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Abstract
LetF ,G be two generalized derivations of prime ringRwith characteristic different from 2 with associated
derivations D1 and D2 respectively. We use the symbols C = Z(U) and U to denote the the extended
centroid of R and Utumi ring of quotient of R respectively. Let 0 6= a ∈ R and F and G satisfy
a{(F(xy) + G(yx))m − [x, y]n} = 0 for all x, y ∈ J , a nonzero ideal, where m and n are natural numbers.
Then eitherR is commutative or there exists c, b ∈ U such that F(x) = cx and G(x) = bx for all x ∈ R.
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1. Introduction
For any x, y ∈ Rwe use the symbol [x, y] to denote the commutator xy− yx and x ◦ y to denote ant-icommutator

xy + yx. Recall that a ring R is prime if for any a, b ∈ R, aRb = {0} implies that either a = 0 or b = 0 and is
semiprime if for any a ∈ R, aRa = {0} implies that a = 0. A map D : R → R is said to be a derivation if D is
additive and D(xy) = D(x)y + xD(y) for all x, y ∈ R. If D can be written as D(x) = [a, x] for all x ∈ R, then D
is called an inner derivation for some a ∈ R. Brešar [2] brought out the definition of generalized derivation. A
map F : R → R is said to be a generalized derivation if it is additive and satisfies F(xy) = F(x)y + xD(y) for all
x, y ∈ R and a derivation D.

Daif et al. [4, Theorem 2] showed that if R is a semiprime ring with {0} 6= J ideal and D is a derivation of
R such that D([x, y]) = [x, y] for any x, y ∈ J , then J is contained in the centre of R. Later Quadri et al. [12]
discussed the commutativity of prime rings for generalized derivation instead of derivation. Further, Dhara [7]
studied the result of Quadri et al. in semiprime ring. Filippis et al. [6] studied that if F satisfies (F([x, y]))n = [x, y]
for all x, y ∈ J , where {0} 6= J is an ideal of a prime ring R, n is a fixed natural number and F is a generalized
derivations ofR, they conclude that either D = 0, n = 1 and F(x) = x R for all x ∈ R orR is commutative.

As F is additive, further the above identity can be written as (F(xy)−F(yx))n = [x, y]. Form this point of view
there is a question what happen if we take two generalized derivations instead of generalized derivation. Following
this line, we prove:

Theorem 1.1. Let R be a prime ring with characteristic different from 2, F and G are generalized derivations of R. Let
0 6= a ∈ R and F and G satisfy a{(F(xy) + G(yx))m − [x, y]n} = 0 for all x, y ∈ J , a nonzero ideal, where m and n are
natural numbers. Then we have exactly one of the following:

1. R is commutative;

2. there exists c, b ∈ U , Utumi ring of quotient ofR such that F(x) = cx and G(x) = bx for all x ∈ R.
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Theorem 1.2. LetR be a 2-torsion free semiprime ring, F and G are generalized derivations ofR with associated derivations
D1, D2 respectively. Let 0 6= a ∈ R and F , G satisfy a{(F(xy) + G(yx))m − [x, y]n} = 0 for all x, y ∈ J , a nonzero ideal,
where m and n are natural numbers. ThenR contains an ideal which is central.

2. The results on two sided ideals
Theorem 1.1 LetR be a prime ring with characteristic different from 2, F and G are generalized derivations of

R. Let 0 6= a ∈ R and F and G satisfy a{(F(xy) + G(yx))m − [x, y]n} = 0 for all x, y ∈ J , a nonzero ideal, where m
and n are natural numbers. Then we have exactly one of the following:

1. R is commutative;

2. there exists c, b ∈ U , Utumi ring of quotient ofR such that F(x) = cx and G(x) = bx for all x ∈ R.

Proof If both F and G are zero, then a[x, y]n = 0 for all x, y ∈ J . Since [x, y] is multilinear, by [16], we have
a[x, y] = 0. Replacing x by zx to get az[x, y] = 0. Using primeness ofR and a 6= 0, we have [x, y] = 0 and henceR
is commutative. Suppose atleast one of F , G 6= 0, then from the hypothesis, we have

a{(F(xy) + G(yx))m − [x, y]n} = 0 for all x, y ∈ J . (2.1)

By [10], F(x) = cx+D1(x) and G(x) = bx+D2(x) for some c, b ∈ U , for all x ∈ U and derivationsD1 andD2. Hence
J satisfies

a{(F(xy) + G(yx))m − [x, y]n} = 0 (2.2)

By [3, Theorem 2], U satisfies this GPI, we have

a{(cxy +D1(xy)) + (byx+D2(yx)))m − [x, y]n} = 0 for all x, y ∈ U . (2.3)

Now we have the following cases:
Case I: Let D1 and D2 are inner derivations of U , i.e D1(x) = [p, x] and D2(x) = [q, x] for all x ∈ U and for some
p, q ∈ U . Then our identity a{(cxy +D1(xy)) + (byx+D2(yx)))m − [x, y]n} = 0 becomes

a{(cxy + [p, xy]) + (byx+ [q, yx]))m − [x, y]n} = 0 for all x, y ∈ U . (2.4)

Hence a{(axy + [p, xy]) + (byx+ [q, yx]))m − [x, y]n} = 0 is a nontrivial generalized polynomial identity (GPI)
for U . Denote byH either the algebraic closure of C or C according as C is either infinite or finite respectively. By ([9,
Proposition]), a{(cxy + [p, xy]) + (byx+ [q, yx]))m − [x, y]n} = 0 is also a GPI for U ⊗C H. By [17, Theorem 2.5 and
Theorem 3.5], U ⊗C H is centrally closed primeH-algebra, by replacingR, C with U ⊗C H andH, respectively, we
may assume thatR is centrally closed and C is either finite or algebraically closed. By Martindale’s theorem [18],R
is then a primitive ring with nonzero socle E with C as the associated division ring. Hence by Jacobson’s theorem
[19, p.75]R ∼=Mk(C). If k = 1, thenR is commutative. Now assume dimCV ≥ 2.

Now we prove that for any u ∈ V , u and qu are linearly C-dependent. Let on contrary that u and qu are linearly
independent for some u ∈ V .

If pu is not a member of the span of {u, qu}, then {u, pu, qu} is independent. By the density of ring R, there exist
y, x ∈ R such that

xqu = −u, xu = 0, ypu = u, yu = u, xpu = 0, yqu = u.

Then multiplying (2.4) by u from rihgt to have

0 = a{(cxy + [p, xy])− (byx+ [q, yx]))m − [x, y]n}u = 0 = au.

If for any v ∈ V , {u, v} is linearly C-dependent, then av = 0. Since a 6= 0, there exists w ∈ V such that aw 6= 0 and
so {w, v} are linearly C-independent. Also a(w + v) = aw 6= 0 and a(w − v) = aw 6= 0. By the above argument, it
follows that w and cw are linearly C-dependent, as are {w+ v, c(w+ v)} and {w− v, c(w− v)}. Therefore there exist
γw, γw+v, γw−v ∈ C such that

qw = γww, (w + v) = γw+v(w + v), q(w − v) = γw−v(w − v).

Thus we have
γww + qv = γw+vw + γw+vv (2.5)
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and
γww − qv = γw−vw − γw−vv. (2.6)

Now (2.5) and (2.6) together yields

(2γw − γw+v − γw−v)w + (γw−v − γw+v)v = 0 (2.7)

and
2qv = (γw+v − γw−v)w + (γw+v + γw−v)v. (2.8)

By (2.7), and since {w, v} are C-independent, 2γw − γw+v − γw−v = 0 and γw−v − γw+v = 0. These relations imply
by using char (R) 6= 2, that γw = γw+v = γw−v. By (2.8) it follows qv = γwv. This leads to a contradiction with the
fact that {v, qv} is linear C-independent.

In light of this, we may assume that for any v ∈ V there exists a suitable γv ∈ V such that qv = γvv, and standard
argument shows that there is γ ∈ C such that qv = γv for all v ∈ V . Then by standard argument, we have q ∈ C.
similarly with neccessary variation, we can show that p ∈ C.
Case 2 Let D1 and D2 are not both inner derivations of U . Then D2(y) = [p, y] + βD1(y) for some p ∈ U and β ∈ C.
If either β = 0 or D2 is inner, then D1 is also inner which contradicts. So, β 6= 0 as wel as D2 is not inner. Then by
(2.3), we have

a{(cxy +D1(x)y + xD1(y)) + (byx+ [p, yx] + β(D1(y)x+ yD1(x)))m − [x, y]n} = 0

for any y, x ∈ U .
By the use of Kharchenko’s Theorem [8], we have either D1 is inner or U satisfies a{(cxy + x1y + xy1) + (byx +
[p, yx] + β(y1x+ yx1)))m − [x, y]n} i.e

a{(cxy + x1y + xy1) + (byx+ [p, yx] + β(y1x+ yx1)))m − [x, y]n} = 0 (2.9)

for any y, x, y1, x1 ∈ U .
If D1 is inner then D2 will be a inner derivation of form D2(y) = [p + βq, y] for some p, q ∈ U which is a

contradiction. In particular, putting y = 0 in (2.9), we have

a(xy1 + βy1x)m = 0 for any x, y1 ∈ J .

Since xy1 + βy1x is multilinear polynomial, by [16], we have a(xy1 + βy1x) = 0. Further, this can be written as
a(xy1 − y1x + βy1x + y1x) = 0 = a((xy1 − y1x) + (y1x + βy1x)) = a(xy1 − y1x). By primeness of R, we have
[R,R] = {0} and henceR is commutative.
Case 3 Now assume both D1 and D2 are Outer. By Kharchenko’s Theorem [8], we have

a{(cxy + x1y + xy1) + (byx+ y2x+ yx2))m − [x, y]n} = 0

for any y1, x1, y, x, y2, x2 ∈ U. For y = 0, we have

a(xy1 + y2x)m = 0 (2.10)

Since xy1+y2x is multilinear polynomial, by [16], we have a(xy1+y2x) = 0. By primeness ofR, we haveR◦R = {0}
and henceR is commutative.

Now we have the following corollaries
Corollary 2.1. Let F and G be two generalized derivations of R, a prime ring having characteristic different
from 2, associated with nonzero derivations and {0} 6= J an ideal of R. Let 0 6= a ∈ R and F and G satisfy
a{(F(xy) + G(yx))m − [x, y]n} = 0 for all x, y ∈ J and for some fixed natural numbers m,n. ThenR is commuta-
tive.
Corollary 2.2. Let D1 and D2 be two derivations of R, a prime ring having characteristic different from 2 and
{0} 6= J an ideal of R. Let 0 6= a ∈ R and D1 and D2 satisfy a{(D1(xy) +D2(yx))m − [x, y]n} = 0 for all x, y ∈ J
and for some fixed natural numbers m,n. ThenR is commutative.

In the following example, we demonstrate that primeness of the ring is essential in the hypothesis of the
Theorem1.1.
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Example 2.1. Let R1 be any commutative ring. Let R =

{(
a b
0 c

)
| a, b, c ∈ R1

}
and J =

{(
0 a
0 0

)
|

a ∈ R1

}
. Define the following maps: F

(
a b
0 c

)
=

(
a c
0 0

)
, G
(
a b
0 c

)
=

(
a a+ b
0 0

)
, D1

(
a b
0 c

)
=(

0 −b
0 0

)
and D2

(
a b
0 c

)
=

(
0 a− c
0 0

)
. Then F and G are generalized derivations with associated deriva-

tions D1 and D2 respectively satisfying a{(F(xy) + G(yx))m − [x, y]n} = 0 for all x, y ∈ J , where m ≥ 1, n ≥ 1 are
fixed integer. Then neitherR is commutative nor F and G can be written as F(x) = ax and G(x) = bx for all x ∈ R
because of D1 and D2 are nonzero.

3. Results on semiprime rings

Theorem 1.2 LetR be a 2-torsion free semiprime ring, F and G are generalized derivations ofR with associated
derivations D1, D2 respectively. Let 0 6= a ∈ R and F and G satisfy a{(F(xy) + G(yx))m − [x, y]n} = 0 for all
x, y ∈ J , a nonzero ideal, where m and n are fixed natural numbers. ThenR contains an ideal which is central.
Proof By [3] and [9], J , R and U satisfy the same GPIs as well as same differential identities. By [10], F(x) =
cx+D1(x) and G(x) = bx+D2(x) for some c, b ∈ U and derivations D1 and D2. Hence

a{((cxy +D1(xy)) + (byx+D2(yx))m − [x, y]n} = 0 for all x, y ∈ U . (3.1)

Let P(C) denotes a collection of all maximal ideals of C andM∈ P(C). By the theory of orthogonal completions
for semiprime rings ([9, p.31-32]),MU is a prime ideal of U which is invariant under all derivations of U . By [1,
Lemma 1 and Theorem 1], we have

⋂
{MU | M ∈ M(C) } = 0. Set U = U/MU . Then D1 and D2 induce the

following derivations D1 and D2 on U whic is defined as D1(x) = D1(x) and D2(x) = D2(x) for all x ∈ Ū . Therefore,

a{((c̄x̄ȳ + D̄1(x̄ȳ)) + (b̄ȳx̄+ D̄2(ȳx̄)))m − [x, y]n} = 0

for all x, y ∈ U . Using Theorem 1.1, we have simultaneously either [U ,U ] ⊆MU or D1(U) ⊆MU as well as either
[U ,U ] ⊆MU or D2(U) ⊆MU . This gives that D1(U)[U ,U ] ⊆MU for allM ∈ P(C) as well as D2(U)[U ,U ] ⊆MU
for allM∈ P(C). In either case we have Di(U)[U ,U ] ⊆MU for allM∈ P(C), i = 1, 2 and hence Di(U)[U ,U ] = 0.
Particularly, Di(R)[R,R] = 0 = [Di(R),R]R[Di(R),R] = 0. AsR is a semiprime ring, we obtain that [Di(R),R] =
0. Then by [20, Theorem 3],R contains a nonzero central ideal.

4. Results on Banach algebras

Singer et al. [14] showed that the image of a noncommutative Banach algebra under continuous derivation is
contained in radical of the algebra. Sinclair [13] proved that every primitive ideals of the algebra is invariant under
continuous derivation of Banach algebra. Recently, Park [11] proved that if D is a continuous linear derivation
of a noncommutative Banach algebra A satisfies [[D(x), x],D(x)] ∈ rad(A) for all x ∈ A, then D(A) ⊆ rad(A). De
Filippis [5] extended the Park’s result to generalized derivations.

Inspire by these results we prove:

Theorem 4.1. Let A be a noncommutative Banach algebra and F(x) = cx+D1(x) and G(x) = bx+D2(x) are continuous
generalized derivations with associated derivations D1(x) and D2(x) respectively. If F and G satisfy a{(F(xy) + G(yx))m −
[x, y]n} ∈ rad(A)) for all x, y ∈ A, then Di(A) ⊆ rad(A) for i=1, 2 .

By a Banach algebra, we mean a complex normed algebra A whose underlying vector space is Banach space. Here
Jacobson radical of A is defined as the intersection of all primitive ideals of A and we use the notation rad(A) to
denote it.

Proof of Theorem 4.1 We know that left multiplication mappings are continuous. Also F ,G are continuous by
hypothesis. So D1 and D2 are continuous. By [13] it is clear that primitive ideals are invariant under continuous
generalized derivations F ,G. Assuming A/P = Ā for any primitive ideal P . Thus generalized derivations
Fp,Gq : Ā → Ā is defined by Fp(x̄) = Fp(x+P ) = F(x)+P = ax+D1(x)+P and Gq(x̄) = Gq(x+P ) = G(x)+P =
bx+D2(x) + P for all x̄ ∈ Ā, where A/P = Ā is a factor Banach algebra. As P is primitive, the factor algebra Ā
is also primitive and hence it is prime and semisimple. The hypothesis a{(F(xy) + G(yx))m − [x, y]n} ∈ rad(A))
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yields that a{(Fp(x̄ȳ) + Gq(ȳx̄))m − [x̄, ȳ]n} = 0̄ for all x̄, ȳ ∈ Ā. By Theorem 1.1, we have either Ā is commutative
or D̄1 = 0̄ and D̄2 = 0̄.
Let Ā be commutative. By [15], D̄1 and D̄2 are continuous in Ā. By [14], D̄1 = 0̄ and D̄2 = 0̄ in Ā. So, in both cases,
we have D̄1 = 0̄ and D̄2 = 0̄ in Ā, i.e Di(A) ⊆ P for any primitive ideal P of A and hence Di(A) ⊆ rad(A) for
i = 1, 2.
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