Advances in the Theory of Nonlinear Analysis and its Applications 3 (2019) No. 4, 192–200. https://doi.org/10.31197/atnaa.573972 Available online at www.atnaa.org Research Article

The proximal point algorithm in complete geodesic spaces with negative curvature

Takuto Kajimura^a, Yasunori Kimura^a

aDepartment of Information Science, Toho University, Funabashi, Chiba 274-8510, Japan.

Abstract

The proximal point algorithm is an approximation method for finding a minimizer of a convex function. In this paper, using the properties of the resolvent which was proposed by the authors, we show the proximal point algorithm using a suitable notion of weak convergence in complete geodesic spaces with negative curvature.

Keywords: $CAT(-1)$ space; proximal point algorithm; resolvent; convex function; geodesic space. 2010 MSC: 52A41

1. Introduction

The proximal point algorithm is an approximation method for finding a minimizer of a proper lower semicontinuous convex function. The resolvent of this function plays an important role in this algorithm.

Let X be a complete $CAT(0)$ space and f a proper lower semicontinuous convex function of X into $[-\infty, \infty]$. Then the resolvent of λf is defined by

$$
J_{\lambda}x = \underset{y \in X}{\text{argmin}} \left\{ f(y) + \frac{1}{\lambda} d(y, x)^2 \right\}
$$

for all $x \in X$ and $\lambda > 0$. In 1998, Mayer [\[10\]](#page-8-0) showed that it is well-defined as a single valued mapping. The proximal point algorithm is one of the most famous methods for approximating a minimizer of a convex function. This algorithm was originally proposed by Martinet [\[9\]](#page-8-1) and Rockafellar [\[11\]](#page-8-2) considered more general settings. In a complete CAT(0) space, the following theorem was shown by Bačák [\[1\]](#page-8-3) in 2013.

Email addresses: 6518004k@st.toho-u.ac.jp (Takuto Kajimura), yasunori@is.sci.toho-u.ac.jp (Yasunori Kimura) Received June 07, 2019, Accepted: October 06, 2019, Online: October 09, 2019.

Theorem 1.1 (Bačák [\[1\]](#page-8-3)). Let X be a complete $CAT(0)$ space, f a proper lower semicontinuous convex function of X into $]-\infty,\infty]$ such that $\operatorname{argmin}_X f$ is nonempty, and $\{\lambda_n\}$ a sequence of positive real numbers with $\sum_{n=1}^{\infty} \lambda_n = \infty$. If a sequence $\{x_n\}$ of X is defined by $x_1 \in X$ and $x_{n+1} = J_{\lambda_n} x_n$ for $n \in \mathbb{N}$, then $\{x_n\}$ is Δ -convergent to an element of $\operatorname{argmin}_X f$.

Let X be a complete CAT(1) space satisfying $d(u, v) < \pi/2$ for all $u, v \in X$ and f a proper lower semicontinuous convex function of X into $\vert -\infty, \infty \vert$. Then the resolvent of λf is defined by

$$
Q_{\lambda}x = \underset{y \in X}{\operatorname{argmin}} \left\{ f(y) + \frac{1}{\lambda} \tan d(y, x) \sin d(y, x) \right\}
$$

for all $x \in X$ and $\lambda > 0$. Kimura and Kohsaka [\[6\]](#page-8-4) showed its well-definedness and the following theorem.

Theorem 1.2 (Kimura and Kohsaka [\[7\]](#page-8-5)). Let X be a complete CAT(1) space satisfying $d(u, v) < \pi/2$ for all $u, v \in X$, f a proper lower semicontinuous convex function of X into $[-\infty, \infty]$ satisfying $\text{argmin}_X f \neq \emptyset$, and $\{\lambda_n\}$ a sequence of positive real numbers satisfying $\sum_{n=1}^{\infty} \lambda_n = \infty$. If a sequence $\{x_n\}$ of X is defined by $x_1 \in X$ and $x_{n+1} = Q_{\lambda_n} x_n$ for $n \in \mathbb{N}$, then $\{x_n\}$ is Δ -convergent to an element of $\operatorname{argmin}_X f$.

In this paper, we propose the proximal point algorithm in a complete $CAT(-1)$ space. In Section 2, we introduce the definition of $CAT(\kappa)$ spaces and resolvents in a complete CAT(−1) space. In Section 3, we give several results which are necessary to prove the main theorem. In Section 4, we show the proximal point algorithm in a complete $CAT(-1)$ space and prove Δ -convergence of the generated sequence.

2. Preliminaries

Let X be a metric space with metric d. We denote by $\mathcal{F}(T)$ the set of all fixed points of a mapping T of X into itself. For $x, y \in X$, a continuous mapping $c : [0, l] \to X$ is called geodesic joining x and y if c satisfies $c(0) = x, c(l) = y$ and $d(c(s), c(t)) = |s - t|$ for all $s, t \in [0, 1]$. Its image, which is denoted by [x, y], is called a geodesic segment with endpoints x and y. X is said to be a geodesic space if there exists a geodesic joining any two points in X . In this paper, when X is a geodesic metric space, a geodesic joining any two points of X is always assumed to be unique.

Let X be a geodesic metric space. For all $x, y \in X$ and $\alpha \in [0, 1]$, there exists a unique point $z \in X$ such that $d(x, z) = (1 - \alpha)d(x, y)$ and $d(z, y) = \alpha d(x, y)$. This point is called a convex combination of x and y which is denoted by $\alpha x \oplus (1-\alpha)y$. A subset $C \subset X$ is called convex if $[x, y] \subset X$ for all $x, y \in C$. A geodesic triangle with vertices $x, y, z \in X$ is defined by $[x, y] \cup [y, z] \cup [z, x]$, which is denoted by $\Delta(x, y, z)$.

Let M_{κ}^2 be a two dimensional model space for all $\kappa \in \mathbb{R}$. For example, $M_0^2 = \mathbb{R}^2$, M_1^2 is two-dimensional unit sphere \mathbb{S}^2 , and M_{-1}^2 is two-dimensional hyperbolic space \mathbb{H}^2 . A comparison triangle to $\Delta(x, y, z) \subset X$ with vertices $\bar{x}, \bar{y}, \bar{z} \in M_{\kappa}^2$ is defined by $[\bar{x}, \bar{y}] \cup [\bar{y}, \bar{z}] \cup [\bar{z}, \bar{x}]$ with $d(x, y) = d(\bar{x}, \bar{y}), d(y, x) = d(\bar{y}, \bar{z})$, and $d(z, x) = d(\bar{z}, \bar{x})$, which is denoted by $\bar{\triangle}(\bar{x}, \bar{y}, \bar{z})$. $\bar{w} \in [\bar{x}, \bar{y}]$ is called a comparison point of $w \in [x, y]$ if $d(x, w) = d(\bar{x}, \bar{w})$ holds. For $\kappa \in \mathbb{R}$, X is called a CAT(κ) space if $d(p, q) \leq d(\bar{p}, \bar{q})$ holds whenever \bar{p} and $\bar{q} \in \bar{\triangle}$ are the comparison points for p and $q \in \Delta$, respectively. In general, if $\kappa < \kappa'$, then the CAT(κ) spaces are $CAT(\kappa')$ spaces [\[3\]](#page-8-6). We know that the following lemma holds, which is called the midpoint theorem.

Lemma 2.1 ([\[3\]](#page-8-6)). Let X be a CAT(-1) space, $x, y, z \in X$ and $\alpha \in [0, 1]$. Then

$$
\cosh d(\alpha x \oplus (1 - \alpha)y, z) \sinh d(x, y)
$$

\n
$$
\leq \cosh d(x, z) \sinh \alpha d(x, y) + \cosh d(y, z) \sinh(1 - \alpha) d(x, y).
$$

Corollary [2](#page-1-0).2 ([\[5\]](#page-8-7)). Let X, x, y and z be the same as in Lemma 2.1. Then

$$
\cosh d\left(\frac{1}{2}x \oplus \frac{1}{2}y, z\right) \cosh \frac{1}{2}d(x, y) \le \frac{1}{2}\cosh d(x, z) + \frac{1}{2}\cosh d(y, z).
$$

Let X be a metric space and $\{x_n\}$ a sequence in X. An asymptotic center of $\{x_n\}$ is defined by

$$
\left\{ u \in X \mid \limsup_{n \to \infty} d(u, x_n) = \inf_{y \in X} \limsup_{n \to \infty} d(y, x_n) \right\},\
$$

which is denoted by $\mathcal{A}(\{x_n\})$. A sequence $\{x_n\}$ Δ -converges to a point u in X if

$$
\mathcal{A}(\{x_{n_i}\}) = \{u\}
$$

for all subsequences $\{x_{n_i}\}\$ of $\{x_n\}$, which is denoted by $x_n \stackrel{\Delta}{\longrightarrow} u$. In this case, u is called a Δ -limit of $\{x_n\}$. A subset C of X is said to be Δ -closed if $u \in C$ whenever $\{x_n\} \subset C$ and $x_n \stackrel{\Delta}{\to} u$. For a sequence $\{x_n\}$ in X, we denoted by $\omega_{\Delta}(\{x_n\})$ the set of all $u \in X$ such that there exists a subsequence of $\{x_n\}$ which is Δ -convergent to u. We know that the following fundamental properties hold.

Lemma 2.3 ([\[4\]](#page-8-8)). Let X be a complete CAT(0) space and $\{x_n\}$ a bounded sequence in X. Then $\mathcal{A}(\{x_n\})$ consists of one point and $\omega_{\Delta}(\{x_n\})$ is nonempty.

Lemma 2.4 ([\[2\]](#page-8-9)). Let X be a complete CAT(0) space and $\{x_n\}$ a bounded sequence in X. If $\{d(z, x_n)\}\$ is convergent for all $z \in \omega_{\Delta}(\{x_n\})$, then $\{x_n\}$ is Δ -convergent.

Let X be a geodesic metric space and f a function of X into $]-\infty, \infty]$. We say that f is lower semicontinuous if the set $\{x \in X \mid f(x) \leq a\}$ is closed for all $a \in \mathbb{R}$. If f is continuous, then it is lower semicontinuous. The function f is said to be Δ -lower semicontinuous if

$$
f(u) \le \liminf_{n \to \infty} f(x_n)
$$

whenever $\{x_n\}$ is Δ -convergent to u. The domain of f is defined by $\{x \in X \mid f(x) \in \mathbb{R}\}$, which is denoted by domf. The function f is said to be proper if domf is nonempty. f is said to be convex if

$$
f(\alpha x \oplus (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y)
$$

holds for all $x, y \in X$ and $\alpha \in]0,1[$.

Lemma 2.5 ([\[2\]](#page-8-9)). Let X be a complete $CAT(0)$ space and f a proper lower semicontinuous convex function of X into $[-\infty, \infty]$. Then f is Δ -lower semicontinuous.

Let X be a complete CAT(-1) space and f a proper lower semicontinuous convex function of X into $[-\infty, \infty]$. Then the resolvent of f is defined by

$$
R_f x = \operatorname*{argmin}_{y \in X} \{ f(y) + \tanh d(y, x) \sinh d(y, x) \}
$$

for all $x \in X$. The authors [\[5\]](#page-8-7) showed that it is well-defined and the following important properties hold:

• R_f is firmly hyperbolically vicinal in the sense that,

$$
(C_x^2(1+C_y^2)C_y + C_y^2(1+C_x^2)C_x)\cosh d(R_f x, R_f y)
$$

\n
$$
\leq C_x^2(1+C_y^2)\cosh d(R_f x, y) + C_y^2(1+C_x^2)\cosh d(x, R_f y)
$$
\n(1)

for all $x, y \in X$, where $C_z = \cosh d(R_f z, z)$ for $z \in X$. See also [\[8\]](#page-8-10);

- $\mathcal{F}(R_f) = \arg\min_X f;$
- if $\mathcal{F}(R_f)$ is nonempty, then R_f is quasi-nonexpansive, that is, $d(R_f x, z) \leq d(x, z)$ for $x \in X$ and $z \in \mathcal{F}(R_f)$.

3. Fundamental properties of the resolvents

In this section, we show some important properties which are needed to show the proximal point algorithm in complete $CAT(-1)$ spaces.

Theorem 3.1. Let X be a complete $CAT(-1)$ space, f a proper lower semicontinuous convex function of X into $]-\infty,\infty]$ and R_λ a resolvent of λf for $\lambda > 0$. Set $C_{\lambda,z} = \cosh d(R_\lambda z, z)$ for all $z \in X$. Then the inequalities

$$
\lambda \left(f(R_{\lambda}x) - f(R_{\mu}y) \right) \sinh d(R_{\lambda}x, R_{\mu}y)
$$
\n
$$
\leq \left(\frac{1}{C_{\lambda,x}^2} + 1 \right) d(R_{\lambda}x, R_{\mu}y) \left(\cosh d(R_{\mu}y, x) - C_{\lambda,x} \cosh d(R_{\lambda}x, R_{\mu}y) \right)
$$
\n
$$
(2)
$$

and

$$
\begin{aligned} &\left(\lambda C_{\lambda,x}^2 (1 + C_{\mu,y}^2) C_{\mu,y} + \mu C_{\mu,y}^2 (1 + C_{\lambda,x}^2) C_{\lambda,x}\right) \cosh d(R_\lambda x, R_\mu y) \\ &\leq \lambda C_{\lambda,x}^2 (1 + C_{\mu,y}^2) \cosh d(R_\lambda x, y) + \mu C_{\mu,y}^2 (1 + C_{\lambda,x}^2) \cosh d(R_\mu y, x) \end{aligned} \tag{3}
$$

hold for all $x, y \in X$ and $\lambda, \mu > 0$.

Proof. Let $\lambda, \mu > 0$ and $x, y \in X$. Set $z_t = tR_\mu y \oplus (1-t)R_\lambda x$ for $t \in [0,1]$ and let $D = d(R_\lambda x, R_\mu y)$. By the definition of R_{λ} and the convexity of f, we have

$$
\lambda f(R_{\lambda}x) + \tanh d(R_{\lambda}x, x) \sinh d(R_{\lambda}x, x)
$$

\n
$$
\leq \lambda f(z_t) + \tanh d(z_t, x) \sinh d(z_t, x)
$$

\n
$$
\leq t\lambda f(R_{\mu}y) + (1 - t)\lambda f(R_{\lambda}x) + \tanh d(z_t, x) \sinh d(z_t, x)
$$

and hence

$$
\lambda t \left(f(R_{\lambda}x) - f(R_{\mu}y) \right)
$$
\n
$$
\leq \tanh d(z_t, x) \sinh d(z_t, x) - \tanh d(R_{\lambda}x, x) \sinh d(R_{\lambda}x, x)
$$
\n
$$
= \left(\frac{1}{\cosh d(R_{\lambda}x, x) \cosh d(z_t, x)} + 1 \right) (\cosh d(z_t, x) - \cosh d(R_{\lambda}x, x)).
$$

Then multiplying $(\sinh D)/t$ and using Lemma [2.1,](#page-1-0) we get

$$
\lambda (f(R_{\lambda}x) - f(R_{\mu}y)) \sinh D
$$
\n
$$
\leq \left(\frac{1}{\cosh d(R_{\lambda}x, x) \cosh d(z_t, x)} + 1\right)
$$
\n
$$
\times \frac{1}{t} (\cosh d(z_t, x) \sinh D - \cosh d(R_{\lambda}x, x) \sinh D)
$$
\n
$$
\leq \left(\frac{1}{\cosh d(R_{\lambda}x, x) \cosh d(z_t, x)} + 1\right)
$$
\n
$$
\times \frac{1}{t} (\cosh d(R_{\mu}y, x) \sinh tD - \cosh d(R_{\lambda}x, x) (\sinh D - \sinh(1 - t)D))
$$
\n
$$
= \left(\frac{1}{\cosh d(R_{\lambda}x, x) \cosh d(z_t, x)} + 1\right) \frac{2}{t} \sinh \left(\frac{t}{2}D\right)
$$
\n
$$
\times \left[\cosh d(R_{\mu}y, x) \cosh \left(\frac{t}{2}D\right) - \cosh d(R_{\lambda}x, x) \cosh \left(\left(1 - \frac{t}{2}\right)D\right)\right].
$$

Letting $t \downarrow 0$, we have

$$
\lambda \left(f(R_{\lambda}x) - f(R_{\mu}y) \right) \sinh D \leq \left(\frac{1}{C_{\lambda,x}^2} + 1 \right) D \left(\cosh d(R_{\mu}y, x) - C_{\lambda,x} \cosh D \right)
$$

and this inequality is [\(2\)](#page-3-0).

From (2) , we have

$$
\mu \lambda (f(R_{\lambda}x) - f(R_{\mu}y)) \sinh D \leq \mu D \left(\frac{1}{C_{\lambda,x}^2} + 1\right) (\cosh d(R_{\mu}y, x) - C_{\lambda,x} \cosh D)
$$

and

$$
\mu \lambda (f(R_{\mu}y) - f(R_{\lambda}x)) \sinh D \leq \lambda D \left(\frac{1}{C_{\mu,y}^2} + 1\right) (\cosh d(R_{\lambda}x, y) - C_{\mu,y} \cosh D).
$$

Adding these inequalities, we get

$$
0 \leq \mu D \left(\frac{1}{C_{\lambda,x}^2} + 1 \right) (\cosh d(R_{\mu}y, x) - C_{\lambda,x} \cosh D)
$$

$$
+ \lambda D \left(\frac{1}{C_{\mu,y}^2} + 1 \right) (\cosh d(R_{\lambda}x, y) - C_{\mu,y} \cosh D)
$$

and hence we obtain [\(3\)](#page-3-1).

The inequality [\(3\)](#page-3-1) is a generalization of [\(1\)](#page-2-0). In fact, if $\lambda = \mu = 1$, then (3) becomes (1). Using Theorem [3.1,](#page-3-2) we obtain the following corollary.

Corollary 3.2. Let X, f, λ and R_{λ} be the same as in Theorem [3.1.](#page-3-2) If argmin_Xf is nonempty, then the following hold:

- (i) $\lambda(f(R_\lambda x) f(u)) \leq 2(\cosh d(u, x) C_{\lambda,x} \cosh d(u, R_\lambda x));$
- (ii) $C_{\lambda,x} \cosh d(u, R_\lambda x) \leq \cosh d(u, x)$

for all $x \in X$ and $u \in \operatorname{argmin}_X f$.

Proof. We first show (i). Let $x \in X$ and $u \in \operatorname{argmin}_X f$. Since $\mathcal{F}(R_f) = \operatorname{argmin}_X f$, it follows from [\(2\)](#page-3-0) that

$$
\lambda(f(R_{\lambda}x) - f(u)) \sinh d(u, R_{\lambda}x)
$$

\n
$$
\leq \left(\frac{1}{C_{\lambda,x}^2} + 1\right) d(u, R_{\lambda}x) (\cosh d(u, x) - C_{\lambda,x} \cosh d(u, R_{\lambda,x})).
$$

Suppose that $u \neq R_\lambda x$. Since $0 < t/\sinh t < 1$ and $\cosh t \geq 1$ for all $t > 0$, we get

$$
\lambda(f(R_{\lambda}x) - f(u))
$$
\n
$$
\leq \left(\frac{1}{C_{\lambda,x}^2} + 1\right) \frac{d(u, R_{\lambda}x)}{\sinh d(u, R_{\lambda}x)} (\cosh d(u, x) - C_{\lambda,x} \cosh d(u, R_{\lambda,x}))
$$
\n
$$
< 2(\cosh d(u, x) - C_{\lambda,x} \cosh d(u, R_{\lambda,x})).
$$

If $u = R_{\lambda}x$, then it is obvious to hold with equality. Thus we obtain (i).

We next show (ii). Since $u \in \operatorname{argmin}_X f$, (i) implies that

 $0 \leq 2(\cosh d(u, x) - C_{\lambda,x} \cosh d(u, R_\lambda x))$

and hence we get the conclusion.

 \Box

 \Box

4. The proximal point algorithm

In this section, we show the proximal point algorithm in complete $CAT(-1)$ spaces. We remark that the following important properties hold:

- $\mathcal{F}(R_\lambda) = \arg\min_{X} f;$
- if $\mathcal{F}(R_\lambda)$ is nonempty, then R_λ is quasi-nonexpansive.

Theorem 4.1. Let X be a complete CAT(-1) space, $\{z_n\}$ a bounded sequence in X, $\{\beta_n\}$ a sequence of positive real numbers with $\sum_{n=1}^{\infty} \beta_n = \infty$ and

$$
g(y) = \limsup_{n \to \infty} \frac{1}{\sum_{l=1}^{n} \beta_l} \sum_{k=1}^{n} \beta_k \cosh d(y, z_k)
$$

for all $y \in X$. Then $\operatorname{argmin}_X g$ consists of one point.

Proof. Fix $y \in X$. Since $\{z_n\}$ is bounded, there exists $K > 0$ such that

$$
\cosh d(y, z_k) < \cosh K
$$

and hence $g(y) < \infty$. Therefore it follows that

$$
1\leqq \inf_{y\in X}g(y)<\infty.
$$

Let $\{y_n\}$ be a sequence in X with $g(y_{n+1}) \leq g(y_n)$ and $\lim_{n} g(y_n) = l$, where $l = \inf g(X)$. From Corollary [2.2,](#page-1-1) we get

$$
\cosh d\left(\frac{1}{2}y_n \oplus \frac{1}{2}y_m, z_k\right) \cosh d\left(\frac{1}{2}d(y_n, y_m)\right) \leq \frac{1}{2}\cosh d(y_n, z_k) + \frac{1}{2}\cosh d(y_m, z_k)
$$

and hence

$$
l\cosh\left(\frac{1}{2}d(y_n,y_m)\right) \leq g\left(\frac{1}{2}y_n \oplus \frac{1}{2}y_m\right)\cosh\left(\frac{1}{2}d(y_n,y_m)\right) \leq \frac{1}{2}g(y_n) + \frac{1}{2}g(y_m).
$$

Suppose that $m \geq n$. Then, by the definition of $\{y_n\}$ and $1 \leq l < \cosh K$, we have

$$
\cosh\left(\frac{1}{2}d(y_n, y_m)\right) \le \frac{g(y_n)}{l} \to 1.
$$

This implies that $\{y_n\}$ is a Cauchy sequence. Further, since X is complete, we know that $\{y_n\}$ is convergent to some $p \in X$. By the continuity of g, we have $g(p) = \lim_{n} g(y_n) = l$. Thus we have $p \in \text{argmin}_X g$.

We next show the uniqueness of p. Let $p, q \in \text{argmin}_X g$. Then, from the proof above, we know that the inequality

$$
l\cosh\left(\frac{1}{2}d(p,q)\right) \leq \frac{1}{2}g(p) + \frac{1}{2}g(q) = l
$$

holds. This inequality implies that $p = q$. Thus $\arg\min_{X} g$ consists of one point.

Theorem 4.2. Let X be a complete $CAT(-1)$ space, f a proper lower semicontinuous convex function of X into $]-\infty,\infty]$, and $\{\lambda_n\}$ a sequence of positive real numbers with $\sum_{n=1}^{\infty}\lambda_n=\infty$. If a sequence $\{x_n\}$ of X is defined by $x_1 \in X$ and

$$
x_{n+1} = \underset{y \in X}{\operatorname{argmin}} \left\{ f(y) + \frac{1}{\lambda_n} \tanh d(y, x_n) \sinh d(y, x_n) \right\}
$$

for all $n \in \mathbb{N}$, then $\operatorname{argmin}_X f$ is nonempty if and only if $\{x_n\}$ is bounded.

 \Box

Proof. We first suppose that $\operatorname{argmin}_X f$ is nonempty and show that $\{x_n\}$ is bounded. Let $u \in \operatorname{argmin}_X f$. Then, since R_{λ_n} is quasi-nonexpansive, we have

$$
d(u, x_{n+1}) \leq d(u, x_n) \leq \cdots \leq d(u, x_1).
$$

This inequality implies the conclusion.

We next show the other direction. Suppose that $\{x_n\}$ is bounded. Put

$$
\beta_n = \frac{\lambda_n C_{\lambda_n, x_n}^2}{1 + C_{\lambda_n, x_n}^2}
$$

for all $n \in \mathbb{N}$. Then it is obvious that $\beta_n > 0$. Further, since

$$
\beta_n = \frac{\lambda_n C_{\lambda_n, x_n}^2}{1 + C_{\lambda_n, x_n}^2} \ge \frac{\lambda_n C_{\lambda_n, x_n}^2}{2C_{\lambda_n, x_n}^2} = \frac{\lambda_n}{2} \quad \text{and} \quad \sum_{n=1}^{\infty} \lambda_n = \infty,
$$

we get $\sum_{n=1}^{\infty} \beta_n = \infty$. Thus, by Theorem [4.1,](#page-5-0) we know that $\operatorname{argmin}_X g$ is nonempty, where

$$
g(y) = \limsup_{n \to \infty} \frac{1}{\sum_{l=1}^{n} \beta_l} \sum_{k=1}^{n} \beta_k \cosh d(y, x_{k+1})
$$

for all $y \in X$.

Let $p \in \text{argmin}_X g$ and $\mu > 0$. Using Lemma [3.1,](#page-3-2) we have

$$
\begin{aligned} & \left(\lambda_k C_{\lambda_k, x_k}^2 (1 + C_{\mu, p}^2) + \mu C_{\mu, p}^2 (1 + C_{\lambda_k, x_k}^2) \right) \cosh d(x_{k+1}, R_\mu p) \\ &\leq \lambda_k C_{\lambda_k, x_k}^2 (1 + C_{\mu, p}^2) \cosh d(x_{k+1}, p) + \mu C_{\mu, p}^2 (1 + C_{\lambda_k, x_k}^2) \cosh d(R_\mu p, x_k) \end{aligned}
$$

and hence

$$
\frac{\lambda_k C_{\lambda_k, x_k}^2}{1 + C_{\lambda_k, x_k}^2} \cosh d(x_{k+1}, R_\mu p)
$$
\n
$$
\leq \frac{\lambda_k C_{\lambda_k, x_k}^2}{1 + C_{\lambda_k, x_k}^2} \cosh d(x_{k+1}, p) + \frac{\mu C_{\mu, p}^2}{1 + C_{\mu, p}^2} (\cosh d(R_\mu p, x_k) - \cosh d(R_\mu p, x_{k+1})).
$$

Put $\sigma_n = \sum_{l=1}^n \beta_l$. Adding both sides of the inequality above from $k = 1$ to $k = n$, we get

$$
\frac{1}{\sigma_n} \sum_{k=1}^n \beta_k \cosh d(x_{k+1}, R_\mu p) \n\leq \frac{1}{\sigma_n} \sum_{k=1}^n \beta_k \cosh d(x_{k+1}, p) + \frac{\mu C_{\mu, p}^2}{1 + C_{\mu, p}^2} \times \frac{\cosh d(R_\mu p, x_1) - 1}{\sigma_n}.
$$

Since $\lim_{n} \sigma_n = \infty$, we obtain

$$
g(p) \leqq g(R_{\mu}p) = \limsup_{n \to \infty} \frac{1}{\sigma_n} \sum_{k=1}^n \beta_k \cosh d(x_{k+1}, R_{\mu}p)
$$

$$
\leqq \limsup_{n \to \infty} \frac{1}{\sigma_n} \sum_{k=1}^n \beta_k \cosh d(x_{k+1}, p) = g(p).
$$

This implies that $R_{\mu}p = p$. Further, since $\mathcal{F}(R_{\lambda}) = \operatorname{argmin}_{X} f$, p is an element of $\operatorname{argmin}_{X} f$.

We finally show the proximal point algorithm in complete $CAT(-1)$ spaces.

 \Box

Theorem 4.3. Let X be a complete $CAT(-1)$ space, f a proper lower semicontinuous convex function of X into $]-\infty,\infty]$ with $\operatorname{argmin}_X f$ is nonempty, and $\{\lambda_n\}$ a sequence of positive real numbers with $\sum_{n=1}^{\infty}\lambda_n = \infty$. If a sequence $\{x_n\}$ of X is defined by $x_1 \in X$ and

$$
x_{n+1} = \underset{y \in X}{\operatorname{argmin}} \left\{ f(y) + \frac{1}{\lambda_n} \tanh d(y, x_n) \sinh d(y, x_n) \right\},\,
$$

then the following hold:

(i) If $u \in \operatorname{argmin}_X f$, then

$$
(f(x_{n+1}) - \min f(X)) \le \frac{2}{\sum_{k=1}^{n} \lambda_n} (\cosh d(u, x_1) - 1)
$$

for all $n \in \mathbb{N}$;

(ii) $\{x_n\}$ is Δ -convergent to an element of $\operatorname{argmin}_X f$.

Proof. We first show (i). Let $u \in \operatorname{argmin}_X f$. By the definition of R_{λ_n} , we have

$$
f(u) \leq f(x_{n+1})
$$

\n
$$
\leq f(x_{n+1}) + \frac{1}{\lambda_n} \tanh d(x_{n+1}, x_n) \sinh d(x_{n+1}, x_n)
$$

\n
$$
\leq f(x_n).
$$
\n(4)

On the other hand, from Corollary [3.2,](#page-4-0) we know that the inequality

$$
\lambda_n(f(x_{n+1} - f(u))) \le 2(\cosh d(u, x_n) - \cosh d(u, x_{n+1}))
$$
\n(5)

holds. Using (4) and (5) , we get

$$
\lambda_k(f(x_{n+1}) - f(u)) \leq \lambda_k(f(x_{k+1}) - f(u))
$$

\n
$$
\leq 2(\cosh d(u, x_k) - \cosh d(u, x_{k+1}))
$$

for all $n \in \mathbb{N}$ and $k \in \{1, 2, ..., n\}$. Adding both sides from $k = 1$ to $k = n$, we have

$$
(f(x_{n+1}) - \min f(X)) \sum_{k=1}^{n} \lambda_k \leq 2 \sum_{k=1}^{n} (\cosh d(u, x_k) - \cosh d(u, x_{k+1}))
$$

= 2(\cosh d(u, x_1) - \cosh d(u, x_{n+1}))

$$
\leq 2(\cosh d(u, x_1) - 1)
$$

and hence we obtain (i).

We next show (ii). From (i), we have

$$
\lim_{n \to \infty} f(x_n) = \inf f(X).
$$

Further, since R_{λ_n} is quasi-nonexpansive, we get

$$
d(u, x_{n+1}) \leq d(u, x_n) \leq \dots \leq d(u, x_1) \tag{6}
$$

for all $u \in \operatorname{argmin}_X f$ and hence $\{x_n\}$ is bounded. Therefore $\omega_\Delta(\{x_n\})$ is nonempty and let $z \in \omega_\Delta(\{x_n\})$. Then we can find a subsequence $\{x_{n_i}\}\$ of $\{x_n\}$ whose Δ -limit is z. By Lemma [2.5,](#page-2-1) we have

$$
f(z) \le \liminf_{i \to \infty} f(x_{n_i}) = \lim_{n \to \infty} f(x_n) = \inf f(X)
$$

and hence $z \in \operatorname{argmin}_X f$. From the inequality [\(6\)](#page-7-2), we know that $\{d(z, x_n)\}\$ is convergent. Further, from Lemma [2.4,](#page-2-2) we know that $\{x_n\}$ is Δ -convergent and hence it is obvious that its Δ -limit is an element of \Box $\operatorname{argmin}_X f$. Thus we get the conclusion.

Using Theorems [4.2](#page-5-1) and [4.3,](#page-7-3) we obtain the following corollary.

Corollary 4.4. Let X be a complete $CAT(-1)$ space, f a proper lower semicontinuous convex function of X into $]-\infty,\infty]$ and R_f a resolvent of f. Then the following hold:

- (i) $\operatorname{argmin}_X f$ is nonempty if and only if $\{R_f^n x\}$ is bounded for some $x \in X$;
- (ii) if $\operatorname{argmin}_X f$ is nonempty then $\{R_f^n x\}$ is Δ -convergent to an element of $\operatorname{argmin}_X f$ for each $x \in X$.

Proof. Put $\lambda_n = 1$ for all $n \in \mathbb{N}$. Then, we have $\lambda_n > 0$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} \lambda_n = \infty$. Thus, using Theorems [4.2](#page-5-1) and [4.3,](#page-7-3) we get (i) and (ii).

We may unify Theorems [1.1,](#page-1-2) [1.2,](#page-1-3) and [4.3](#page-7-3) by using the following notation and function. For $\kappa \in \mathbb{R}$, let X be a CAT(κ) space. We denote by D_{κ} the diameter of the model space M_{κ}^2 , that is,

$$
D_{\kappa} = \begin{cases} \frac{\pi}{\sqrt{\kappa}} & (\kappa > 0); \\ \infty & (\kappa \leq 0). \end{cases}
$$

Next we define a function $\varphi_{\kappa} : \mathbb{R} \to \mathbb{R}$ as follows:

$$
\varphi_{\kappa}(t) = t^2 + \frac{\kappa}{6}t^4 + \frac{31\kappa^2}{360}t^6 + \frac{173\kappa^3}{5040}t^8 + \frac{25261\kappa^4}{1814400}t^{10} + \cdots
$$

$$
= \begin{cases} \frac{1}{\kappa}\tan(\sqrt{\kappa}t)\sin(\sqrt{\kappa}t) & (\kappa > 0); \\ t^2 & (\kappa = 0); \\ \frac{1}{-\kappa}\tanh(\sqrt{-\kappa}t)\sinh(\sqrt{-\kappa}t) & (\kappa < 0). \end{cases}
$$

Using the notation and function, we unify Theorems [1.1,](#page-1-2) [1.2,](#page-1-3) and [4.3](#page-7-3) by the following result.

Theorem 4.5. For $\kappa \in \mathbb{R}$, let X a CAT (κ) space satisfying $d(u, v) < D_{\kappa}/2$ for all $u, v \in X$ and f a proper lower semicontinuous convex function of X into $]-\infty,\infty]$ satisfying $\argmin_X f \neq \emptyset$, and $\{\lambda_n\}$ a sequence of positive real numbers satisfying $\sum_{n=1}^{\infty} \lambda_n = \infty$. If a sequence $\{x_n\}$ of X is defined by $x_1 \in X$ and

$$
x_{n+1} = \underset{y \in X}{\text{argmin}} \left\{ f(y) + \frac{1}{\lambda_n} \varphi_\kappa(d(y, x_n)) \right\},\,
$$

then $\{x_n\}$ is Δ -convergent to an element of $\operatorname{argmin}_X f$.

References

- [1] M. Bačák, The proximal point algorithm in metric spaces, Isreal J. Math. 29 (2013), 689–701.
- [2] M. Bačák, Convex Analysis and Optimization in Hadamard Spaces, De Gruyter, Würzbrung, 2014.
- [3] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer-Verlag, Berlin, 1999.
- [4] S. Dhompongsa, W. A. Kirk, B. Sims, Fixed points of uniformly lipschitzian mappings, Nonlinear Analysis. 65 (2006), 762–772.
- [5] T. Kajimura and Y. Kimura, Resolvents of convex functions in complete geodesic spaces with negative curvature, J. Fixed Point Theory Appl. 21 (2019).
- [6] Y. Kimura and F. Kohsaka, Spherical nonspreadingness of resolvents of convex functions in geodesic spaces, J. Fixed Point Theory Appl. 18 (2016), 93–115.
- [7] Y. Kimura and F. Kohsaka, The proximal point algorithm in geodesic spaces with curvature bounded above, Linear and Nonlinear Analysis 3, No. 1 (2017), 73–86.
- [8] F. Kohsaka, Existence and approximation of fixed points of vicinal mappings in geodesic spaces, Pure Appl. Funct. Anal. 3 (2018), 91–106.
- [9] B. Martinet, Régularisation d'inéquations variationnelles par approximations successives, Rev. Française Informat. Recherche Opérationnelle 4 (1970), 154–158.
- [10] U. F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom. 6 (1998), 199–206.
- [11] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), 877–898.