Annihilator of Generalized Derivations with Power Values in Rings and Algebras

Md Hamidur Rahaman*

Abstract

Let \mathcal{F}, \mathcal{G} be two generalized derivations of prime ring \mathcal{R} with characteristic different from 2 with associated derivations \mathcal{D}_1 and \mathcal{D}_2 respectively. We use the symbols $\mathcal{C} = \mathcal{Z}(\mathcal{U})$ and \mathcal{U} to denote the the extended centroid of \mathcal{R} and Utumi ring of quotient of \mathcal{R} respectively. Let $0 \neq a \in \mathcal{R}$ and \mathcal{F} and \mathcal{G} satisfy $a\{(\mathcal{F}(xy) + \mathcal{G}(yx))^m - [x, y]^n\} = 0$ for all $x, y \in \mathcal{J}$, a nonzero ideal, where m and n are natural numbers. Then either \mathcal{R} is commutative or there exists $c, b \in \mathcal{U}$ such that $\mathcal{F}(x) = cx$ and $\mathcal{G}(x) = bx$ for all $x \in \mathcal{R}$.

Keywords: Semiprime rings; Generalized derivations; extended centroid; Utumi quotient ring.

AMS Subject Classification (2020): Primary: 16W25 ; Secondary: 16N60; 15A27.

*Corresponding author

1. Introduction

For any $x, y \in \mathcal{R}$ we use the symbol [x, y] to denote the commutator xy - yx and $x \circ y$ to denote ant-icommutator xy + yx. Recall that a ring \mathcal{R} is prime if for any $a, b \in \mathcal{R}$, $a\mathcal{R}b = \{0\}$ implies that either a = 0 or b = 0 and is semiprime if for any $a \in \mathcal{R}$, $a\mathcal{R}a = \{0\}$ implies that a = 0. A map $\mathcal{D} : \mathcal{R} \to \mathcal{R}$ is said to be a derivation if \mathcal{D} is additive and $\mathcal{D}(xy) = \mathcal{D}(x)y + x\mathcal{D}(y)$ for all $x, y \in \mathcal{R}$. If \mathcal{D} can be written as $\mathcal{D}(x) = [a, x]$ for all $x \in \mathcal{R}$, then \mathcal{D} is called an inner derivation for some $a \in \mathcal{R}$. Brešar [2] brought out the definition of generalized derivation. A map $\mathcal{F} : \mathcal{R} \to \mathcal{R}$ is said to be a generalized derivation if it is additive and satisfies $\mathcal{F}(xy) = \mathcal{F}(x)y + x\mathcal{D}(y)$ for all $x, y \in \mathcal{R}$ and a derivation \mathcal{D} .

Daif et al. [4, Theorem 2] showed that if \mathcal{R} is a semiprime ring with $\{0\} \neq \mathcal{J}$ ideal and \mathcal{D} is a derivation of \mathcal{R} such that $\mathcal{D}([x, y]) = [x, y]$ for any $x, y \in \mathcal{J}$, then \mathcal{J} is contained in the centre of \mathcal{R} . Later Quadri et al. [12] discussed the commutativity of prime rings for generalized derivation instead of derivation. Further, Dhara [7] studied the result of Quadri et al. in semiprime ring. Filippis et al. [6] studied that if \mathcal{F} satisfies $(\mathcal{F}([x, y]))^n = [x, y]$ for all $x, y \in \mathcal{J}$, where $\{0\} \neq \mathcal{J}$ is an ideal of a prime ring \mathcal{R} , n is a fixed natural number and \mathcal{F} is a generalized derivations of \mathcal{R} , they conclude that either $\mathcal{D} = 0$, n = 1 and $\mathcal{F}(x) = x R$ for all $x \in \mathcal{R}$ or \mathcal{R} is commutative.

As \mathcal{F} is additive, further the above identity can be written as $(\mathcal{F}(xy) - \mathcal{F}(yx))^n = [x, y]$. Form this point of view there is a question what happen if we take two generalized derivations instead of generalized derivation. Following this line, we prove:

Theorem 1.1. Let \mathcal{R} be a prime ring with characteristic different from 2, \mathcal{F} and \mathcal{G} are generalized derivations of \mathcal{R} . Let $0 \neq a \in \mathcal{R}$ and \mathcal{F} and \mathcal{G} satisfy $a\{(\mathcal{F}(xy) + \mathcal{G}(yx))^m - [x, y]^n\} = 0$ for all $x, y \in \mathcal{J}$, a nonzero ideal, where m and n are natural numbers. Then we have exactly one of the following:

- 1. \mathcal{R} is commutative;
- 2. there exists $c, b \in U$, Utumi ring of quotient of \mathcal{R} such that $\mathcal{F}(x) = cx$ and $\mathcal{G}(x) = bx$ for all $x \in \mathcal{R}$.

Received: 09-10-2019, Accepted: 23-05-2020

Theorem 1.2. Let \mathcal{R} be a 2-torsion free semiprime ring, \mathcal{F} and \mathcal{G} are generalized derivations of \mathcal{R} with associated derivations \mathcal{D}_1 , \mathcal{D}_2 respectively. Let $0 \neq a \in \mathcal{R}$ and \mathcal{F} , \mathcal{G} satisfy $a\{(\mathcal{F}(xy) + \mathcal{G}(yx))^m - [x, y]^n\} = 0$ for all $x, y \in \mathcal{J}$, a nonzero ideal, where m and n are natural numbers. Then \mathcal{R} contains an ideal which is central.

2. The results on two sided ideals

Theorem 1.1 Let \mathcal{R} be a prime ring with characteristic different from 2, \mathcal{F} and \mathcal{G} are generalized derivations of \mathcal{R} . Let $0 \neq a \in \mathcal{R}$ and \mathcal{F} and \mathcal{G} satisfy $a\{(\mathcal{F}(xy) + \mathcal{G}(yx))^m - [x, y]^n\} = 0$ for all $x, y \in \mathcal{J}$, a nonzero ideal, where m and n are natural numbers. Then we have exactly one of the following:

- 1. \mathcal{R} is commutative;
- 2. there exists $c, b \in U$, Utumi ring of quotient of \mathcal{R} such that $\mathcal{F}(x) = cx$ and $\mathcal{G}(x) = bx$ for all $x \in \mathcal{R}$.

Proof If both \mathcal{F} and \mathcal{G} are zero, then $a[x, y]^n = 0$ for all $x, y \in \mathcal{J}$. Since [x, y] is multilinear, by [16], we have a[x, y] = 0. Replacing x by zx to get az[x, y] = 0. Using primeness of \mathcal{R} and $a \neq 0$, we have [x, y] = 0 and hence \mathcal{R} is commutative. Suppose atleast one of \mathcal{F} , $\mathcal{G} \neq 0$, then from the hypothesis, we have

$$a\{(\mathcal{F}(xy) + \mathcal{G}(yx))^m - [x, y]^n\} = 0 \quad \text{for all} \quad x, y \in \mathcal{J}.$$
(2.1)

By [10], $\mathcal{F}(x) = cx + \mathcal{D}_1(x)$ and $\mathcal{G}(x) = bx + \mathcal{D}_2(x)$ for some $c, b \in \mathcal{U}$, for all $x \in \mathcal{U}$ and derivations \mathcal{D}_1 and \mathcal{D}_2 . Hence \mathcal{J} satisfies

$$a\{(\mathcal{F}(xy) + \mathcal{G}(yx))^m - [x, y]^n\} = 0$$
(2.2)

By [3, Theorem 2], \mathcal{U} satisfies this GPI, we have

$$a\{(cxy + D_1(xy)) + (byx + D_2(yx)))^m - [x, y]^n\} = 0 \text{ for all } x, y \in \mathcal{U}.$$
(2.3)

Now we have the following cases:

Case I: Let \mathcal{D}_1 and \mathcal{D}_2 are inner derivations of \mathcal{U} , i.e $\mathcal{D}_1(x) = [p, x]$ and $\mathcal{D}_2(x) = [q, x]$ for all $x \in \mathcal{U}$ and for some $p, q \in \mathcal{U}$. Then our identity $a\{(cxy + D_1(xy)) + (byx + D_2(yx))\}^m - [x, y]^n\} = 0$ becomes

$$a\{(cxy + [p, xy]) + (byx + [q, yx]))^m - [x, y]^n\} = 0 \text{ for all } x, y \in \mathcal{U}.$$
(2.4)

Hence $a\{(axy + [p, xy]) + (byx + [q, yx])\}^m - [x, y]^n\} = 0$ is a nontrivial generalized polynomial identity (GPI) for \mathcal{U} . Denote by \mathcal{H} either the algebraic closure of \mathcal{C} or \mathcal{C} according as \mathcal{C} is either infinite or finite respectively. By ([9, Proposition]), $a\{(cxy + [p, xy]) + (byx + [q, yx])\}^m - [x, y]^n\} = 0$ is also a GPI for $\mathcal{U} \otimes_{\mathcal{C}} \mathcal{H}$. By [17, Theorem 2.5 and Theorem 3.5], $\mathcal{U} \otimes_{\mathcal{C}} \mathcal{H}$ is centrally closed prime \mathcal{H} -algebra, by replacing \mathcal{R} , \mathcal{C} with $\mathcal{U} \otimes_{\mathcal{C}} \mathcal{H}$ and \mathcal{H} , respectively, we may assume that \mathcal{R} is centrally closed and \mathcal{C} is either finite or algebraically closed. By Martindale's theorem [18], \mathcal{R} is then a primitive ring with nonzero socle \mathcal{E} with \mathcal{C} as the associated division ring. Hence by Jacobson's theorem [19, p.75] $\mathcal{R} \cong \mathcal{M}_k(\mathcal{C})$. If k = 1, then \mathcal{R} is commutative. Now assume dim $_{\mathcal{C}} \mathcal{V} \ge 2$.

Now we prove that for any $u \in V$, u and qu are linearly C-dependent. Let on contrary that u and qu are linearly independent for some $u \in V$.

If pu is not a member of the span of $\{u, qu\}$, then $\{u, pu, qu\}$ is independent. By the density of ring \mathbb{R} , there exist $y, x \in \mathbb{R}$ such that

$$xqu = -u, xu = 0, ypu = u, yu = u, xpu = 0, yqu = u, xpu = 0, yqu = u, yq$$

Then multiplying (2.4) by u from ringt to have

$$0 = a\{(cxy + [p, xy]) - (byx + [q, yx]))^m - [x, y]^n\}u = 0 = au$$

If for any $v \in \mathcal{V}$, $\{u, v\}$ is linearly \mathcal{C} -dependent, then av = 0. Since $a \neq 0$, there exists $w \in \mathcal{V}$ such that $aw \neq 0$ and so $\{w, v\}$ are linearly \mathcal{C} -independent. Also $a(w + v) = aw \neq 0$ and $a(w - v) = aw \neq 0$. By the above argument, it follows that w and cw are linearly \mathcal{C} -dependent, as are $\{w + v, c(w + v)\}$ and $\{w - v, c(w - v)\}$. Therefore there exist $\gamma_w, \gamma_{w+v}, \gamma_{w-v} \in \mathcal{C}$ such that

$$qw = \gamma_w w, \quad (w+v) = \gamma_{w+v}(w+v), \quad q(w-v) = \gamma_{w-v}(w-v)$$

Thus we have

$$\gamma_w w + qv = \gamma_{w+v} w + \gamma_{w+v} v \tag{2.5}$$

and

$$\gamma_w w - qv = \gamma_{w-v} w - \gamma_{w-v} v. \tag{2.6}$$

Now (2.5) and (2.6) together yields

$$(2\gamma_w - \gamma_{w+v} - \gamma_{w-v})w + (\gamma_{w-v} - \gamma_{w+v})v = 0$$
(2.7)

and

$$2qv = (\gamma_{w+v} - \gamma_{w-v})w + (\gamma_{w+v} + \gamma_{w-v})v.$$
(2.8)

By (2.7), and since $\{w, v\}$ are C-independent, $2\gamma_w - \gamma_{w+v} - \gamma_{w-v} = 0$ and $\gamma_{w-v} - \gamma_{w+v} = 0$. These relations imply by using char $(\mathcal{R}) \neq 2$, that $\gamma_w = \gamma_{w+v} = \gamma_{w-v}$. By (2.8) it follows $qv = \gamma_w v$. This leads to a contradiction with the fact that $\{v, qv\}$ is linear C-independent.

In light of this, we may assume that for any $v \in V$ there exists a suitable $\gamma_v \in V$ such that $qv = \gamma_v v$, and standard argument shows that there is $\gamma \in C$ such that $qv = \gamma v$ for all $v \in V$. Then by standard argument, we have $q \in C$. similarly with necessary variation, we can show that $p \in C$.

Case 2 Let \mathcal{D}_1 and \mathcal{D}_2 are not both inner derivations of \mathcal{U} . Then $\mathcal{D}_2(y) = [p, y] + \beta \mathcal{D}_1(y)$ for some $p \in \mathcal{U}$ and $\beta \in \mathcal{C}$. If either $\beta = 0$ or \mathcal{D}_2 is inner, then \mathcal{D}_1 is also inner which contradicts. So, $\beta \neq 0$ as well as \mathcal{D}_2 is not inner. Then by (2.3), we have

$$a\{(cxy + \mathcal{D}_1(x)y + x\mathcal{D}_1(y)) + (byx + [p, yx] + \beta(\mathcal{D}_1(y)x + y\mathcal{D}_1(x)))^m - [x, y]^n\} = 0$$

for any $y, x \in \mathcal{U}$.

By the use of Kharchenko's Theorem [8], we have either \mathcal{D}_1 is inner or \mathcal{U} satisfies $a\{(cxy + x_1y + xy_1) + (byx + [p, yx] + \beta(y_1x + yx_1)))^m - [x, y]^n\}$ i.e

$$a\{(cxy + x_1y + xy_1) + (byx + [p, yx] + \beta(y_1x + yx_1)))^m - [x, y]^n\} = 0$$
(2.9)

for any $y, x, y_1, x_1 \in \mathcal{U}$.

If \mathcal{D}_1 is inner then \mathcal{D}_2 will be a inner derivation of form $\mathcal{D}_2(y) = [p + \beta q, y]$ for some $p, q \in \mathcal{U}$ which is a contradiction. In particular, putting y = 0 in (2.9), we have

$$a(xy_1 + \beta y_1 x)^m = 0$$
 for any $x, y_1 \in \mathcal{J}$.

Since $xy_1 + \beta y_1 x$ is multilinear polynomial, by [16], we have $a(xy_1 + \beta y_1 x) = 0$. Further, this can be written as $a(xy_1 - y_1x + \beta y_1x + y_1x) = 0 = a((xy_1 - y_1x) + (y_1x + \beta y_1x)) = a(xy_1 - y_1x)$. By primeness of \mathcal{R} , we have $[\mathcal{R}, \mathcal{R}] = \{0\}$ and hence \mathcal{R} is commutative.

Case 3 Now assume both D_1 and D_2 are Outer. By Kharchenko's Theorem [8], we have

$$a\{(cxy + x_1y + xy_1) + (byx + y_2x + yx_2))^m - [x, y]^n\} = 0$$

for any $y_1, x_1, y, x, y_2, x_2 \in \mathbb{U}$. For y = 0, we have

$$a(xy_1 + y_2x)^m = 0 (2.10)$$

Since $xy_1 + y_2x$ is multilinear polynomial, by [16], we have $a(xy_1 + y_2x) = 0$. By primeness of \mathcal{R} , we have $\mathcal{R} \circ \mathcal{R} = \{0\}$ and hence \mathcal{R} is commutative.

Now we have the following corollaries

Corollary 2.1. Let \mathcal{F} and \mathcal{G} be two generalized derivations of \mathcal{R} , a prime ring having characteristic different from 2, associated with nonzero derivations and $\{0\} \neq \mathcal{J}$ an ideal of \mathcal{R} . Let $0 \neq a \in \mathcal{R}$ and \mathcal{F} and \mathcal{G} satisfy $a\{(\mathcal{F}(xy) + \mathcal{G}(yx))^m - [x, y]^n\} = 0$ for all $x, y \in \mathcal{J}$ and for some fixed natural numbers m, n. Then \mathcal{R} is commutative.

Corollary 2.2. Let \mathcal{D}_1 and \mathcal{D}_2 be two derivations of \mathcal{R} , a prime ring having characteristic different from 2 and $\{0\} \neq \mathcal{J}$ an ideal of \mathcal{R} . Let $0 \neq a \in \mathcal{R}$ and \mathcal{D}_1 and \mathcal{D}_2 satisfy $a\{(\mathcal{D}_1(xy) + \mathcal{D}_2(yx))^m - [x, y]^n\} = 0$ for all $x, y \in \mathcal{J}$ and for some fixed natural numbers m, n. Then \mathcal{R} is commutative.

In the following example, we demonstrate that primeness of the ring is essential in the hypothesis of the **Theorem1.1**.

Example 2.1. Let \mathcal{R}_1 be any commutative ring. Let $\mathcal{R} = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathcal{R}_1 \right\}$ and $\mathcal{J} = \left\{ \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \mid a \in \mathcal{R}_1 \right\}$. Define the following maps: $\mathcal{F} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} a & c \\ 0 & 0 \end{pmatrix}, \mathcal{G} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} a & a+b \\ 0 & 0 \end{pmatrix}, \mathcal{D}_1 \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} 0 & a-c \\ 0 & 0 \end{pmatrix}$ and $\mathcal{D}_2 \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} 0 & a-c \\ 0 & 0 \end{pmatrix}$. Then \mathcal{F} and \mathcal{G} are generalized derivations with associated derivations \mathcal{D}_1 and \mathcal{D}_2 respectively satisfying $a\{(\mathcal{F}(xy) + \mathcal{G}(yx))^m - [x, y]^n\} = 0$ for all $x, y \in \mathcal{J}$, where $m \ge 1, n \ge 1$ are fixed integer. Then neither \mathcal{R} is commutative nor \mathcal{F} and \mathcal{G} can be written as $\mathcal{F}(x) = ax$ and $\mathcal{G}(x) = bx$ for all $x \in \mathcal{R}$ because of \mathcal{D}_1 and \mathcal{D}_2 are nonzero.

3. Results on semiprime rings

Theorem 1.2 Let \mathcal{R} be a 2-torsion free semiprime ring, \mathcal{F} and \mathcal{G} are generalized derivations of \mathcal{R} with associated derivations \mathcal{D}_1 , \mathcal{D}_2 respectively. Let $0 \neq a \in \mathcal{R}$ and \mathcal{F} and \mathcal{G} satisfy $a\{(\mathcal{F}(xy) + \mathcal{G}(yx))^m - [x, y]^n\} = 0$ for all $x, y \in \mathcal{J}$, a nonzero ideal, where m and n are fixed natural numbers. Then \mathcal{R} contains an ideal which is central. **Proof** By [3] and [9], \mathcal{J} , \mathcal{R} and \mathcal{U} satisfy the same GPIs as well as same differential identities. By [10], $\mathcal{F}(x) = cx + \mathcal{D}_1(x)$ and $\mathcal{G}(x) = bx + \mathcal{D}_2(x)$ for some $c, b \in \mathcal{U}$ and derivations \mathcal{D}_1 and \mathcal{D}_2 . Hence

$$a\{((cxy + \mathcal{D}_1(xy)) + (byx + \mathcal{D}_2(yx))^m - [x, y]^n\} = 0 \text{ for all } x, y \in \mathcal{U}.$$
(3.1)

Let $\mathcal{P}(\mathcal{C})$ denotes a collection of all maximal ideals of \mathcal{C} and $\mathcal{M} \in \mathcal{P}(\mathcal{C})$. By the theory of orthogonal completions for semiprime rings ([9, p.31-32]), $\mathcal{M}\mathcal{U}$ is a prime ideal of \mathcal{U} which is invariant under all derivations of \mathcal{U} . By [1, Lemma 1 and Theorem 1], we have $\bigcap \{\mathcal{M}\mathcal{U} \mid \mathcal{M} \in \mathcal{M}(\mathcal{C})\} = 0$. Set $\overline{\mathcal{U}} = \mathcal{U}/\mathcal{M}\mathcal{U}$. Then \mathcal{D}_1 and \mathcal{D}_2 induce the following derivations $\overline{\mathcal{D}_1}$ and $\overline{\mathcal{D}_2}$ on $\overline{\mathcal{U}}$ whic is defined as $\overline{\mathcal{D}_1}(\overline{x}) = \overline{\mathcal{D}_1(x)}$ and $\overline{\mathcal{D}_2}(\overline{x}) = \overline{\mathcal{D}_2(x)}$ for all $x \in \overline{\mathcal{U}}$. Therefore,

$$\overline{a}\{((\overline{c}\overline{x}\overline{y}+\overline{\mathcal{D}}_1(\overline{x}\overline{y}))+(\overline{b}\overline{y}\overline{x}+\overline{\mathcal{D}}_2(\overline{y}\overline{x})))^m-[\overline{x},\overline{y}]^n\}=0$$

for all $\overline{x}, \overline{y} \in \overline{\mathcal{U}}$. Using Theorem 1.1, we have simultaneously either $[\mathcal{U}, \mathcal{U}] \subseteq \mathcal{M}\mathcal{U}$ or $\mathcal{D}_1(\mathcal{U}) \subseteq \mathcal{M}\mathcal{U}$ as well as either $[\mathcal{U}, \mathcal{U}] \subseteq \mathcal{M}\mathcal{U}$ or $\mathcal{D}_2(\mathcal{U}) \subseteq \mathcal{M}\mathcal{U}$. This gives that $\mathcal{D}_1(\mathcal{U})[\mathcal{U}, \mathcal{U}] \subseteq \mathcal{M}\mathcal{U}$ for all $\mathcal{M} \in \mathcal{P}(\mathcal{C})$ as well as $\mathcal{D}_2(\mathcal{U})[\mathcal{U}, \mathcal{U}] \subseteq \mathcal{M}\mathcal{U}$ for all $\mathcal{M} \in \mathcal{P}(\mathcal{C})$. In either case we have $\mathcal{D}_i(\mathcal{U})[\mathcal{U}, \mathcal{U}] \subseteq \mathcal{M}\mathcal{U}$ for all $\mathcal{M} \in \mathcal{P}(\mathcal{C})$, i = 1, 2 and hence $\mathcal{D}_i(\mathcal{U})[\mathcal{U}, \mathcal{U}] = 0$. Particularly, $\mathcal{D}_i(\mathcal{R})[\mathcal{R}, \mathcal{R}] = 0 = [\mathcal{D}_i(\mathcal{R}), \mathcal{R}]\mathcal{R}[\mathcal{D}_i(\mathcal{R}), \mathcal{R}] = 0$. As \mathcal{R} is a semiprime ring, we obtain that $[\mathcal{D}_i(\mathcal{R}), \mathcal{R}] = 0$. Then by [20, Theorem 3], \mathcal{R} contains a nonzero central ideal.

4. Results on Banach algebras

Singer et al. [14] showed that the image of a noncommutative Banach algebra under continuous derivation is contained in radical of the algebra. Sinclair [13] proved that every primitive ideals of the algebra is invariant under continuous derivation of Banach algebra. Recently, Park [11] proved that if \mathcal{D} is a continuous linear derivation of a noncommutative Banach algebra \mathcal{A} satisfies $[[\mathcal{D}(x), x], \mathcal{D}(x)] \in rad(\mathcal{A})$ for all $x \in \mathcal{A}$, then $\mathcal{D}(\mathcal{A}) \subseteq rad(\mathcal{A})$. De Filippis [5] extended the Park's result to generalized derivations.

Inspire by these results we prove:

Theorem 4.1. Let \mathcal{A} be a noncommutative Banach algebra and $\mathcal{F}(x) = cx + \mathcal{D}_1(x)$ and $\mathcal{G}(x) = bx + \mathcal{D}_2(x)$ are continuous generalized derivations with associated derivations $\mathcal{D}_1(x)$ and $\mathcal{D}_2(x)$ respectively. If \mathcal{F} and \mathcal{G} satisfy $a\{(\mathcal{F}(xy) + \mathcal{G}(yx))^m - [x, y]^n\} \in rad(\mathcal{A})$ for all $x, y \in \mathcal{A}$, then $\mathcal{D}_i(\mathcal{A}) \subseteq rad(\mathcal{A})$ for i=1, 2.

By a Banach algebra, we mean a complex normed algebra \mathcal{A} whose underlying vector space is Banach space. Here Jacobson radical of \mathcal{A} is defined as the intersection of all primitive ideals of \mathcal{A} and we use the notation $rad(\mathcal{A})$ to denote it.

Proof of Theorem 4.1 We know that left multiplication mappings are continuous. Also \mathcal{F}, \mathcal{G} are continuous by hypothesis. So \mathcal{D}_1 and \mathcal{D}_2 are continuous. By [13] it is clear that primitive ideals are invariant under continuous generalized derivations \mathcal{F}, \mathcal{G} . Assuming $\mathcal{A}/\mathcal{P} = \overline{\mathcal{A}}$ for any primitive ideal \mathcal{P} . Thus generalized derivations $\mathcal{F}_p, \mathcal{G}_q : \overline{\mathcal{A}} \to \overline{\mathcal{A}}$ is defined by $\mathcal{F}_p(\overline{x}) = \mathcal{F}_p(x+P) = \mathcal{F}(x) + P = ax + \mathcal{D}_1(x) + P$ and $\mathcal{G}_q(\overline{x}) = \mathcal{G}_q(x+P) = \mathcal{G}(x) + P = bx + \mathcal{D}_2(x) + P$ for all $\overline{x} \in \overline{\mathcal{A}}$, where $\mathcal{A}/\mathcal{P} = \overline{\mathcal{A}}$ is a factor Banach algebra. As \mathcal{P} is primitive, the factor algebra $\overline{\mathcal{A}}$ is also primitive and hence it is prime and semisimple. The hypothesis $a\{(\mathcal{F}(xy) + \mathcal{G}(yx))^m - [x,y]^n\} \in rad(\mathcal{A})$)

yields that $\bar{a}\{(\mathcal{F}_p(\bar{x}\bar{y}) + \mathcal{G}_q(\bar{y}\bar{x}))^m - [\bar{x},\bar{y}]^n\} = \bar{0}$ for all $\bar{x},\bar{y} \in \bar{A}$. By Theorem 1.1, we have either \bar{A} is commutative or $\bar{\mathcal{D}}_1 = \bar{0}$ and $\bar{\mathcal{D}}_2 = \bar{0}$.

Let \overline{A} be commutative. By [15], \mathcal{D}_1 and \mathcal{D}_2 are continuous in \overline{A} . By [14], $\mathcal{D}_1 = \overline{0}$ and $\mathcal{D}_2 = \overline{0}$ in \overline{A} . So, in both cases, we have $\overline{\mathcal{D}}_1 = \overline{0}$ and $\overline{\mathcal{D}}_2 = \overline{0}$ in $\overline{\mathcal{A}}$, i.e $\mathcal{D}_i(A) \subseteq \mathcal{P}$ for any primitive ideal \mathcal{P} of \mathcal{A} and hence $\mathcal{D}_i(A) \subseteq rad(\mathcal{A})$ for i = 1, 2.

References

- Beidar, K. I.: *Rings of quotients of semiprime rings.* Vestnik Moskov. Univ. Ser I Math. Meh. (Engl. Transl.: Moscow Univ. Math. Bull.). 33,36-42 (1978).
- [2] Brešar, M.: On the distance of the composition of the two derivations to be the generalized derivations. Glasgow Math. J. 33 (1), 89-93 (1991).
- [3] Chuang, C. L.: GPIs having coefficients in Utumi quotient rings. Proc. Amer. Math. Soc. 103, 723-728 (1988).
- [4] Daif, M. N. and Bell, H. E: Remarks on derivations on semiprime rings. Int. J. Math. & Math. Sci. 15 (1), 205-206 (1992).
- [5] Filippis, V. De: Generalized derivations in prime rings and noncommutative Banach algebras. Bull. Korean Math. Soc. 45, 621-629 (2008).
- [6] Filippis, V. De and Huang, S.: Generalized derivations on semi prime rings. Bull. Korean Math. Soc. 48 (6), 1253-1259 (2011).
- [7] Dhara, B.: *Remarks on generalized derivations in prime and semiprime rings*. Int. J. Math. & Math. Sc. **2010**, Article ID 646587, 6 pages.
- [8] Kharchenko, V. K.: Differential identity of prime rings. Algebra and Logic. 17, 155-168 (1978).
- [9] Lee, T. K.: Semiprime rings with differential identities. Bull. Inst. Math. Acad. Sinica, 20 (1), 27-38 (1992).
- [10] Lee, T. K.: Generalized derivations of left faithful rings. Comm. Algebra, 27 (8), 4057-4073 (1999).
- [11] Park, K. H.: On derivations in noncommutative semiprime rings and Banach algebras. Bull. Korean Math. Soc. 42, 671-678 (2005).
- [12] Quadri, M. A., Khan, M. S. and Rehman, N.: Generalized derivations and commutativity of prime rings. Indian J. Pure Appl. Math. 34 (9),1393-1396 (2003).
- [13] Sinclair, A. M.: Continuous derivations on Banach algebras. Proc. Amer. Math. Soc. 20, 166-170 (1969).
- [14] Singer, I. M. and Wermer, J.: Derivations on commutative normed algebras. Math. Ann. 129, 260–264 (1955).
- [15] Johnson, B. E. and Sinclair, A. M.: Continuity of derivations and a problem of Kaplansky. Amer. J. Math. 90, 1067-1073 (1968).
- [16] Chuang, C. L. and Lee, T. K.: *Rings with annihilator conditions on multilinear polynomials.* Chinese J. Math. 177-185 (1996).
- [17] Erickson, T. S. and Martindale III, W. S. and Osborn, J. M.: Prime nonassociative algebras. Pacific J. Math. 60, 49-63 (1975).
- [18] Martindale III, W. S.: Prime rings satisfying a generalized polynomial identity. J. Algebra. 12, 576-584 (1969).
- [19] Jacobson, N.: Structure of rings. Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.
- [20] Bell, H. E.and Martindale III, W. S.: Centralizing mappings of semiprime rings. Canad. Math. Bull. 30, 92-101 (1987).

Affiliations

MD HAMIDUR RAHAMAN **ADDRESS:** Aligarh Muslim University, Dept. of Mathematics, 202002, Aligarh-India. **E-MAIL:** rahamanhamidmath@gmail.com **ORCID ID:** 0000-0003-1822-7863