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AN EXAMINATION OF SOME SHRINKAGE ESTIMATORS FOR
DIFFERENT SAMPLE SIZES AND CORRELATION
STRUCTURES IN THE LINEAR REGRESSION

MERAL EBEGIL

ABSTRACT. In the regression analysis, if there happens to be some kind of
relation (multicollinearity) between independent variables, the Least Squares
(LS) estimation method may lead to the use of wrong models and hence to
wrong findings out of the model. Some methods have been developed to solve
this problem; one of which is the “biased estimation method”. In this study, a
test statistics for Ridge and Liu estimators that are kinds of Shrinkage biased
estimators is analyzed. Ridge and Liu estimators are examined via simula-
tion study by the use of this test statistics, in terms of different correlation
coefficients between the independent variables and different sample sizes..

1. INTRODUCTION

In the multiple linear regression analysis, if multicollinearity occurs between
independent variables, the LS estimation method may lead to of wrong models and
hence to wrong findings out of the model. Various methods have been devised
in order to carry out regression analysis with such independent variables which
exhibit dependence on each other. One of such methods is the biased estimation
method. Most widely used biased estimation methods are; Principal Components
regression, Ridge regression and their variations. Estimations related to biased
methods are more biased than the LS estimators are- when compared, but they
produce less variance estimations. Main purpose of biased estimation methods is
to make variance area smaller for an exchange of small side, which is quite large at
the LS estimation method. Therefore, more results that are valid can be obtained
by comparing with the LS method.

One of the estimators under the scope of biased estimators is named as Shrinkage
estimators. Principal Components regression, Ridge regression and their derivatives
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are also part of this type. Farebrother (1978) formed a general structure for Shrink-
age estimators. He placed Ridge, Principal Components and conditioned-minimum
mean error square biased estimators under this structure and elaborated that these
are each Shrinkage estimators [1]. Liski (1982) proposed the powerful Mean Square
Error (MSE) as criteria to choose between LS estimator and Shrinkage estimator
[2]. Liski (1983) also used the weak MSE test to make a choice between LS estima-
tor and shrinkage estimator [3]. Kejian (1993) suggested the Liu- Kejian estimator
as an alternative to the Ridge estimator [4]. Later, this estimator is named as “Liu
estimator” by Akdeniz and Kagiranlar (1995) [5]. Then, Akdeniz and Erol (2003)
considered the comparison of some Shrinkage estimators and gave a numerical ex-
ample [6]. Ebegil et al. (2006) compared various Shrinkage estimators with the
help of a simulation study under different correlation coefficients [7].

The second section of this study examines the basic structure of Shrinkage es-
timators. Keeping this information in mind, by comparing the MSE matrix of LS
estimators and Shrinkage estimators, their condition of necessary and sufficiency
were stressed. In accordance with a test statistics gathered from this condition,
hypothesis test was examined.

In the last section, a simulation study is carried out by a MATLAB. As a result
of simulation study for different correlation coefficients and sample sizes, Ridge
and Liu estimators which are constructed to hypothesis test were compared by
constructing rejection and acceptation regions and the results were interpreted.

2. SHRINKAGE ESTIMATORS AND MEAN SQUARE ERROR
MATRICES

Consider general linear regression model as [1]

Y=XB+e, e~ (0,0%I,), rank(X,xq) =q<n (2.1)

where Y is an (n x 1) dimensional vector of dependent variable, X is an (n X q)

dimensional non-stochastic input matrix of observations (¢ =k + 1), Sis a (¢ x 1)

dimensional vector of unknown regression coeflicients, € is a vector of randomly
distributed errors satisfying E(¢) = 0 and E(eg') = 021, .

General linear estimators are described in the following form. Here, C and c are
a matrix and a vector respectively.
B=CY +c (2.2)

This estimator can be named as the linear estimator of 8 [8]. In equation (2.2),

when C' = (X'X )_1 X" and ¢=0 are placed, a special condition of the estimator is
formed as follows;

B=(X'X)"' XY
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This estimator is called LS estimator of (3.

Alternative estimators considered under the model equation (2.1), the form in
equation (2.2) are of the form

B=AB+d (2.3)
where, A and d are a (¢ X ¢) dimensional matrix and a (¢ x 1) dimensional vector
of constants respectively.

When determining the best estimator from among the unbiased estimators, the
one with the minimum variance is preferred. When biased estimators are concerned,
the MSE is used for determining the best estimator. This is because biased and
unbiased estimators can be identified by checking the MSE matrices [7]. The MSE
matrix is defined as

MSE (E) -E (B - 5) (B - 5)' . (2.4)
The MSE matrix can be written for scalar risk
MSE (B,C) :E(B—ﬂ)‘c(ﬁ—ﬁ). (2.5)

The matrix C is a (k x k) dimensional nonnegative defined (n.n.d.) symmetrical
matrix. _ _

Suppose that two estimators are given as §; and 8,. When these estimators
compare, Bl estimator is said to be better than Ez under the MSE in equation

(2.4) if MSE (Bz) — MSE <Bl> is n.n.d. for all 8, and for some 3, MSE (52) —

MSFE (Bl) is not zero. In other words, for the matrix differences we have,

for all B we have MSE (52) — MSE (51) >0, and,

for some B we have MSE (52) — MSE (Bl) # 0. (2.6)

Where the estimator ﬁl is said to be better than §2 with respect to MSE in
equation (2.4) [2],[3],[7]-

An estimator B is said to be admissible, if no estimator exists which dominates
it. In general, for the class of all linear estimator B = CY + ¢, admissibility depends
on a given estimator class. Admissibility is defined in terms of the MSE of B in

equation (2.4).

Definition 2.1. Consider the conditions:

for all B we have MSE (5) — MSE (B) >0, and,
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for some 8 we have MSE (5) — MSE (B) £ 0. (2.7)

If these conditions are satisfied for all the estimators B then the estimator 3 is
said to be admissible for the MSEs.
For admissibility, the form of the estimator § is as follows [2],[10].

EZA(B—b)er. (2.8)

In equation (2.8), A is a (¢ X ¢) dimensional matrix and b is a constant vector.
Estimators defined by this way belong to the class of linear admissible estimators.
Other conditions for admissibility are

(X'X)Aor A (X‘X)_1 is symmetric (2.9)
and
the eigenvalues of A lie in [0,1]. (2.10)

Since X'X and A are symmetric, there exists a (¢ x ¢) orthonormal matrix
P such that P'X'XP = A is a (¢ x q) diagonal matrix. The diagonal elements
Als A2, -+, Ag of the A matrix are the eigenvalues of X'X, which are assumed
in a decreasing order. Also, P'AP is a diagonal matrix whose diagonal elements
01,02, -+, 04 lie in [0,1] [2],[11].

Model equation (2.1) can be written in a canonical form

Y =XPPp+e=Za+e, (2.11)

where Z=XP and o = P'3. The admissible estimators of « are of the form

a:P‘A(ﬁ—b)+P'b:P‘Ap(a—a)+a:A(a—a)+a, (2.12)

-~

where a = P'Sis a = P'b . These kind of admissible linear estimators are called
Shrinkage estimators. N
The MSE matrices of the estimators 5 and 3 are respectively [2],

MSE (B) =02 (X'X) ", and,
MSE (B) —PAXX) A F T -A)B-b)(B-b) (I—A). (2.13)
Equivalently the canonical form may be given as

MSE (@) = o’ AA A+ (I - A) (e —a) (e —a) (I —A). (2.14)
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Now we compare Shrinkage estimators and the LS estimator with respect to
MSE matrix in equation (2.4). A Shrinkage estimator [ is at least as good as the

LS estimator B7 if the matrix difference MSE (B) — MSFE (E) is n.n.d.. That is

MSFE (B) - MSE (5) > 0. It follows that the difference M SFE (/B) - MSE (B)
is n.n.d. if and only if the inequality

(B=b) I+A)"'XXT-A)(B-b) 0><1 (2.15)
is satisfied. If we use the canonical representation equation (2.12), the condition
equation (2.15) can be written as

(a—a)T+A)'AI-A)(a—a) /o*<1. (2.16)
The inequality equation (2.16) can be stated as
q
Z%‘)\i (i —a;)® /o* < 1. (2.17)
i=1
(1-46;)
H ;= .

The Ridge and Liu estimators, which are known to be Shrinkage estimators, can
be defined respectively by,

Br=(X'X+k)' XY (2.18)

Bru= (XX +1)7" (X' +db) (2.19)

where 0<k<1 and 0<d<1 [4]. Substituting A = (A 4+ kI)~" A in equation (2.16),
the inequalities,

s-oy (G1+ <XX>1)1 (8- b)

2

<1 2.2
. < (2.20)

(@ - a) (iz + A—l) - (o — a)

2

<1 2.21
. < (2:21)

which are necessary and sufficient conditions for the Ridge estimator and at
least as good as the LS estimator can be written [2]. In a similar way, substituting

A= (A+1)""(A+dI) in equation (2.16), the inequalities,

. (X‘X ol d(X‘X)fl)il ((xx) + dI) 6=y _ (2.22)

o2
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or

(a—a) (A+ 2[+dA_1)_1 (A2 +dI) (o —a)

2

<1 (2.23)
g

which are necessary and sufficient conditions for the Liu estimator and at least
as good as the LS estimator can be written [7].

2.1. A Test for Choosing a Shrinkage Estimator. Using the necessary and
sufficient conditions given in equation (2.15) and equation (2.16) it is possible to
make a choose between two the estimators. In this case, the test statistic to be
used for making a chose between the Shrinkage estimator § and the LS estimator
B is based on the given inequalities that inequality. Liski (1982) investigated the
test statistic

5 _ PHP
mo
-1 2 (Y B XB) (Y _ XB)
where H=(I + A) " X'X (I — A), ° = ( ] , rank (H) =m
n—q
and b = 0 [2]. The canonical form of this statistic can be written as
S d(+A)TTAT-Na 1Y 9 s
F = o = ;% ()\lai /T ) . (2.25)
Here m = rank (I + A)"" A (I — A). We may write
=~ 1 ~2 2
F = - ;% ()\zai/a ) . (2.26)

The m’s are the number of non-zero v,’s. As it could be seen, m satisfies
1 <m < q. When we write
\id
—2
U .
we can obtain

F, =

- 1 m
F=-— Z v, Fi. (2.27)
1=1
a2 \ia?
F; = izl fits an F distribution with the non-central parameter w; = — 5 and
o

o
degrees of freedom 1 and (n — q) [3],[7],[12].
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The necessary and sufficient conditions for the Shrinkage estimator mentioned
m

above is Z*yiwi < 1. Thus, hypothesis test can be written as
i=1

m
HO : Z%wz < 1
i=1

Hy:» vyawi > 1 (2.28)
=1

The proposed test procedure is given by the decision rules:

fF<FE, (m,n — q,1) then accept Ho,

and

IfF>F, (m,n — q, 1) then reject Ho.

Here ﬁa (m,n — g, 1), is formed from the distribution ﬁ', which has a non-central
m

parameter w = Z%:wi = 1 and degrees of freedom m and (n —¢). Using the
i=1

central-F approximation for F' described below, the values of F, (m,n —gq,1) at

the critical points are determined. Then the initial moments for the test statistic F’

are obtained from the moments of the statistic Fj va using the method of moments.

The first two central moments of the test statistic F' are [9]

EﬁZM[;%(Hwi) s ((n—q)>2)
2 i'Yi(1+wi)
EF? = (n —q) L=1 ; (n—q)>4).

(n—g=2)(n—qg—4)m? +22m:%2(1+2wi)

i=1

2.2. Central-F Approach for F Statistics: Patnaik (1949) studied a central-F
approximation to the non-central F' distribution [13]. He used the first two mo-
ments of the central-F distribution F (¢, n — ¢) and the non-central F' distribution
F (m,n — q,w), and obtained that

ﬁ(m,n—q,w) ~rF(¢,n—q).

The parameters r and ¥ are found from the first two moments of the distribution
F'. In other words, the two moments approximation of central-F can be performed
by equating the first two moments of central-F and F T,

By solving these equations

1 m
r= Ez:fyi(l—i—wi)
i=1
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and

2

[Z ¥, (1 +w;)
9 — Li=1

- m
Z ’712 (14 2w;)
i=1

(2.29)

m

q
could be written. When v = Zyi and Z%‘wi = 1 are given, the scale factor
i:ll i=1
r can be determined from r = L The values of v, lie in the interval [0, 1], and

m
the degrees of freedom can be written as
9= (y+1)°

m m )
(Z v;+2 ﬁm—)
i=1 =1

From this, it could be seen that [8].

Y min S ngwl S Y max (230)
=1

From equation (2.30), the upper and lower limits of the degrees of freedom ¥ are
found to be:

m m
(v+1)?/ (Z Vi + 27max) <9< (y+1)7°/ (Z v+ 2%nm> S (231)
i=1 i=1

The upper limit is denoted by ¥,.x, and the lower limit by ¥.,;,. Hence, for all
0 < a <1 we have Fy, (Omax,n — q) < Fg (Ymin,n — ¢), SO we obtain the critical
points Fy, (Omax,n — ¢) and Fy (Ymin,n — ¢). The statistic ﬁ'/r is compared with
these values. Hence, by using these critical points, the following regions for the test
statistic can be obtained

Reject Ho if f/r > Fy (Ymin, " — q),

Accept Ho if F /r < F, (Ymax,n — q),

Inconclusive if F, (9pax,n — q) < ﬁ'/r < Fy (Omin,n — q) -

3. A SIMULATION STUDY

In this section we describe a simulation that was performed using a MATLAB
package programme for comparing the Ridge and Liu estimators with the LS esti-
mator.
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Firstly, the independent variables X = (z1 ) are chosen from a normal distri-
bution with parameters u = (9,8), 02 =9, 03 = 9, correlation coefficients p = 0.1,
0.5, 0.9 and sample sizes n = 30, 60, 100 and 1000. Then, the error vector ¢ is chosen
from a standard normal distribution and the dependent variable Y is determined
as follows

In addition, for the Ridge and Liu estimators, k& = 0.01(0.01)0.99 and d =
0.01(0.01)0.99, respectively, were used and for each of these the values of ﬁ, ﬁ/r,
Fo (Omin, 7 — q) and F, (Omax, n — ¢) were calculated. Finally, the regions of rejec-
tion, acceptance and inconclusive were found. For the Ridge estimator these are
shown in Figures 1-12, and for the Liu estimator in Figures 13-24.
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FIGURE 22: Rejected, accepted and inconclusive areas for Liu estimators for p = 0.1 and
n = 1000
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FIGURE 23: Rejected, accepted and inconclusive areas for Liu estimators for p = 0.5 and
n = 1000
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FIGURE 24: Rejected, accepted and inconclusive areas for Liu estimators for p = 0.9 and

n = 1000
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4. THE SIMULATION STUDY RESULTS

In this study, the Ridge and Liu estimators are examined for different sample
sizes and correlation structures. Appropriate k and d value intervals satisfying
that using Ridge and Liu estimators give better results than using LS estimator for
sample sizes n = 30, 60, 100, 1000 and for correlation values of p = 0.1, 0.5, 0.9 are
obtained. These results for are given Figures 1-24

As seen from Figure 1, when n = 30 and p = 0.1, 0 < k£ < 0.18 is a good value
interval of k for the Ridge estimator. For this interval, Ridge estimator gives better
results than LS estimator. So, it is more appropriate to use the Ridge estimator
instead of LS estimator. The Figures 1-12, the k value intervals, satisfying that
Ridge estimator is more appropriate than LS estimators, are obtained and given in
Table 1.

Similarly, when the Liu estimator is examined, it is seen that it gives similar
results to the Ridge estimator. The Figures 13-24, the d value intervals, satisfying
that Liu estimator is more appropriate than LS estimators, are obtained and given
in Table 1.

Table 1: The value intervals of k and d for different sample sizes (n) and corre-
lation values(p

n | p | Figure No | Value interval of k | Figure No | Value interval of d
30 |0.1 1 0<k<0.18 13 087<d<1
30 0.5 2 0<k<0.20 14 0.86 <d<1
30109 3 0<k<0.23 15 0.84<d<1
60 | 0.1 4 0< k<0.10 16 090<d<1
60 | 0.5 5 0<k<0.11 17 0.89<d<1
60 | 0.9 6 0<k<0.12 18 0.88<d<1
100 | 0.1 7 0<k<0.12 19 090<d<1
100 | 0.5 8 0<k<0.12 20 0.89<d<1
100 | 0.9 9 0<k<0.12 21 0.89<d<1
1000 | 0.1 10 0 < k<0.08 22 092<d<1
1000 | 0.5 11 0 < k<0.08 23 092<d<1
1000 | 0.9 12 0 < k<0.08 24 092<d<1

As seen from Table 1, the k& and d intervals enlarge as correlation values increases
for sample sizes n = 30 and 60. However, when sample sizes n increases the k and
d intervals are not affected from different correlation values for the same sample
size. This situation arises from the structure of M SFE matrices. MSE matrices
are known as: MSE = Variance + (Bias)?, MSE matrices are just equal to the
variance of the related estimator for unbiased estimators.

Briefly, when the sample size n increases the amount of bias in the structure of
MSE matrix decreases. Hence, the increasing of the correlation coefficient has not
much effect on the k and d intervals as seen from Table 1.
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As aresult, as the sample size n increases, the bias related to the biased estimator
existing in the structure of M SE matrices will decrease. Thus, as it can be noticed
by looking at Table 1, despite of the increasing correlation coefficient, the k and
d intervals are not differ, which satisfy the appropriate values of Ridge and Liu
estimators.

5. CONCLUSION

Ebegil et. al. compare a simulation study with n = 50 and different correlation
coefficients to obtain optimal k& and d intervals for the Ridge and Liu estimators,
respectively [7]. In this study we also compare these estimators for the general
case under different correlation coefficients between the independent variables and
different sample sizes with the help of a simulation study.

In conclusion, we found that small sample sizes and large correlation values the
interval of k and d enlarged, in which the using of the biased estimators gives better
results than LS estimators. On the other hand, when the sample sizes increase the
amount of bias in the structure of M SFE matrices decrease and the correlation
values among independent variables has no effect on the intervals. This means that
using biased estimators is more appropriate than using LS estimators.

OZET: Regresyon analizinde, bagimsiz (agiklayic1) degigkenler arasinda
iligki (goklu baglant1) olmas1 durumunda, En Kiigiik Kareler (EKK)
tahmin yénteminin kullanilmasi yanlis model bulgularina, dolayisiyla
yvanlig modellemeye neden olur. Birbirleriyle bagimlilik gosteren
bu tiir bagimsiz degiskenlerle analiz yapmak igin geligtirilen yon-
temlerden bir tanesi de yanh tahmin yéntemleridir. Bu ¢alismada,
yanli tahmin ediciler iginde yer alan Shrinkage tahmin edicilerinden
Ridge ve Liu tahmin edicileri ile EKK tahmin edicisinden birini
tercih etmek igin bir test istatistigi 6zetlenmistir. Bu test ista-
tistiginden yararlanarak, Ridge ve Liu tahmin edicilerinin EKK
tahmin edicisine gore tercih edildigi deger araliklari, farklh kore-
lasyon yapilarinda ve farkli 6rnek caplarinda ne tiir degisiklikler
gosterebilecekleri simiilasyon yoluyla incelenmis ve kargilagtirmalar
yapilmigtir.

Anahtar Kelimeler: Dogrusal Kabul Edilebilir Tahmin Ediciler;
Ortalama Hata Kare; Merkezi-F Yaklagimi; Shrinkage Tahmin Edi-
ciler
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