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SOME RELATIONS BETWEEN FUNCTIONALS ON BOUNDED
REAL SQUENCES

SEYHMUS YARDIMCI

ABSTRACT. In this paper, we mainly concern with the functionals L** and [**

defined on bounded real sequences and give some inequalities between these
functionals.

1. INTRODUCTON

If T = (tnx) is an infinite matrix with real entries, and if & = () is a sequence of
real numbers, then Tz denotes the transformed sequence whose n-th term is given

by (Tx)n, = Y. tnkxr - In order to investigate the effect of such transformations
k=1

upon the derived set, Knopp [5] introduced the idea of the core (K-core) of a
sequence and proved the well-known Core Theorem. That theorem asserts that
K-core{Tz}C K-core{z} , whenever Tz exists for the nonnegative regular matrix
T. Some variants of the Core Theorem may be found in [2], [9], [10], [12].

Considering the method of almost convergence Loone [6] and Das [2] introduced
the Banach core (B—core) of a bounded sequence and proved some analogues of
the assertions for the K-core (see also [4], [10], [12], [13]).

Before proceeding further we recall some notation and terminology. By [°° and
¢ we denote the spaces of all bounded and convergent real sequences, respectively.

Let T' = (t,x) be an infinite matrix, and let X and Y be two sequence spaces. If
Tz exists for each © € X and Tz € Y then we say that 7' maps X into Y. The set
of matrices which map X into Y is denoted by (X,Y"). The set of matrices which
map X into Y and leave the limit or sum invariant is denoted by (X,Y’;p). For
example, if T € (¢, ¢;p), then lim Tx = lim x for every = € c. In this case T is called
regular (see [1],[11]). If it is regular and satisfies

117{112 |tnk - tn,k—&-l‘ = 0;
k
then T is called strongly regular [11].
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It is well-known [7],[11] that the functional

n1,M2,... Ny k

. 3 1 .
g(z)= inf limsup - Zl Thtn,;
1

is sublinear on [*°. We consider the following functionals on [*° :
L(z) = limsup z,, ,

I*(z) = liminfsup & 3 @py |
Tk i=0
L*(z) = limsup sup% 3 Xpgie
r k =0
It follows from the Corollary of Theorem 1 in [3] that ¢(x) = L*(z) .
If g(z) = —q(—x) = s, then z is called almost convergent to s [7], and in this case
we write F'—limz = s. By F we denote the set of all almost convergent sequences.
The Banach core (B-core) of a bounded sequence x is defined to be the closed

interval [—q(—x), ¢(x)] (see [2], [6]). Since g(z) < L(x) for every x € [°° , it follows
that B-core {x} C K-core {z} where K-core {z} is the Knopp core and it is given
by K-core {z} = [liminf z,lim sup z]. It is shown in [6], [10] that

K — core{Ax} C B — core{z} ( for every z € I*°) (1)

if and only if A is strongly regular and lim > |a,x| =1 .
n g

With this terminology the Knopp core theorem gives the conditions on the matrix
A so that the inequality LA < L* , on [*°, holds. Hence (1) yields the inequality
LA <L* on ™.

Also it is well-known [8], [3] that the functional

Mn1,M2,... Ny

I
Q(x) = inf limsup - Thtn,
( ) . r ;| +n
is sublinear on [*°. Define for x € [*° |

1 T
L**(x) = limsup sup — Z |44 -
r kT i—0

Then substituting |z| = (|z,]),>, for = (z,), in Corollary of Theorem 1 in [3],
we obtain Q(x) = L**(x) -

Throughout the paper we consider only real matrices and real bounded se-
quences.

In this paper we will give a reception between functionals L and L**, than some
inequalities.
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2. THE FUNCTIONALS L** AND [ AND SOME INEQUALITIES
If we take the sequence x = (x,,) defined by x,, = (—1) for all n, it follows that,
L(z)=-1,L"(z)=1
hence
L™ (z) > L(x).
Now, if we define sequence = = (x,,) by =, = (—1)" for all n, it follows that,
L(z) =1, L™ (z) = 1,
hence
L™ (z) = L(x).

Finally, if we consider the bounded sequence = = (x,,) given by x,, > 0 for all n,
then

L™ (z) = L*(|z]) = L*(z) < L(x),
hence
L™ (z) < L(z).
In this paper we mainly compare LA with L**.

Theorem 2.1. If L**(xz —y) =0 on I°°, then L**(z) = L**(y)
Proof. We know that

-
L*(x—y) = limsup sup% S| Tkti — Yril -
r k i=0
Now
”
L*(z) = limsupsup 2 Y |wpyi].
T k i=0

-

s 1

= limsupsup ; > |[Trti — Yr+i + Yooril
T k i=0

T ks
< limsupsup ; Y [@rri — Yrti| + limsupsup £ 37 [y
T k =0 , T k =0
= 0+ limsupsup% S Ykl
T k =0
= L™(y)
If we interchange the roles of x and y,then we also get
L™ (y) < L™ (z),

which implies that
L™ (z) = L™ (y).



38 SEYHMUS YARDIMCI

Theorem 1 in[5] is valid if we write (|x,|) in place of x € [*°. Using this result
we get,
1 i+n
lim sup su z,| < L(|x]).
 Sup ipn+1;| | < L(|z])

If we define sublinear functional P on [*° by

P(z) = limksup |zk|,

we can give the following

Corollary 1. On [,
L™ < P.

Let us define the functional Z on [*° by
1] + [wa + ... £ |k ]
3 .

We recall that the matrix B called normal if it is lower semi triangular matrix
with non-zero diagonal entries.

Theorem 7 of Yardimeci [13] gives us the necessary and sufficient conditions for
L*(Az) < L(Bz), whenever B is a normal matrix and Bz is bounded. This theorem
is valid if we take C; Cesdro matrix instead of B and |z| = (|z,|). Thus we get the
following

Z(x) =

Corollary 2. On [,
L™ A(x) < Z(x).

The following result compares LA with L**.
Theorem 2.2. If A is a strogly reqular matriz and
limz lank| =1,
"
then
LA < L*™.

on [*°.
Proof. Let A be a strongly regular matrix and lim )" |a,i| = 1 . Then Theorem 6
n ok
[10] implies that
LA (z) < L* (z)
for all x € [°°. Also we know that,
L™ (z) < L™ (|Jz]) = L™ ()

on [*°. So,
LA (z) < L™ (x)
on [*°. This proves the theorem. O
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The following theorem also gives some sufficient conditions for this inequality.

Theorem 2.3. Let A be a strongly reqular matriz. Then If there exist a nonnegative
strongly reqular matrixz B, which is absolutely equivalent to A on [°°, then

LA(z) < L*™(x), (for every z € 1*).
Proof. By absolute equivalence of A and B, for every z € [*°,
lim {(Az), — (Ba),} = 0. 2)
Now Theorem 6.5.1 of Cooke [1] implies that
L(Az) < L(z), (for every x € I™).

Since B is non-negative strongly regular matrix, it follows from Theorem 3 in [10]
that, for every z € [*°,

L(Bzx) < L*(x). (3)
Since (2) holds, Theorem 6.3.IT of Cooke [1] implies that
L(Az) = L(Brx). (4)

Now (3) and (4) imply
L(Az) < L*(z) < L™ (x).

Define the functionals [** on [*° by

1 T
** = lim inf - il .
(z) = lim in sup ;:0 |Zk 44l
With this definition we have

Theorem 2.4. Let A be any matriz such that sup Y |an,| < co. If
n &

1 i+n
1. T - 07
1mnsups%p o ; |ark]

then we have L**A < [** on [*°.

Proof. By hypothesis, Az exist for every x € [°°. Then,
i+n

L**(Az) = limsup supniJrl >

n 7 r=i

> arkT
k

IN

i+n
]| lim sup sup 5 >° > [ark|
n 7 r=i k

+n
|| limsupsup Y- A5 > |ark| = 0.
n 7 k r=i

Also we know that
L™ (Az) > 0,
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Hence we get

L**(Az) = 0.

From the definition of [** we can write

So

1]
2]

3]
(4]
[5]
[6]
7]
(8]
(9]
[10]

(1]
(12]

(13]

I**(x) > 0.

we get

L**(Az) < 1**(2).

OZET: Bu cahsmada temel amacimiz, siirh reel diziler izeinde
tamimh L**ve [**fonksiyonellerini incelemek ve bunlar arasindaki
bazi egitsizlikleri vermektir.
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