Commun.Fac.Sci.Univ.Ank.Series A1 Volume 57, Number 2, Pages 25-33 (2008) ISSN 1303-5991

ON A NEW SEQUENCE SPACE DEFINED BY ORLICZ FUNCTIONS

VAKEEL A. KHAN

ABSTRACT. The sequence space BV_{σ} was introduced and studied by Mursaleen [9]. In this paper we extend BV_{σ} to $BV_{\sigma}(M, p, r)$ and study some properties and inclusion relations on this space.

1. Introduction

Let l_{∞} and c denote the Banach spaces of bounded and convergent sequences $x = (x_k)_{k=1}^{\infty}$ respectively. Let σ be an injection of the set of positive integers \mathbb{N} into itself having no finite orbits and T be the operator defined on l_{∞} by $T((x_n)_{n=1}^{\infty}) = (x_{\sigma(n)})_{n=1}^{\infty}$.

A positive linear functional ϕ , with $||\phi|| = 1$, is called a σ - mean or an invariant mean if $\phi(x) = \phi(Tx)$ for all $x \in l_{\infty}$.

A sequence x is said to be σ - convergent, denoted by $x \in V_{\sigma}$, if $\phi(x)$ takes the same value, called $\sigma - \lim x$, for all σ - means ϕ . We have (see Schaefer [14])

$$V_{\sigma} = \left\{ x = (x_n) : \sum_{m=1}^{\infty} t_{m,n}(x) = L \text{ uniformly in n, } L = \sigma - \lim x \right\}$$

where for $m \ge 0, n > 0$

$$t_{m,n}(x) = \frac{x_n + x_{\sigma(n)} + \dots + x_{\sigma^m(n)}}{m+1}$$
, and $t_{-1,n} = 0$.

where $\sigma^m(n)$ denotes the m th iterate of σ at n. In particular, if σ is the translation, a σ - mean is often called a Banach limit and V_{σ} reduces to f, the set of almost

Key words and phrases. Invariant mean, Paranorm, Orlicz function, Solid space .

©2008 Ankara University

Received by the editors Nov. 01, 2007; Accepted: Sept. 05, 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 40F05, 40C05, 46A45.

- convergent sequences (see Lorentz [5]). Subsequently invariant means have been studied by Ahmad and Mursaleen [1], Mursaleen [8], Raimi [12] and many others.

The concept of paranorm is closely related to linear metric spaces. It is a generalization of that of absolute value. Let X be a linear space. A function $g: X \to \mathbb{R}$ is called paranorm, if

- [P1] $g(x) \ge 0$, for all $x \in X$,
- [P2] g(-x) = g(x), for all $x \in X$,
- [P3] $g(x+y) \le g(x) + g(y)$, for all $x, y \in X$,
- [P4] If (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ $(n \to \infty)$ and (x_n) is a sequence of vectors with $g(x_n x) \to 0$ $(n \to \infty)$, then $g(\lambda_n x_n \lambda x) \to 0$ $(n \to \infty)$.

A paranorm g for which g(x) = 0 implies x = 0 is called a total paranorm on X, and the pair (X, g) is called a totally paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (cf. [15, Theorem 10.4.2, p. 183]).

A map $M : \mathbb{R} \to [0, +\infty]$ is said to be an Orlicz function if M is even, convex, left continuous on \mathbb{R}_+ , continuous at zero, M(0) = 0 and $M(u) \to \infty$ as $u \to \infty$. If M takes value zero only at zero we will write M > 0 and if M takes only finite values we will write $M < \infty$. [2,3,6,7,10,13].

W.Orlicz [11] used the idea of orlicz function to construct the space (L^M) . Lindendstrauss and Tzafriri [4] used the idea of Orlicz function to define orlicz sequence space

$$\ell_M := \left\{ x \in \omega : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty \text{ for some } \rho > 0 \right\}$$

in more detail . ℓ_M is a Banach space with the norm

$$||x|| := \inf\{\rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1\}$$

The space l_M is closely related to the space l_p , which is an Orlicz sequence space with $M(x) = x^p$ for $1 \le p < \infty$.

The \triangle_2 - condition is equivalent to

$$M(Lx) \leq KLM(x)$$
, for all values of $x \geq 0$, and for $L > 1$.

An Orlicz function M can always be represented in the following integral form

$$M(x) = \int_0^x \eta(t) dt,$$

where η is known as the kernel of M, is right differentiable for $t \ge 0$, $\eta(0) = 0$, $\eta(t) > 0$, η is non-decreasing and $\eta(t) \to \infty$ as $t \to \infty$. Note that an Orlicz function

satisfies the inequality

$$M(\lambda x) \leq \lambda M(x)$$
 for all λ with $0 < \lambda < 1$.

Let E be a sequence space. Then E is called

- (i) A sequence space E is said to be symmetric if $(x_n) \in E$ implies $(x_{\pi}(n)) \in E$, where $\pi(n)$ is a permutation of the elements of the elements of \mathbb{N} .
- (ii) Solid (or normal), if $(\alpha_k x_k) \in E$, whenever $(x_k) \in E$ for all sequences of scalars (α_k) with $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$.

Lemma 1.1. . A sequence space E is solid implies E is monotone.

Mursaleen [9] defined the sequence space

$$BV_{\sigma} = \left\{ x \in l_{\infty} : \sum_{m} |\phi_{m,n}(x)| < \infty, \text{ uniformly in } n \right\},\$$

where

$$\phi_{m,n}(x) = t_{m,n}(x) - t_{m-1,n}(x)$$

assuming that

$$t_{m,n}(x) = 0$$
, for m = -1.

A straightforward calculation shows that

$$\phi_{m,n}(x) = \begin{cases} \frac{1}{m(m+1)} \sum_{j=1}^{m} j(x_{\sigma^{j}(n)} - x_{\sigma^{j-1}(n)}) & (m \ge 1) \\ x_{n}, & (m = 0) \end{cases}$$

Note that for any sequence x, y and scalar λ we have

$$\phi_{m,n}(x+y) = \phi_{m,n}(x) + \phi_{m,n}(y)$$
 and $\phi_{m,n}(\lambda x) = \lambda \phi_{m,n}(x)$

2. Main Results.

Let M be an Orlicz function, $p = (p_m)$ be any sequence of strictly positive real numbers and $r \ge 0$. Now we define the sequence space as follows :

$$BV_{\sigma}(M,p,r) = \left\{ \begin{array}{l} x = (x_k) : \sum_{m=1}^{\infty} \frac{1}{m^r} \left[M\left(\frac{|\phi_{m,n}(x)|}{\rho}\right) \right]^{p_m} < \infty, \\ \text{uniformly in n and for some } \rho > 0 \end{array} \right\}.$$

For M(x) = x we get

$$BV_{\sigma}(p,r) = \left\{ x = (x_k) : \sum_{m=1}^{\infty} \frac{1}{m^r} |\phi_{m,n}(x)|^{p_m} < \infty, \text{ uniformly in n} \right\}.$$

For $p_m = 1$, for all m, we get

$$BV_{\sigma}(M,r) = \left\{ \begin{array}{l} x = (x_k) : \sum_{m=1}^{\infty} \frac{1}{m^r} \left[M\left(\frac{|\phi_{m,n}(x)|}{\rho}\right) \right] < \infty, \\ \text{uniformly in n and for some } \rho > 0 \end{array} \right\}.$$

For r = 0 we get

$$BV_{\sigma}(M,p) = \left\{ \begin{array}{l} x = (x_k) : \sum_{m=1}^{\infty} \left[M\left(\frac{|\phi_{m,n}(x)|}{\rho}\right) \right]^{p_m} < \infty, \\ \text{uniformly in n and for some } \rho > 0 \end{array} \right\}.$$

For M(x) = x and r = 0 we get

$$BV_{\sigma}(p) = \left\{ x = (x_k) : \sum_{m=1}^{\infty} |\phi_{m,n}(x)|^{p_m} < \infty, \text{ uniformly in n} \right\}.$$

For $p_m = 1$, for all m and r = 0 we get

$$BV_{\sigma}(M) = \left\{ \begin{array}{l} x = (x_k) : \sum_{m=1}^{\infty} \left[M\left(\frac{|\phi_{m,n}(x)|}{\rho}\right) \right] < \infty, \ r \ge 0, \\ \text{uniformly in n and for some } \rho > 0 \end{array} \right\}.$$

For M(x) = x, $p_m = 1$, for all m, and r = 0 we get

$$BV_{\sigma} = \left\{ x = (x_k) : \sum_{m=1}^{\infty} |\phi_{m,n}(x)| < \infty, \text{uniformly in n} \right\}.$$

Theorem 2.1. The sequence space $BV_{\sigma}(M, p, r)$ is a linear space over the field \mathbb{C} of complex numbers.

Proof. . Let $x, y \in BV_{\sigma}(M, p, r)$ and $\alpha, \beta \in \mathbb{C}$. Then there exist positive numbers ρ_1 and ρ_2 such that

$$\sum_{m=1}^{\infty} \frac{1}{m^r} \left[M\left(\frac{|\phi_{m,n}(x)|}{\rho_1}\right) \right]^{p_m} < \infty$$

and

$$\sum_{m=1}^{\infty} \frac{1}{m^r} \left[M\left(\frac{|\phi_{m,n}(y)|}{\rho_2}\right) \right]^{p_m} < \infty, \text{ uniformly in n.}$$

Define $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since M is nondecreasing and convex we have

$$\begin{split} \sum_{m=1}^{\infty} \frac{1}{m^r} \left[M \left(\frac{|\alpha \phi_{m,n}(x) + \beta \phi_{m,n}(y)|}{\rho_3} \right) \right]^{p_m} \\ &\leq \sum_{m=1}^{\infty} \frac{1}{m^r} \left[M \left(\frac{|\alpha \phi_{m,n}(x)|}{\rho_3} + \frac{|\beta \phi_{m,n}(y)|}{\rho_3} \right) \right]^{p_m} \\ &\leq \sum_{m=1}^{\infty} \frac{1}{m^r} \frac{1}{2} \left[M \left(\frac{\phi_{m,n}(x)}{\rho_1} \right) + M \left(\frac{\phi_{m,n}(y)}{\rho_2} \right) \right] < \infty, \text{ uniformly in n} \end{split}$$

This proves that $BV_{\sigma}(M, p, r)$ is a linear space over the field \mathcal{C} of complex numbers.

Theorem 2.2. For any Orlicz function M and a bounded sequence $p = (p_m)$ of strictly positive real numbers, $BV_{\sigma}(M, p, r)$ is a paranormed(need not be total paranormed) space with

$$g(x) = \inf_{n \ge 1} \left\{ \rho^{\frac{p_n}{K}} : \left(\sum_{m=1}^{\infty} \frac{1}{m^r} \left[M\left(\frac{|\phi_{m,n}(x)|}{\rho}\right) \right]^{p_m} \right)^{\frac{1}{K}} \le 1, \text{ uniformly in } n \right\}.$$

where $K = \max(1, \sup p_m)$.

Proof. It is clear that g(x) = g(-x). Since M(0) = 0, we get

$$\inf\left\{\rho^{\frac{p_n}{K}}\right\} = 0, \text{ for } x = 0.$$

By using Theorem 1, for $\alpha = \beta = 1$, we get

$$g(x+y) \le g(x) + g(y)$$

For the continuity of scalar multiplication let $l\neq 0$ be any complex number. Then by the definition we have

$$g(lx) = \inf_{n \ge 1} \left\{ \rho^{\frac{p_n}{K}} : \left(\sum_{m=1}^{\infty} \frac{1}{m^r} \left[M\left(\frac{|\phi_{m,n}(lx)|}{\rho}\right) \right]^{p_m} \right)^{\frac{1}{K}} \le 1, \text{ uniformly in } n \right\}$$

$$g(lx) = \inf_{n \ge 1} \left\{ \begin{array}{c} \left(|l|s\right)^{\frac{p_n}{K}} : \left(\sum_{m=1}^{\infty} \frac{1}{m^r} \left[M\left(\frac{|\phi_{m,n}(lx)|}{s|l|}\right) \right]^{p_m} \right)^{\frac{1}{K}} \le 1, \\ \text{uniformly in n} \end{array} \right\}$$

where $s = \frac{\rho}{|l|}$. Since $|l|^{p_n} \le \max(1, |l|^H)$, we have

$$g(lx) \le \max(1, |l|^H) \inf_{n \ge 1} \left\{ \begin{array}{c} s^{\frac{p_n}{K}} : \left(\sum_{m=1}^{\infty} \frac{1}{m^r} \left[M\left(\frac{|\phi_{m,n}(x)|}{s}\right) \right]^{p_m} \right)^{\frac{1}{K}} \le 1, \\ \text{uniformly in n} \end{array} \right\}$$

$$= \max(1, |l|^H)g(x)$$

and therefore g(lx) converges to zero when g(x) converges to zero in $BV_{\sigma}(M,p,r)$.

Now let x be fixed element in $BV_{\sigma}(M,p,r)$. There exists $\rho>0$ such that

$$g(x) = \inf_{n \ge 1} \left\{ \rho^{\frac{p_n}{K}} : \left(\sum_{m=1}^{\infty} \frac{1}{m^r} \left[M\left(\frac{|\phi_{m,n}(x)|}{\rho}\right) \right]^{p_m} \right)^{\frac{1}{K}} \le 1, \text{ uniformly in } n \right\}.$$

Now

$$g(lx) = \inf_{n \ge 1} \left\{ \rho^{\frac{p_n}{K}} : \left(\sum_{m=1}^{\infty} \frac{1}{m^r} \left[M\left(\frac{|\phi_{m,n}(lx)|}{\rho}\right) \right]^{p_m} \right)^{\frac{1}{K}} \le 1, \text{ uniformly in } n \right\} \to 0,$$

as $l \to 0.$

This completes the proof.

Theorem 2.3. Suppose that $0 < p_m \leq t_m < \infty$ for each $m \in \mathbb{N}$ and $r \geq 0$. Then (i) $BV_{\sigma}(M,p) \subseteq BV_{\sigma}(M,t),$ (*ii*) $BV_{\sigma}(M) \subseteq BV_{\sigma}(M, r)$.

Proof. . [i] Suppose that $x \in BV_{\sigma}(M, p)$. This implies that $\left[M\left(\frac{|\phi_{i,n}(x)|}{\rho}\right)\right]^{p_m} \leq 1$ for sufficiently large values of i, say $i \geq m_0$ for some fixed $m_0 \in \mathbb{N}$. Since M is non decreasing, we have

$$\sum_{m=m_0}^{\infty} \left[M\left(\frac{|\phi_{i,n}(x)|}{\rho}\right) \right]^{t_m} \le \sum_{m=m_0}^{\infty} \left[M\left(\frac{|\phi_{i,n}(x)|}{\rho}\right) \right]^{p_m} < \infty.$$
PV (M, t)

Hence $x \in BV_{\sigma}(M, t)$.

The proof of [ii] is trivial.

The following result is a consequence of the above result.

Corollary 1. If $0 < p_m \leq 1$ for each m, then $BV_{\sigma}(M, p) \subseteq BV_{\sigma}(M)$.

If $p_m \ge 1$ for all m, then $BV_{\sigma}(M) \subseteq BV_{\sigma}(M, p)$.

Theorem 2.4. . The sequence space $BV_{\sigma}(M, p, r)$ is solid.

Proof. Let $x \in BV_{\sigma}(M, p, r)$. This implies that

$$\sum_{m=1}^{\infty} m^{-r} \left[M\left(\frac{|\phi_{k,n}(x)|}{\rho}\right) \right]^{p_m} < \infty.$$

Let (α_m) be sequence of scalars such that $|\alpha_m| \leq 1$ for all $m \in \mathbb{N}$. Then the result follows from the following inequality

$$\sum_{m=1}^{\infty} m^{-r} \left[M\left(\frac{|\alpha_m \phi_{k,n}(x)|}{\rho}\right) \right]^{p_m} \le \sum_{m=1}^{\infty} m^{-r} \left[M\left(\frac{|\phi_{k,n}(x)|}{\rho}\right) \right]^{p_m} < \infty.$$

Hence $\alpha x \in BV_{\sigma}(M, p, r)$ for all sequences of scalars (α_m) with $|\alpha_m| \leq 1$ for all $m \in \mathbb{N}$ whenever $x \in BV_{\sigma}(M, p, r)$.

From Theorem 4 and Lemma we have :

Corollary 2. . The sequence space $BV_{\sigma}(M, p, r)$ is monotone.

Theorem 2.5. Let M_1 , M_2 be Orlicz functions satisfying \triangle_2 - condition and $r, r_1, r_2 \ge 0$. Then we have (i) If r > 1 then $BV_{\sigma}(M_1, p, r) \subseteq BV_{\sigma}(M0M_1, p, r)$,

- (1) j + j + j + i = 0 + i
- (*ii*) $BV_{\sigma}(M_1, p, r) \cap BV_{\sigma}(M_2, p, r) \subseteq BV_{\sigma}(M_1 + M_2, p, r),$
- (*iii*) If $r_1 \leq r_2$ then $BV_{\sigma}(M, p, r_1) \subseteq BV_{\sigma}(M, p, r_2)$.

Proof. [i] Since M is continuous at 0 from right , for $\epsilon > 0$ there exists $0 < \delta < 1$ such that $0 \le c \le \delta$ implies $M(c) < \epsilon$. If we define

$$I_1 = \left\{ m \in \mathbb{N} : M_1\left(\frac{|\phi_{m,n}(x)|}{\rho}\right) \le \delta \text{ for some } \rho > 0 \right\},$$

$$I_2 = \left\{ m \in \mathbb{N} : M_1\left(\frac{|\phi_{m,n}(x)|}{\rho}\right) > \delta \text{ for some } \rho > 0 \right\},$$

then , when $M_1\left(\frac{|\phi_{m,n}(x)|}{\rho}\right) > \delta$ we get

$$M\left(M_1\left(\frac{|\phi_{m,n}(x)|}{\rho}\right)\right) \le \{2M(1)/\delta\}M_1\left(\frac{|\phi_{m,n}(x)|}{\rho}\right)$$

= $BV\left(M_1, n, r\right)$ and $r > 1$

Hence for $x \in BV_{\sigma}(M_1, p, r)$ and r > 1

$$\begin{split} \sum_{m=1}^{\infty} m^{-r} \left[M0M_1\left(\frac{|\phi_{m,n}(x)|}{\rho}\right) \right]^{p_m} &= \sum_{m \in I_1} m^{-r} \left[M0M_1\left(\frac{|\phi_{m,n}(x)|}{\rho}\right) \right]^{p_m} \\ &+ \sum_{m \in I_2} m^{-r} \left[M0M_1\left(\frac{|\phi_{m,n}(x)|}{\rho}\right) \right]^{p_m} \\ &\leq \sum_{m \in I_1} m^{-r} [\epsilon]^{p_m} \\ &+ \sum_{m \in I_2} m^{-r} \left[\{2M(1)/\delta\}M_1\left(\frac{|\phi_{m,n}(x)|}{\rho}\right) \right]^{p_m} \\ &\leq \max(\epsilon^h, \epsilon^H) \sum_{m=1}^{\infty} m^{-r} \\ &+ \max\left(\{2M(1)/\delta\}^h, \{2M(1)/\delta\}^H \right) \\ (\text{where } 0 < h = \inf p_m \le p_m \le H = \sup_m p_m < \infty). \end{split}$$

[ii] The proof follows from the following inequality

$$m^{-r} \left[(M_1 + M_2) \left(\frac{|\phi_{m,n}(x)|}{\rho} \right) \right]^{p_m} \leq Cm^{-r} \left[M_1 \left(\frac{|\phi_{m,n}(x)|}{\rho} \right) \right]^{p_m} + Cm^{-r} \left[M_2 \left(\frac{|\phi_{m,n}(x)|}{\rho} \right) \right]^{p_m}.$$

[iii]The proof is straightforward.

Corollary 3. . Let M be an Orlicz function satisfying \triangle_2 - condition. Then we have

- (1) If r > 1, then $BV_{\sigma}(p, r) \subseteq BV_{\sigma}(M, p, r)$,
- (2) $BV_{\sigma}(M,p) \subseteq BV_{\sigma}(M,p,r),$
- (3) $BV_{\sigma}(p) \subseteq BV_{\sigma}(p,r),$
- (4) $BV_{\sigma}(M) \subseteq BV_{\sigma}(M, r),$

The proof is straightforward.

ÖZET: BV_{σ} dizi uzayı, Mursaleem tarafından tanımlanmış ve incelenmiştir [9]. Bu çalışmada BV_{σ} uzayını, $BV_{\sigma}(M, p, r)$ uzayına genişleterek bu uzaya ilişkin bazı özelikleri ve kapsama bağıntılarını elde ettik.

References

- Z.U. Ahmad and M. Mursaleen , An application of banach limits, Proc. Amer. Math.Soc. 103 (1983), 244 - 246.
- [2] S.T. Chen, Geometry of Orlicz Spaces, Dissertationes Math. (The Institute of Mathematics, Polish Academy of Sciences) (1996).
- [3] M. A. Krasnoselskii, and Rutickii, Ya. B, Convex Functions and Orlicz Spaces, (Gooningen: P. Nordhoff Ltd.) (1961) (translation).
- [4] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10: 379-390 (1971).
- [5] G.G. Lorentz, A contribution to the theory of divergent series, Acta Math. 80(1948) 167-190.
- [6] W. A. Luxemburg, Banach Function Spaces, Thesis (Delft) (1955)
- [7] L. Maligranda, Orlicz spaces and interpolation, Seminar in Math. 5, Campinas (1989)
- [8] M.Mursaleen , Matrix transformations between some new sequence spaces, Houston J. Math., 9 (1983), 505- 509.
- [9] M.Mursaleen ,On some new invariant matrix methods of summability, Quart. J. Math., Oxford (2) 34 (1983), 77-86.
- [10] J. Musielak , Orlicz Spaces and Modular spaces, Lecture Notes in Math. 1034 (Springer- Verlag) (1983).
- [11] W. Orlicz, Ü ber Raume (L^M) , Bulletin International de l'Académie Polonaise des Sciences et des Letters, Série A, 93 - 107 (1936).
- [12] R. A. Raimi, Invariant means and invariant matrix method of summability, Duke Math. J. ., 30 (1963), 81- 94.
- [13] M. M. Rao and Z. D. Ren, Theory of Orlicz spaces (New York, Basel, Hong Kong: Marcel Dekker Inc.) (1991).
- [14] P. Schafer, Infinite matrices and invariant means, Proc. Amer. Math.Soc. 36 (1972), 104 - 110.
- [15] A. Wilansky, Summability Through Functional Analysis, North-Holland Mathematical Studies 85, 1984.

 $Current \ address:$ Department of Mathematics, A. M. U. Aligarh-202002 INDIA, $E\text{-}mail \ address: \texttt{vakhanQmath.com}$