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ON A NEW SEQUENCE SPACE DEFINED BY ORLICZ
FUNCTIONS

VAKEEL A. KHAN

ABSTRACT. The sequence space BV, was introduced and studied by Mursaleen
[9]. In this paper we extend BVy to BVy(M,p,r) and study some properties
and inclusion relations on this space.

1. Introduction

Let I and ¢ denote the Banach spaces of bounded and convergent sequences
x = (x)72, respectively. Let o be an injection of the set of positive integers
N into itself having no finite orbits and T be the operator defined on I, by

T((#n)3Z1) = (Tom))nZa-

A positive linear functional ¢ , with ||¢|| =1, is called a o - mean or an invariant

mean if ¢(z) = ¢(Tz) for all z € l.

A sequence z is said to be o - convergent , denoted by x € V,, , if ¢(z) takes the
same value, called o — lim z, for all o- means ¢. We have (see Schaefer [14])

Vo=<x=(x,): Z tmn(z) = L uniformly inn, L =0 —limz
m=1

where for m >0, n > 0
xX, + X + R + Tym
tnn(T) = - U(n)m 1 7 (n), and t_q1, = 0.
where 0" (n) denotes the m th iterate of o at n. In particular, if o is the translation,
a o - mean is often called a Banach limit and V, reduces to f , the set of almost
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- convergent sequences (see Lorentz [5]). Subsequently invariant means have been
studied by Ahmad and Mursaleen [1] , Mursaleen [8], Raimi [12] and many others.
The concept of paranorm is closely related to linear metric spaces. It is a gener-
alization of that of absolute value. Let X be a linear space. A function g : X — R
is called paranorm, if
[P1] g(z) >0, for all z € X,
[P2] g(—x) = g(x), for all z € X,
[P3] (m+y)<g() g(y), for all z,y € X,
[P4] If (\,) is a sequence of scalars with A, — A (n — o00) and (z,,) is a sequence
of vectors with g(z, —x) — 0 (n — 00), then g(A,x, — Az) — 0 (n — o0).
A paranorm g for which g(z) = 0 implies z = 0 is called a total paranorm on X,
and the pair (X, g) is called a totally paranormed space. It is well known that the
metric of any linear metric space is given by some total paranorm (cf. [15, Theorem
10.4.2, p. 183]).

A map M : R — [0,+0] is said to be an Orlicz function if M is even, convex,
left continuous on R, continuous at zero, M(0) = 0 and M (u) — o0 as u — 0.
If M takes value zero only at zero we will write M > 0 and if M takes only finite
values we will write M < oo. [2,3,6,7,10,13].

W.Orlicz [11] used the idea of orlicz function to construct the space (L) .
Lindendstrauss and Tzafriri [4] used the idea of Orlicz function to define orlicz
sequence space

Cyr = {wa ZM(xk|> < oo for somep>0}

P
k=1
in more detail . ¢5; is a Banach space with the norm

[|z|| :=inf{p > 0: ZM (%) <1}

k=1
The space [ is closely related to the space [, , which is an Orlicz sequence space
with M (z) = 2P for 1 <p < co.

The A, - condition is equivalent to
M(Lz) < KLM(x), for all values of z >0, and for L > 1.

An Orlicz function M can always be represented in the following integral form

M(z) = / ",

where 7 is known as the kernel of M, is right differentiable for ¢ > 0, n(0) = 0,
n(t) > 0, n is non-decreasing and n(t) — oo as ¢ — co.Note that an Orlicz function
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satisfies the inequality

M(Az) < AM(z) for all A with 0 < X\ < 1.

Let E be a sequence space . Then F is called

(i) A sequence space F is said to be symmetric if (z,,) € E implies (z(n)) € E,
where 7(n) is a permutation of the elements of the elements of V.

(ii) Solid (or normal), if (agxy) € E, whenever (z) € E for all sequences of
scalars (ay) with |ay| <1 for all k € V.

Lemma 1.1. . A sequence space E is solid implies E is monotone.
Mursaleen [9] defined the sequence space

BV, = {x €l : Z |¢mn(x)| < 00, uniformly in n} ,

m
where

P () =t () = t—1,n ()
assuming that

tmn(xz) =0, form=—1.

A straightforward calculation shows that

Y

1)
0)

T L I~ i) (m
J:

P () =

T, (m

Note that for any sequence z,y and scalar A we have

P (T +Y) = G (2) + b (y) and @y, (AT) = Adyy ()
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2. Main Results.

Let M be an Orlicz function, p = (p,,) be any sequence of strictly positive real
numbers and 7 > 0. Now we define the sequence space as follows :

BV, (M,p,r) =4 &= (@) > L {M (W’"—ZM)V .

m=1
uniformly in n and for some p > 0

For M (x) = z we get

=1
BV, (pr) =2 =(w): Y — Pm < 00, uniformly i .
(p,7) {x (k) 2 |G (2)|P™ < 00, uniformly in n }
For p,, = 1, for all m, we get

BV, (M,r) = ¢ @) > ok [Mr (Pme)] < o,

m=1

uniformly in n and for some p > 0

For r = 0 we get

prae - { 7= 5 ()] <o

m=

uniformly in n and for some p > 0

For M(z) =z and r = 0 we get

o0

BV,(p) = {a? = (ag) : Z | @ (x)[P™ < 00, uniformly in n } .

m=1

For p,, =1, for all m and r = 0 we get

BV, (M) = z = (wk): i [M (w)] < oo, r>0,

m=1
uniformly in n and for some p > 0

For M (z) = z, pm = 1, for all m, and r = 0 we get

BV, = {x = (zg) : Z | @y (7)] < 00, uniformly in n} )
m=1

Theorem 2.1. The sequence space BV, (M,p,r) is a linear space over the field €
of complex numbers.
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Proof. . Let x,y € BV,(M,p,r) and a, 8 € €. Then there exist positive numbers

p1 and p, such that
e ] 1 Pm
S L {M (|¢m,n<z>|)] o
m’l‘

m=1 P1
and
o0 1 mn Pm
Z — {M (M)] < 00, uniformly in n.
m=1 m’ P2

Define p; = max(2|ap, 2|5|py). Since M is nondecreasing and convex we have

i LT [M <|a¢m,n(9€) + /3¢m,n(y)l>rm

m=1 P3
= 1 « m,n x m,n pm
= m" P3 P3
— 11 ,
< Z —= |M (M) +M <M>} < 00, uniformly in n.
= mn2 P Pa
This proves that BV, (M, p,r) is a linear space over the field €' of complex numbers.
|

Theorem 2.2. For any Orlicz function M and a bounded sequence p = (pm)
of strictly positive real numbers, BV,(M,p,r) is a paranormed(need not be total
paranormed) space with

1

e8] Pm\ K
g(z) = inf P%% : (Z L [M <M>} ) <1, uniformly in n

p

where K = max(1, sup p.,)-

Proof. 1t is clear that g(x) = g(—=). Since M(0) = 0, we get
inf {p%"} =0, for z=0.
By using Theorem 1, for a« = 8 =1, we get
g9z +y) < g(x) +9(y).

For the continuity of scalar multiplication let [ # 0 be any complex number.
Then by the definition we have

. Pn - 1 M)m,n(lx” P\ ® . .
g(lz) = fféﬁ pE (Z — [M (— < 1, uniformly in n

mr
m=1 P
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1

TN ES [Bmen () )17 )

soo— g { 0% (5,2 pr (] <1

i =
- uniformly in n

where s = \Tp|' Since |I[P» < max(1, |I|7), we have

m=1

1
o [ & 4 O A
gite) < max( )t | 5% 1 (£ v ()] 7) T <

uniformly in n

= max(L, [I|"")g()

and therefore g(lz) converges to zero when g(x) converges to zero in BV, (M, p,r) .

O
Now let x be fixed element in BV, (M, p,r) . There exists p > 0 such that
1
oo Pm K
1
g(z) = inf { pE - ( E . [M <M>} ) < 1, uniformly in n
n>1 m’ p
m=1
Now
1
o0 Pm K
. pion 1 |¢m n(lx)‘ . .
= N _— <
g(lx) 71115 pE (mg_l — [M( 5 < 1, uniformly inn p — 0,

as! — O.

This completes the proof.

Theorem 2.3. Suppose that 0 < p, < t,, < o0 for each m €N and r > 0. Then
(1) BVo(M,p) € BV, (M, 1),
(ii) BV,(M) C BV,(M,r).
Proof. . [i] Suppose that € BV, (M, p). This implies that
;o (T Pm . . .
[M (Mp()l)} < lfor sufficiently large values of ¢ , say ¢ > mg for some fixed
mgy € N. Since M is non decreasing, we have

S (%)< £ o (25 <

m=mgq m=mgq

Hence = € BV,(M,t).

The proof of [ii] is trivial.
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The following result is a consequence of the above result.
Corollary 1. If0 < p,, <1 for each m , then BV,(M,p) C BV,(M).
If p,, > 1 for all m , then BV,(M) C BV,(M,p).
Theorem 2.4. . The sequence space BV, (M,p,r) is solid.

Proof. Let © € BV, (M,p,r). This implies that

S ()] <

m=1
Let (o) be sequence of scalars such that |a,,| <1 for all m € . Then the result
follows from the following inequality

S (=] F (2] <

m=1

Hence ax € BV, (M, p,r) for all sequences of scalars (a,) with |a,,| <1 for allm €
N whenever x € BV, (M, p,r).
]

From Theorem 4 and Lemma we have :
Corollary 2. . The sequence space BV,(M,p,r) is monotone.

Theorem 2.5. . Let My, Ms be Orlicz functions satisfying Ny - condition and

r,71,79 > 0. Then we have
(2) If r > 1 then BV, (My,p,r) C BV,(MOM,p,r),

(Z’L) BVU(Ml,p7 T) N BVU(MQap, T) g BVO’(Ml + M2ap7 T)a

(#01) If ry < rg then BV (M,p,r1) C BV,(M,p,rs).

Proof. [i] Since M is continuous at 0 from right , for € > 0 there exists 0 < § < 1
such that 0 < ¢ < § implies M(c) < e. If we define

_ . |¢m,n<x)|
L= <meN: M T < 6 for some p >0 »,
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I, = {mGN:M1<M>>5fOrsomep>O},
p

then , when M, (hbm—;(w)l) > we get
M (Ml <¢m,;(x)>) < {2M(1)/(5}M1 <|¢7n,;(x)|) )

Hence for x € BV, (My,p,r) and 7 > 1

’mii:lm_T {MOMl (w)}pm _ mze:h m=" :MOMI (ch,,n,;(m)‘)rm
mXG:Iz m MOMl (I(bm’;(x)‘)}pm
< Z mfr[e]pm
mel; _
+ melem—?" {2M(1)/5} 0, (M)rm
: maX(Eh’GH) i m="

m=1

+ max ({2M(1)/6}",{2M (1)/6})
(where 0 < h = inf p,, < pry < H = sup py, < 00).

[ii] The proof follows from the following inequality

o (3] = e ()

s ot (]

[iii ]The proof is straightforward.
(Il

Corollary 3. . Let M be an Orlicz function satisfying Ao - condition. Then we
have

(1) If r > 1, then BV, (p,r) C BV,(M,p,r),
(2) BVo(M,p) € BVy(M,p,r),

(3) BVy(p) € BVy(p,7),

(4) BVy(M) C BV, (M,r),

The proof is straightforward.
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OZET: BV, dizi uzay1, Mursaleem tarafindan tanimlanmis ve in-
celenmistir [9]. Bu galismada BV, uzaym, BV, (M, p,r) uzayma
genisleterek bu uzaya iliskin bazi 6zelikleri ve kapsama bagin-
tilarini elde ettik.
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