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Abstract

The proximal point algorithm is an approximation method for finding a minimizer of a convex function. In
this paper, using the properties of the resolvent which was proposed by the authors, we show the proximal
point algorithm using a suitable notion of weak convergence in complete geodesic spaces with negative
curvature.
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1. Introduction

The proximal point algorithm is an approximation method for finding a minimizer of a proper lower
semicontinuous convex function. The resolvent of this function plays an important role in this algorithm.

Let X be a complete CAT(0) space and f a proper lower semicontinuous convex function of X into
]−∞,∞]. Then the resolvent of λf is defined by

Jλx = argmin
y∈X

{
f(y) +

1

λ
d(y, x)2

}
for all x ∈ X and λ > 0. In 1998, Mayer [10] showed that it is well-defined as a single valued mapping.
The proximal point algorithm is one of the most famous methods for approximating a minimizer of a convex
function. This algorithm was originally proposed by Martinet [9] and Rockafellar [11] considered more general
settings. In a complete CAT(0) space, the following theorem was shown by Bačák [1] in 2013.
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Theorem 1.1 (Bačák [1]). Let X be a complete CAT(0) space, f a proper lower semicontinuous convex
function of X into ]−∞,∞] such that argminXf is nonempty, and {λn} a sequence of positive real numbers
with

∑∞
n=1 λn =∞. If a sequence {xn} of X is defined by x1 ∈ X and xn+1 = Jλnxn for n ∈ N, then {xn}

is ∆-convergent to an element of argminXf .

Let X be a complete CAT(1) space satisfying d(u, v) < π/2 for all u, v ∈ X and f a proper lower
semicontinuous convex function of X into ]−∞,∞]. Then the resolvent of λf is defined by

Qλx = argmin
y∈X

{
f(y) +

1

λ
tan d(y, x) sin d(y, x)

}
for all x ∈ X and λ > 0. Kimura and Kohsaka [6] showed its well-definedness and the following theorem.

Theorem 1.2 (Kimura and Kohsaka [7]). Let X be a complete CAT(1) space satisfying d(u, v) < π/2 for
all u, v ∈ X, f a proper lower semicontinuous convex function of X into ]−∞,∞] satisfying argminXf 6= ∅,
and {λn} a sequence of positive real numbers satisfying

∑∞
n=1 λn = ∞. If a sequence {xn} of X is defined

by x1 ∈ X and xn+1 = Qλnxn for n ∈ N, then {xn} is ∆-convergent to an element of argminXf .

In this paper, we propose the proximal point algorithm in a complete CAT(−1) space. In Section 2, we
introduce the definition of CAT(κ) spaces and resolvents in a complete CAT(−1) space. In Section 3, we
give several results which are necessary to prove the main theorem. In Section 4, we show the proximal point
algorithm in a complete CAT(−1) space and prove ∆-convergence of the generated sequence.

2. Preliminaries

Let X be a metric space with metric d. We denote by F(T ) the set of all fixed points of a mapping T of
X into itself. For x, y ∈ X, a continuous mapping c : [0, l]→ X is called geodesic joining x and y if c satisfies
c(0) = x, c(l) = y and d(c(s), c(t)) = |s− t| for all s, t ∈ [0, 1]. Its image, which is denoted by [x, y], is called
a geodesic segment with endpoints x and y. X is said to be a geodesic space if there exists a geodesic joining
any two points in X. In this paper, when X is a geodesic metric space, a geodesic joining any two points of
X is always assumed to be unique.

Let X be a geodesic metric space. For all x, y ∈ X and α ∈ [0, 1], there exists a unique point z ∈ X such
that d(x, z) = (1 − α)d(x, y) and d(z, y) = αd(x, y). This point is called a convex combination of x and y
which is denoted by αx⊕ (1−α)y. A subset C ⊂ X is called convex if [x, y] ⊂ X for all x, y ∈ C. A geodesic
triangle with vertices x, y, z ∈ X is defined by [x, y] ∪ [y, z] ∪ [z, x], which is denoted by 4(x, y, z).

Let M2
κ be a two dimensional model space for all κ ∈ R. For example, M2

0 = R2, M2
1 is two-dimensional

unit sphere S2, and M2
−1 is two-dimensional hyperbolic space H2. A comparison triangle to 4(x, y, z) ⊂ X

with vertices x̄, ȳ, z̄ ∈ M2
κ is defined by [x̄, ȳ] ∪ [ȳ, z̄] ∪ [z̄, x̄] with d(x, y) = d(x̄, ȳ), d(y, x) = d(ȳ, z̄), and

d(z, x) = d(z̄, x̄), which is denoted by 4̄(x̄, ȳ, z̄). w̄ ∈ [x̄, ȳ] is called a comparison point of w ∈ [x, y] if
d(x,w) = d(x̄, w̄) holds. For κ ∈ R, X is called a CAT(κ) space if d(p, q) 5 d(p̄, q̄) holds whenever p̄ and
q̄ ∈ 4̄ are the comparison points for p and q ∈ 4, respectively. In general, if κ < κ′, then the CAT(κ) spaces
are CAT(κ′) spaces [3]. We know that the following lemma holds, which is called the midpoint theorem.

Lemma 2.1 ([3]). Let X be a CAT(−1) space, x, y, z ∈ X and α ∈ [0, 1]. Then

cosh d(αx⊕ (1− α)y, z) sinh d(x, y)

5 cosh d(x, z) sinhαd(x, y) + cosh d(y, z) sinh(1− α)d(x, y).

Corollary 2.2 ([5]). Let X,x, y and z be the same as in Lemma 2.1. Then

cosh d

(
1

2
x⊕ 1

2
y, z

)
cosh

1

2
d(x, y) 5

1

2
cosh d(x, z) +

1

2
cosh d(y, z).
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Let X be a metric space and {xn} a sequence in X. An asymptotic center of {xn} is defined by{
u ∈ X

∣∣∣∣ lim sup
n→∞

d(u, xn) = inf
y∈X

lim sup
n→∞

d(y, xn)

}
,

which is denoted by A({xn}). A sequence {xn} ∆-converges to a point u in X if

A({xni}) = {u}

for all subsequences {xni} of {xn}, which is denoted by xn
∆
⇀ u. In this case, u is called a ∆-limit of {xn}.

A subset C of X is said to be ∆-closed if u ∈ C whenever {xn} ⊂ C and xn
∆
⇀ u. For a sequence {xn}

in X, we denoted by ω∆({xn}) the set of all u ∈ X such that there exists a subsequence of {xn} which is
∆-convergent to u. We know that the following fundamental properties hold.

Lemma 2.3 ([4]). Let X be a complete CAT(0) space and {xn} a bounded sequence in X. Then A({xn})
consists of one point and ω∆({xn}) is nonempty.

Lemma 2.4 ([2]). Let X be a complete CAT(0) space and {xn} a bounded sequence in X. If {d(z, xn)} is
convergent for all z ∈ ω∆({xn}), then {xn} is ∆-convergent.

Let X be a geodesic metric space and f a function of X into ]−∞,∞]. We say that f is lower semicontin-
uous if the set {x ∈ X | f(x) 5 a} is closed for all a ∈ R. If f is continuous, then it is lower semicontinuous.
The function f is said to be ∆-lower semicontinuous if

f(u) 5 lim inf
n→∞

f(xn)

whenever {xn} is ∆-convergent to u. The domain of f is defined by {x ∈ X | f(x) ∈ R}, which is denoted
by domf . The function f is said to be proper if domf is nonempty. f is said to be convex if

f(αx⊕ (1− α)y) 5 αf(x) + (1− α)f(y)

holds for all x, y ∈ X and α ∈ ]0, 1[.

Lemma 2.5 ([2]). Let X be a complete CAT(0) space and f a proper lower semicontinuous convex function
of X into ]−∞,∞]. Then f is ∆-lower semicontinuous.

Let X be a complete CAT(−1) space and f a proper lower semicontinuous convex function of X into
]−∞,∞]. Then the resolvent of f is defined by

Rfx = argmin
y∈X

{f(y) + tanh d(y, x) sinh d(y, x)}

for all x ∈ X. The authors [5] showed that it is well-defined and the following important properties hold:

• Rf is firmly hyperbolically vicinal in the sense that,

(C2
x(1 + C2

y )Cy + C2
y (1 + C2

x)Cx) cosh d(Rfx,Rfy) (1)

5 C2
x(1 + C2

y ) cosh d(Rfx, y) + C2
y (1 + C2

x) cosh d(x,Rfy)

for all x, y ∈ X, where Cz = cosh d(Rfz, z) for z ∈ X. See also [8];

• F(Rf ) = argminXf ;

• if F(Rf ) is nonempty, then Rf is quasi-nonexpansive, that is, d(Rfx, z) 5 d(x, z) for x ∈ X and
z ∈ F(Rf ).
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3. Fundamental properties of the resolvents

In this section, we show some important properties which are needed to show the proximal point algorithm
in complete CAT(−1) spaces.

Theorem 3.1. Let X be a complete CAT(−1) space, f a proper lower semicontinuous convex function of
X into ]−∞,∞] and Rλ a resolvent of λf for λ > 0. Set Cλ,z = cosh d(Rλz, z) for all z ∈ X. Then the
inequalities

λ (f(Rλx)− f(Rµy)) sinh d(Rλx,Rµy) (2)

5

(
1

C2
λ,x

+ 1

)
d(Rλx,Rµy) (cosh d(Rµy, x)− Cλ,x cosh d(Rλx,Rµy))

and (
λC2

λ,x(1 + C2
µ,y)Cµ,y + µC2

µ,y(1 + C2
λ,x)Cλ,x

)
cosh d(Rλx,Rµy) (3)

5 λC2
λ,x(1 + C2

µ,y) cosh d(Rλx, y) + µC2
µ,y(1 + C2

λ,x) cosh d(Rµy, x)

hold for all x, y ∈ X and λ, µ > 0.

Proof. Let λ, µ > 0 and x, y ∈ X. Set zt = tRµy⊕ (1− t)Rλx for t ∈ ]0, 1[ and let D = d(Rλx,Rµy). By the
definition of Rλ and the convexity of f , we have

λf(Rλx) + tanh d(Rλx, x) sinh d(Rλx, x)

5 λf(zt) + tanh d(zt, x) sinh d(zt, x)

5 tλf(Rµy) + (1− t)λf(Rλx) + tanh d(zt, x) sinh d(zt, x)

and hence

λt (f(Rλx)− f(Rµy))

5 tanh d(zt, x) sinh d(zt, x)− tanh d(Rλx, x) sinh d(Rλx, x)

=

(
1

cosh d(Rλx, x) cosh d(zt, x)
+ 1

)
(cosh d(zt, x)− cosh d(Rλx, x)).

Then multiplying (sinhD)/t and using Lemma 2.1, we get

λ (f(Rλx)− f(Rµy)) sinhD

5

(
1

cosh d(Rλx, x) cosh d(zt, x)
+ 1

)
× 1

t
(cosh d(zt, x) sinhD − cosh d(Rλx, x) sinhD)

5

(
1

cosh d(Rλx, x) cosh d(zt, x)
+ 1

)
× 1

t
(cosh d(Rµy, x) sinh tD − cosh d(Rλx, x)(sinhD − sinh(1− t)D))

=

(
1

cosh d(Rλx, x) cosh d(zt, x)
+ 1

)
2

t
sinh

(
t

2
D

)
×
[
cosh d(Rµy, x) cosh

(
t

2
D

)
− cosh d(Rλx, x) cosh

((
1− t

2

)
D

)]
.
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Letting t ↓ 0, we have

λ (f(Rλx)− f(Rµy)) sinhD 5

(
1

C2
λ,x

+ 1

)
D (cosh d(Rµy, x)− Cλ,x coshD)

and this inequality is (2).
From (2), we have

µλ (f(Rλx)− f(Rµy)) sinhD 5 µD

(
1

C2
λ,x

+ 1

)
(cosh d(Rµy, x)− Cλ,x coshD)

and

µλ (f(Rµy)− f(Rλx)) sinhD 5 λD

(
1

C2
µ,y

+ 1

)
(cosh d(Rλx, y)− Cµ,y coshD) .

Adding these inequalities, we get

0 5 µD

(
1

C2
λ,x

+ 1

)
(cosh d(Rµy, x)− Cλ,x coshD)

+ λD

(
1

C2
µ,y

+ 1

)
(cosh d(Rλx, y)− Cµ,y coshD)

and hence we obtain (3).

The inequality (3) is a generalization of (1). In fact, if λ = µ = 1, then (3) becomes (1). Using Theorem
3.1, we obtain the following corollary.

Corollary 3.2. Let X, f , λ and Rλ be the same as in Theorem 3.1. If argminXf is nonempty, then the
following hold:

(i) λ(f(Rλx)− f(u)) 5 2(cosh d(u, x)− Cλ,x cosh d(u,Rλx));
(ii) Cλ,x cosh d(u,Rλx) 5 cosh d(u, x)

for all x ∈ X and u ∈ argminXf .

Proof. We first show (i). Let x ∈ X and u ∈ argminXf . Since F(Rf ) = argminXf , it follows from (2) that

λ(f(Rλx)− f(u)) sinh d(u,Rλx)

5

(
1

C2
λ,x

+ 1

)
d(u,Rλx)(cosh d(u, x)− Cλ,x cosh d(u,Rλ,x)).

Suppose that u 6= Rλx. Since 0 < t/ sinh t < 1 and cosh t = 1 for all t > 0, we get

λ(f(Rλx)− f(u))

5

(
1

C2
λ,x

+ 1

)
d(u,Rλx)

sinh d(u,Rλx)
(cosh d(u, x)− Cλ,x cosh d(u,Rλ,x))

< 2(cosh d(u, x)− Cλ,x cosh d(u,Rλ,x)).

If u = Rλx, then it is obvious to hold with equality. Thus we obtain (i).
We next show (ii). Since u ∈ argminXf , (i) implies that

0 5 2(cosh d(u, x)− Cλ,x cosh d(u,Rλx))

and hence we get the conclusion.
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4. The proximal point algorithm

In this section, we show the proximal point algorithm in complete CAT(−1) spaces. We remark that the
following important properties hold:

• F(Rλ) = argminXf ;

• if F(Rλ) is nonempty, then Rλ is quasi-nonexpansive.

Theorem 4.1. Let X be a complete CAT(−1) space, {zn} a bounded sequence in X, {βn} a sequence of
positive real numbers with

∑∞
n=1 βn =∞ and

g(y) = lim sup
n→∞

1∑n
l=1 βl

n∑
k=1

βk cosh d(y, zk)

for all y ∈ X. Then argminXg consists of one point.

Proof. Fix y ∈ X. Since {zn} is bounded, there exists K > 0 such that

cosh d(y, zk) < coshK

and hence g(y) <∞. Therefore it follows that

1 5 inf
y∈X

g(y) <∞.

Let {yn} be a sequence in X with g(yn+1) 5 g(yn) and limn g(yn) = l, where l = inf g(X). From
Corollary 2.2, we get

cosh d

(
1

2
yn ⊕

1

2
ym, zk

)
cosh d

(
1

2
d(yn, ym)

)
5

1

2
cosh d(yn, zk) +

1

2
cosh d(ym, zk)

and hence

l cosh

(
1

2
d(yn, ym)

)
5 g

(
1

2
yn ⊕

1

2
ym

)
cosh

(
1

2
d(yn, ym)

)
5

1

2
g(yn) +

1

2
g(ym).

Suppose that m = n. Then, by the definition of {yn} and 1 5 l < coshK, we have

cosh

(
1

2
d(yn, ym)

)
5
g(yn)

l
→ 1.

This implies that {yn} is a Cauchy sequence. Further, since X is complete, we know that {yn} is convergent
to some p ∈ X. By the continuity of g, we have g(p) = limn g(yn) = l. Thus we have p ∈ argminXg.

We next show the uniqueness of p. Let p, q ∈ argminXg. Then, from the proof above, we know that the
inequality

l cosh

(
1

2
d(p, q)

)
5

1

2
g(p) +

1

2
g(q) = l

holds. This inequality implies that p = q. Thus argminXg consists of one point.

Theorem 4.2. Let X be a complete CAT(−1) space, f a proper lower semicontinuous convex function of X
into ]−∞,∞], and {λn} a sequence of positive real numbers with

∑∞
n=1 λn =∞. If a sequence {xn} of X is

defined by x1 ∈ X and

xn+1 = argmin
y∈X

{
f(y) +

1

λn
tanh d(y, xn) sinh d(y, xn)

}
for all n ∈ N, then argminXf is nonempty if and only if {xn} is bounded.
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Proof. We first suppose that argminXf is nonempty and show that {xn} is bounded. Let u ∈ argminXf .
Then, since Rλn is quasi-nonexpansive, we have

d(u, xn+1) 5 d(u, xn) 5 · · · 5 d(u, x1).

This inequality implies the conclusion.
We next show the other direction. Suppose that {xn} is bounded. Put

βn =
λnC

2
λn,xn

1 + C2
λn,xn

for all n ∈ N. Then it is obvious that βn > 0. Further, since

βn =
λnC

2
λn,xn

1 + C2
λn,xn

=
λnC

2
λn,xn

2C2
λn,xn

=
λn
2

and
∞∑
n=1

λn =∞,

we get
∑∞

n=1 βn =∞. Thus, by Theorem 4.1, we know that argminXg is nonempty, where

g(y) = lim sup
n→∞

1∑n
l=1 βl

n∑
k=1

βk cosh d(y, xk+1)

for all y ∈ X.
Let p ∈ argminXg and µ > 0. Using Lemma 3.1, we have(

λkC
2
λk,xk

(1 + C2
µ,p) + µC2

µ,p(1 + C2
λk,xk

)
)

cosh d(xk+1, Rµp)

5 λkC
2
λk,xk

(1 + C2
µ,p) cosh d(xk+1, p) + µC2

µ,p(1 + C2
λk,xk

) cosh d(Rµp, xk)

and hence

λkC
2
λk,xk

1 + C2
λk,xk

cosh d(xk+1, Rµp)

5
λkC

2
λk,xk

1 + C2
λk,xk

cosh d(xk+1, p) +
µC2

µ,p

1 + C2
µ,p

(cosh d(Rµp, xk)− cosh d(Rµp, xk+1)) .

Put σn =
∑n

l=1 βl. Adding both sides of the inequality above from k = 1 to k = n, we get

1

σn

n∑
k=1

βk cosh d(xk+1, Rµp)

5
1

σn

n∑
k=1

βk cosh d(xk+1, p) +
µC2

µ,p

1 + C2
µ,p

× cosh d(Rµp, x1)− 1

σn
.

Since limn σn =∞, we obtain

g(p) 5 g(Rµp) = lim sup
n→∞

1

σn

n∑
k=1

βk cosh d(xk+1, Rµp)

5 lim sup
n→∞

1

σn

n∑
k=1

βk cosh d(xk+1, p) = g(p).

This implies that Rµp = p. Further, since F(Rλ) = argminXf , p is an element of argminXf .

We finally show the proximal point algorithm in complete CAT(−1) spaces.



T. Kajimura, Y. Kimura, Adv. Theory Nonlinear Anal. Appl. 3 (2019), 192–200. 199

Theorem 4.3. Let X be a complete CAT(−1) space, f a proper lower semicontinuous convex function of X
into ]−∞,∞] with argminXf is nonempty, and {λn} a sequence of positive real numbers with

∑∞
n=1 λn =∞.

If a sequence {xn} of X is defined by x1 ∈ X and

xn+1 = argmin
y∈X

{
f(y) +

1

λn
tanh d(y, xn) sinh d(y, xn)

}
,

then the following hold:

(i) If u ∈ argminXf , then

(f(xn+1)−min f(X)) 5
2∑n

k=1 λn
(cosh d(u, x1)− 1)

for all n ∈ N;
(ii) {xn} is ∆-convergent to an element of argminXf .

Proof. We first show (i). Let u ∈ argminXf . By the definition of Rλn , we have

f(u) 5 f(xn+1) (4)

5 f(xn+1) +
1

λn
tanh d(xn+1, xn) sinh d(xn+1, xn)

5 f(xn).

On the other hand, from Corollary 3.2, we know that the inequality

λn(f(xn+1 − f(u))) 5 2(cosh d(u, xn)− cosh d(u, xn+1)) (5)

holds. Using (4) and (5), we get

λk(f(xn+1)− f(u)) 5 λk(f(xk+1)− f(u))

5 2(cosh d(u, xk)− cosh d(u, xk+1))

for all n ∈ N and k ∈ {1, 2, . . . , n}. Adding both sides from k = 1 to k = n, we have

(f(xn+1)−min f(X))

n∑
k=1

λk 5 2

n∑
k=1

(cosh d(u, xk)− cosh d(u, xk+1))

= 2(cosh d(u, x1)− cosh d(u, xn+1))

5 2(cosh d(u, x1)− 1)

and hence we obtain (i).
We next show (ii). From (i), we have

lim
n→∞

f(xn) = inf f(X).

Further, since Rλn is quasi-nonexpansive, we get

d(u, xn+1) 5 d(u, xn) 5 · · · 5 d(u, x1) (6)

for all u ∈ argminXf and hence {xn} is bounded. Therefore ω∆({xn}) is nonempty and let z ∈ ω∆({xn}).
Then we can find a subsequence {xni} of {xn} whose ∆-limit is z. By Lemma 2.5, we have

f(z) 5 lim inf
i→∞

f(xni) = lim
n→∞

f(xn) = inf f(X)

and hence z ∈ argminXf . From the inequality (6), we know that {d(z, xn)} is convergent. Further, from
Lemma 2.4, we know that {xn} is ∆-convergent and hence it is obvious that its ∆-limit is an element of
argminXf . Thus we get the conclusion.
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Using Theorems 4.2 and 4.3, we obtain the following corollary.

Corollary 4.4. Let X be a complete CAT(−1) space, f a proper lower semicontinuous convex function of
X into ]−∞,∞] and Rf a resolvent of f . Then the following hold:

(i) argminXf is nonempty if and only if {Rnfx} is bounded for some x ∈ X;
(ii) if argminXf is nonempty then {Rnfx} is ∆-convergent to an element of argminXf for each x ∈ X.

Proof. Put λn = 1 for all n ∈ N. Then, we have λn > 0 for all n ∈ N and
∑∞

n=1 λn = ∞. Thus, using
Theorems 4.2 and 4.3, we get (i) and (ii).

We may unify Theorems 1.1, 1.2, and 4.3 by using the following notation and function. For κ ∈ R, let X
be a CAT(κ) space. We denote by Dκ the diameter of the model space M2

κ , that is,

Dκ =


π√
κ

(κ > 0);

∞ (κ 5 0).

Next we define a function ϕκ : R→ R as follows:

ϕκ(t) = t2 +
κ

6
t4 +

31κ2

360
t6 +

173κ3

5040
t8 +

25261κ4

1814400
t10 + · · ·

=


1

κ
tan(
√
κt) sin(

√
κt) (κ > 0);

t2 (κ = 0);

1

−κ
tanh(

√
−κt) sinh(

√
−κt) (κ < 0).

Using the notation and function, we unify Theorems 1.1, 1.2, and 4.3 by the following result.

Theorem 4.5. For κ ∈ R, let X a CAT(κ) space satisfying d(u, v) < Dκ/2 for all u, v ∈ X and f a proper
lower semicontinuous convex function of X into ]−∞,∞] satisfying argminXf 6= ∅, and {λn} a sequence of
positive real numbers satisfying

∑∞
n=1 λn =∞. If a sequence {xn} of X is defined by x1 ∈ X and

xn+1 = argmin
y∈X

{
f(y) +

1

λn
ϕκ(d(y, xn))

}
,

then {xn} is ∆-convergent to an element of argminXf .
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