ∇ϕdxdt = 0, (60)
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for all Φ ∈ M, ξ ∈ D([0, T [) and ϕ ∈ D([0, T ]×D). Hence we deduce that m satisfies

divm = 0 in DT , m · ν = 0 on ΓT , (61)

so that m ∈ L∞(0, T ;M). Finally integrating by parts in (59) we deduce that for all Φ ∈ M

d

dt

∫
D
m.Φ dx+

∫
D
∇m.∇Φ dx = 0 in D′(0, T ),

so
d

dt

∫
D
m.Φ dx ∈ L∞(0, T ) and ∂tm ∈ L∞(0, T ;M′). Therefore m ∈ C([0, T ];M′) and the initial condition

m(0) = m0 is satisfied. Using the De Rham theorem and the classical results for Stokes equation, we deduce
that there exists π ∈ L∞(0, T ;L2(D)) such that (m,π) satisfies the equation ∂tm −∆m +∇π = 0 in DT .

Testing again this equation by ξ(t)Φ with Φ ∈ M and ξ ∈ D(0, T ) we deduce that
∫ T

0
ξ(t)⟨(ν ·∇)m,Φ⟩ dt = 0,

where the symbol ⟨. , . ⟩ is the dual bracket between H−1/2(Γ) and H1/2(Γ) . Therefore ⟨(ν · ∇)m,Φ⟩ = 0
for a.e. t ∈ (0, T ) and all Φ ∈ M. Writing Φ = −ν × (ν × Φ), we see that this condition is equivalent to
⟨ν × (ν × (ν · ∇)m),Φ⟩ = 0 for a.e. t ∈ (0, T ) and all Φ ∈ M and we retrieve the Navier’s slip boundary
condition

ν × (ν × (ν · ∇)m) = 0 on ΓT . (62)

This ends the proof of Theorem 2.5.

4. Small Temperature Limit

This section deals with the asymptotic behaviour of (LLB) system (1)-(2) when τ → 0, δ and a being
independent of τ so without loss of generality we take them equal to 1. As we expect that the limit equation
of the magnetization is (LLG) equation, we assume that the initial data satisfies the saturation constraint
|m0| = 1 a.e. in D.
From now on, we see that κ(τ) = αl =

2
3 τ and we set γ(τ) := αtr = 1− 1

2κ(τ). We recall that for 0 < τ < 1,
the existence result of Proposition 2.1 holds true, but regarding to the indetermination contained in the
equation (due to the fact that m can cancel so ω(m) is not defined), the magnetization equation is rewritten
in the following form, see [7]

|mτ |2∂tmτ = −g |mτ |2mτ ×Hτ − γ(τ)mτ × (mτ ×Hτ )

+κ(τ) (mτ · Hτ )mτ in DT ,

|mτ (0)|2mτ (0) = |m0|2m0 in D, |mτ |2(ν · ∇)mτ = 0 on ΓT ,

(63)

where Hτ = ∆mτ +Hτ . To be complete, we give again the magnetostatic equation satisfied by Hτ

div (Hτ +mτ ) = F, Hτ = ∇φτ in DT ,

(Hτ +mτ ) · ν = 0 on ΓT ,
(64)

We aim to prove the results stated in Theorem 2.7 so the first step is to establish uniform bounds of the
solutions with respect to the small parameter τ .

4.1. Uniform estimates
We introduce the following notations. For t > 0 we set Dt = (0, t)×D and we define the function χ by

χ(m) = 1 if m ̸= 0 and χ(m) = 0 elsewhere. Our first estimates are given below
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Proposition 4.1. Let (mτ ,Hτ ) be the solution of (63)-(64) provided by Proposition 2.1. Under hypotheses
(8), there exists C > 0 depending only on the domain D such that for all t ∈ [0, T ] it holds

∥mτ (t)∥2 + 2κ(τ)

∫ t

0
(∥∇mτ∥2 + 1

2
∥Hτ∥2) ds ≤

∥m0∥2 + C κ(τ) ∥F∥2L2(DT ),

(65)

∥∇mτ (t)∥2 + ∥Hτ (t)∥2 + 2κ(τ)

∫
Dt

χ(mτ )|Hτ |2 dxds ≤

eT (E0 + C∥∂tF∥2L2(0,T ;L2(D))),

(66)

where E0 = ∥∇m0∥2 + ∥H0∥2 and H0 = ∇φ0 is the demagnetizing field associated to the magnetization m0

and the source term F (0).

Proof. We drop the index τ for simplicity. We multiply the magnetization equation (63) by m to obtain

|m|2∂tm ·m = κ(τ) |m|2(m · H), (67)

or equivalently
∂tm ·m = κ(τ) (m · H). (68)

Therefore integrating over Dt leads to

1

2
(∥m(t)∥2 − ∥m0∥2) + κ(τ)

∫ t

0
∥∇m∥2ds =

κ(τ)

∫
Dt

(H ·m) dxds,

(69)

and we get estimate (65) using (16) and (17). Now we multiply the magnetization equation (63) by −H ∈
L2(0, T ;L2(D)) to get the equality

− |m|2∂tm · H = (1− τ) (m · H)2 − γ(τ) |m|2|H|2, (70)

which is equivalent to

− χ(m)∂tm · H = (1− τ)χ(m) (ω · H)2 − γ(τ)χ(m)|H|2, (71)

where ω = ω(m) = m
|m| if m ̸= 0 and we set ω(0) = u, u being any unit vector. Integrating over Dt and using

the inequality (ω · H)2 ≤ |H|2 we obtain

−
∫
Dt

χ(m)∂tm · H dxds ≤ −κ(τ)

∫
Dt

χ(m)|H|2 dxds. (72)

Since ∂tm = 0 on the subset {(s, x) ∈ Dt;m(s, x) = 0} see [5], we have∫
Dt

χ(m)∂tm · H dxds =

∫
{(s,x)∈Dt;m(s,x)̸=0}

∂tm · H dxds =

∫
Dt

∂tm · H dxds,

then from the equality

−
∫
Dt

∂tm · H dx =
1

2
(∥∇m(t)∥2 − ∥∇m0∥2)

+
1

2
(∥H(t)∥2 − ∥H0∥2) +

∫
Dt

∂tF φdxds,
(73)
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and inequality (22) we deduce

κ(τ)

∫
Dt

χ(m)|H|2 dxds+ 1

2
(∥∇m(t)∥2 + ∥H(t)∥2) ≤

1

2
(∥∇m0∥2 + ∥H0∥2) +

1

2

∫ t

0
∥H∥2ds+ C

∫ t

0
∥∂tF∥2ds,

(74)

where C > 0 depends only on D. Setting E(t) = ∥∇m(t)∥2 + ∥H(t)∥2, we see that

E(t) + 2κ(τ)

∫
Dt

χ(m)|H|2 dxds ≤ E0 +
∫ t

0
E(s) ds+ C

∫ t

0
∥∂tF∥2 ds, (75)

and by using Gronwall inequality, we get estimate (66).

This result allows us to prove that

Proposition 4.2. Under hypotheses (8) and (9), it holds for all t ∈ [0, T ]

∥ |mτ (t)|2 − 1∥2 ≤ CT

√
κ(τ), (76)

where CT > 0 depends on T , E0 and F but not of τ . Therefore as τ → 0,

|mτ |2 → 1 strongly in L∞(0, T ;L2(D)). (77)

In particular for small values of τ , we have

mτ ̸= 0 a.e. in DT . (78)

Proof. We will drop again the index τ and use the proof of Proposition 4.1. We multiply equality (68) by
|m|2 − 1 and integrate over Dt to obtain∫

Dt

∂t(|m|2 − 1)2 dxds = 4κ(τ)

∫
Dt

(m · H)(|m|2 − 1) dxds. (79)

Since |m0| = 1 we get by means of Cauchy-Schwarz inequality

∥ |mτ (t)|2 − 1∥2 = 4κ(τ)

∫
Dt

χ(m) (m · H)(|m|2 − 1) dxds

≤
√
κ(τ)

(
4κ(τ)

∫
Dt

χ(m)|H|2 dxds+
∫
Dt

|m|2(|m|2 − 1)2 dxds
)
,

where |m|2(|m|2−1)2 ≤ (|m|2+1)(|m|2−1)2 ≤ C(|m|6+1) then using embedding H1(D) ⊂ L6(D) together
to estimates (65) and (66), we conclude the proof of the proposition.

According to the previous results and using the same notations, we infer that

Corollary 4.3. For τ > 0 small, the solutions (mτ ,Hτ ) satisfy the following uniform bound for all t ∈ [0, T ]

∥∇mτ (t)∥2 + ∥Hτ (t)∥2 + 2κ(τ)

∫ t

0

∫
D
|Hτ |2 dxds ≤

eT (E0 + C∥∂tF∥2L2(0,T ;L2(D))).

(80)

Proof. Estimate (80) derives from (66) since by Proposition 4.2, χ(mτ ) = 1 a.e. in DT .
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In order to pass to the limit in the problem when τ → 0, a uniform bound on the time derivative of mτ

is needed. To begin, since for τ > 0 small enough, mτ ̸= 0 a.e. in DT , we can rewrite equation (63) of mτ

in its first form (1) that is

∂tm
τ = −gmτ ×Hτ − γ(τ)ωτ × (ωτ ×Hτ )+

κ(τ) (ωτ · Hτ )ωτ in DT ,

(ν · ∇)mτ = 0 on ΓT , mτ (0) = m0 in D,

(81)

where ωτ = ω(mτ ) and we used the property |m0|2 = 1 which implies that |mτ (0)|2 = 1.
Below we will prove the following result.

Lemma 4.4. Under hypotheses (8) and (9), ∂tmτ is uniformly bounded in L3/2(DT ) with respect to the small
parameter τ .

Proof. From equation (81) we get the equality

∂tm
τ = κ(τ) (ωτ · Hτ )ωτ − ωτ ×

(
g|mτ |Hτ + γ(τ)ωτ ×Hτ

)
, (82)

the terms of the right hand side being orthogonal, therefore

|∂tmτ |2

g2|mτ |2 + γ2(τ)
+ (ωτ · Hτ )2 − |Hτ |2 = κ2(τ)

g2|mτ |2 + γ2(τ)
(ωτ · Hτ )2.

On another side multiplying equation (81) by (−Hτ ) and using relation (4) we see that

−γ(τ)|Hτ |2 = −∂tm
τ · Hτ − (γ(τ)− κ(τ))(ωτ · Hτ )2,

which leads to
γ(τ)|∂tmτ |2

g2|mτ |2 + γ2(τ)
+ κ(τ)(ωτ · Hτ )2 − ∂tm

τ · Hτ ≤ κ2(τ)

γ(τ)
(ωτ · Hτ )2. (83)

Therefore taking 0 < τ ≤ 3/5, we get for a.e. in DT the inequality

γ(τ)
|∂tmτ |2

g2|mτ |2 + γ2(τ)
+

κ(τ)

2
(ωτ · Hτ )2 − ∂tm

τ · Hτ ≤ 0. (84)

Let Eτ (t) = ∥∇mτ (t)∥2 + ∥Hτ (t)∥2, since

−
∫
D
∂tm

τ · Hτ dx =
1

2

d

dt
Eτ +

∫
D
∂tFφdx,

using inequality (22) and estimate (80), we get for all t ∈ [0, T ]

Eτ (t) + κ(τ)

∫ t

0

∫
D
(ωτ · Hτ )2 dxds+ 2γ(τ)

∫ t

0

∫
D

|∂tmτ |2

g2|mτ |2 + γ2(τ)
dxds ≤

E0 +
∫ t

0
(∥Hτ∥2 + C∥∂tF∥2) ds ≤ E0 + CT (E0 + ∥∂tF∥2L2(0,T,L2(D)).

Therefore as 2γ(τ) > 1 for τ > 0 small enough, we deduce that for all t ∈ [0, T ] and τ > 0 small enough it
holds ∫ t

0

∫
D

|∂tmτ |2

g2|mτ |2 + γ2(τ)
dxds+ Eτ (t) + κ(τ)

∫ t

0

∫
D
(Hτ · ωτ )2 dxds

≤ CT (E0 + ∥F∥2H1(0,T,L2(D)),

(85)
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where CT > 0 is independent of τ . Now we write∫
DT

|∂tmτ |3/2 dxdt =
∫
DT

|∂tmτ |3/2

(g2|mτ |2 + γ2(τ))3/4
(g2|mτ |2 + γ2(τ))3/4 dxdt

≤ C(

∫
DT

(|mτ |2 + 1)3dxdt)1/4 (

∫
DT

|∂tmτ |2

g2|mτ |2 + γ2(τ)
dxdt)3/4,

and use the uniform boundedness of mτ in L∞(0, T ;H1(D)) and the embedding H1(D) ⊂ L6(D) to get the
bound of ∂tmτ .

4.2. The LLG limit.
By using the previous bounds and Aubin’s compactness lemma we deduce the following convergence

results

Corollary 4.5. There exists a subsequence still denoted (mτ ,Hτ ) and (m,H = ∇φ) such that as τ → 0

mτ ⇀ m weakly − ⋆ in L∞(0, T ;H1(D)),

∂tm
τ ⇀ ∂tm weakly in L3/2(DT ),

mτ → m strongly in Lp(0, T ;Lq(D)), 1 < p < ∞, 3
2 ≤ q < 6

Hτ ⇀ H weakly − ⋆ in L∞(0, T ;H1(D)),

Hτ → H strongly in L2(0, T ;L2(D)).

(86)

Moreover m satisfies the length constraint

|m|2 = 1 a.e. in DT . (87)

Proof. The strong convergence of Hτ is a consequence of Lemma 2.8 and we deduce that H = ∇φ satisfies
the magnetostatic equation (64) while property (87) is a direct consequence of the strong convergence of mτ

and (77).

As a first step towards (LLG) equation, let us rewrite the magnetization equation (81) in a new form. We
observe that if we take the cross product of (81) by mτ we get

− gmτ × (mτ ×Hτ ) = mτ × ∂tm
τ − γ(τ)mτ ×Hτ , (88)

and inserting this expression in (81) we obtain the new formulation

g|mτ |2

g2|mτ |2 + γ2(τ)
∂tm

τ = −mτ ×Hτ +
γ(τ)

g2|mτ |2 + γ2(τ)
mτ × ∂tm

τ

+
gκ(τ)

g2|mτ |2 + γ2(τ)
(mτ · Hτ )mτ ,

(89)

with γ(τ) = 1− κ(τ)
2 → 1 as τ → 0.



K. Hamdache, D. Hamroun, Adv. Theory Nonlinear Anal. Appl. 3 (2019), 174–191. 190

We consider now the weak formulation of equation (89) given by

−
∫
DT

g|mτ |2

g2|mτ |2 + γ2(τ)
mτ · ∂tΦ dxdt

−2gγ2(τ)

∫
DT

mτ · ∂tmτ

(g2|mτ |2 + γ2(τ))2
mτ · Φ dxdt

−
∫
DT

mτ ×∇mτ · ∇Φ dxdt+

∫
DT

mτ ×Hτ · Φ dxdt

=
g

g2 + γ2(τ)

∫
D
m0 · Φ(0) dx+∫

DT

γ(τ)

g2|mτ |2 + γ2(τ)
mτ × ∂tm

τ · Φ dxdt

+

∫
DT

gκ(τ)

g2|mτ |2 + γ2(τ)
(mτ · Hτ )mτ · Φ dxdt,

(90)

for test functions Φ ∈ (D([0, T [×D))3. We will examine the convergence of the nonlinear terms appearing in
(90). We have

Lemma 4.6. Letting τ → 0, we have (at least) the following convergences

mτ ×Hτ → m×H strongly in L4/3(DT ), (91)

mτ ×∇mτ ⇀ m×∇m weakly in L2(0, T ;L3/2(D)), (92)

|mτ |2

g2|mτ |2 + γ2(τ)
mτ → 1

g2 + 1
m strongly in L2(DT ), (93)

γ2(τ)
mτ · ∂tmτ

(g2|mτ |2 + γ2(τ))2
mτ ⇀ 0 weakly in L3/2(DT ), (94)

γ(τ)

g2|mτ |2 + γ2(τ)
mτ × ∂tm

τ ⇀
1

g2 + 1
m× ∂tm weakly in L6/5(DT ), (95)

κ(τ)

g2|mτ |2 + γ2(τ)
(mτ · Hτ )mτ → 0 strongly in L2(0, T ;L2(D)). (96)

Proof. The convergence (91) follows directly from the strong convergence of mτ and Hτ stated in Corollary
4.5. Next the strong convergence of mτ and the weak-⋆ convergence of ∇mτ in L∞(0, T ;L2(D)) imply the
weak convergence

mτ ×∇mτ ⇀ m×∇m in L2(0, T ;Lr(D)),

for 1 ≤ r < 3/2 and leads to the result stated in (92) because the sequence is uniformly bounded in
L2(0, T ;L3/2(D)). To proceed with the remaining convergences, we see first that as a consequence of (77)
and Lebesgue dominated convergence theorem, we have

|mτ |2

g2|mτ |2 + γ2(τ)
→ 1

g2 + 1
strongly in Lp(0, T ;Lq(D)) 1 ≤ p, q < ∞. (97)

Therefore taking p = q = 4 and using the strong convergence of mτ in L4(DT ), we deduce convergence (93).
Similarly we see that for 1 ≤ i, j ≤ 3

mτ
im

τ
j

(g2|mτ |2 + γ2(τ))2
→ mimj

(g2 + 1)2
strongly in Lp(0, T ;Lq(D)) 1 ≤ p, q < ∞,
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so taking p = q = 6 and using the weak convergence of ∂tmτ in L3/2(DT ), we deduce the convergence

mτ · ∂tmτ

(g2|mτ |2 + γ2(τ))2
mτ ⇀

1

(g2 + 1)2
(m · ∂tm)m = 0,

weakly first in L6/5(DT ) then in L3/2(DT ) since the sequence is uniformly bounded in this space. As
previously we see that

γ(τ)

g2|mτ |2 + γ2(τ)
∂tm

τ ⇀
1

g2 + 1
∂tm weakly in L3/2(DT ),

so the strong convergence of mτ implies the weak convergence of
γ(τ)mτ × ∂tm

τ

g2|mτ |2 + γ2(τ)
in a space Lr(DT ) with r < 6/5 then since this sequence is bounded in L6/5(DT ) we get

the convergence result (95). To obtain the last convergence of the lemma, it is enough to see that

∥ κ(τ)

g2|mτ |2 + γ2(τ)
(mτ · Hτ )mτ∥L2(DT ) ≤

√
κ(τ)

g2
∥
√
κ(τ)Hτ∥L2(DT ), (98)

and use the estimate (80) which implies a uniform bound of
√
κ(τ)Hτ in L2(DT ).

Now we come back to the weak formulation (90) of the problem and pass to the limit as τ → 0 to get by
using the results of the previous lemma

− g

g2 + 1

∫
DT

m · ∂tΦ dxdt−
∫
DT

m×∇m · ∇Φ dxdt

−
∫
DT

m×H · Φ dxdt =
g

g2 + 1

∫
D
m0 · Φ(0) dx+

1

g2 + 1

∫
DT

m× ∂tm · Φ dxdt,

(99)

for all Φ ∈ (D([0, T [×D))3. From here it is easy to deduce that m satisfies the (LLG) equation with the
initial and boundary conditions stated in problem (14). Theorem 2.7 is then proved.
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