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Different Approximation to Fuzzy Ring Homomorphisms

Umit Deniz"

Abstract:

In this study we approach the definition of TL —ring homomorphism. In the literature, the
definition of fuzzy ring homomorphism is given by Malik and Mordeson by using their fuzzy
function definition. In this study, we give the definition of fuzzy ring homomorphism by using
the definition of Mustafa Demirci’s fuzzy function. Some definition and theorems of ring
homomorphism in classic algebra are adapted to fuzzy algebra and proved.
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1. INTRODUCTION

The theory of fuzzy sets was introduced by Zadeh
[10]. Fuzzy sets gives opportunity to constitute
the uncertain problems in real life to mathematical
models. Most of the problems in engineering,
economics, medical science etc, have various
uncertainties. The fuzzy set theory helps to
modelling and solving these problems. Many
mathematician tried to transfer the classic set
theory to use the definition of Zadeh’ s fuzzy set.
Rosenfeld [12] gave the definition of fuzzy
groups and fuzzy grupoids. Liu [9,10] gave the
definition of fuzzy subrings and fuzzy ideals of a
ring. Fuzzy relations are playing an important role
in fuzzy modelling, fuzzy control and significant
applications in relational databases, approximate
reasoning, medical diagnosis. Malik and
Mordeson gave some conditions to fuzzy
relations to define fuzzy function [11]. With this
definition, they introduced fuzzy ring
homomorphism. In these studies, they used fuzzy
subsets u: X — [0,1] and they used infimum for
operation on [0,1]. In literature there isn’t a

certain fuzzy function definition and therefore
there isn’t a certain fuzzy ring homomorphism
definition. In this study, we gave a different
definition of fuzzy ring homomorphism. To give
this definition, we used the fuzzy function
definition of Demirci [2,3] and we used L-subsets
u: X — L which L is a complete lattice and T-
norms as operation of L.

In this study, we used the definition of fuzzy
subrings and fuzzy ideals of a ring from Wang
[14,15]. Some definitions and theorems of ring
homomorphism in the classic algebra are adapted
to fuzzy algebra with this definition and proved.

2. PRELIMINARY

In this section, we have presented the basic
definitions and results of fuzzy algebra which
may be found in the earlier studies.

Definition 2.1. [1] Let (L, <) be a complete
lattice with top and bottom elements 1, O,
respectively. 4 triangular norm (briefly t-norm)
is a binary operation T on L which is
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commutative, associative, monotone and has 1 as
a neutral element, i.e., it is a function.

T:L? - L such that for all x,y,z € L

(T T(x,y) =T(y,x).

(T2) T(x,T(y,2)) = T(T(x,y), 2).

(T3) T(x,y) <T(x,z) whenever y < z.
(T4) T(x,1) = x.

Definition 2.2. [1]

a) A t-norm T on a lattice L is called V-
distributive if

T(a, bl \Y bz) = T(a, bl) \ T(a, bz).

b) A t-norm T on a complete lattice L is called
infinitely V-distributive if

T a,\/bT =\/T(a,bT)
Q Q

for any subset {a, b, € L, 7 € Q} of L.

Theorem 2.3. [1] Let L be a complete lattice. If T
is a infinitely V-distributive t-norm then

\/\/T(ai,bj) =T \/ai,\/bj .

i€l jEJ i€l j€J

Definition 2.4. [17] Let L be a complete lattice.
With a L-subset of X we mean a function from X
into L. We denote all L-subsets set by F(X,L). In
particular, when L is [0,1], the L-subsets of X are
called fuzzy subsets.

Definition 2.5. [3] If X and Y are sets then the
function f: X XY — L is called a L-relation and
the set of all L-relations is denoted by F(X X
Y,L).

Definition 2.6. [2] Let L be a complete lattice.
E:X X X = L a L-relation E on a set X is a TL-
equivalence relation if and only if for all a, b, c €
X the following properties are satisfies;

(E1) E(a,a) = 1.
(E2) E(a,b) = E(b,a).
(E3) T(E(a,b),E(b,c)) < E(a,c).

E is called a separable TL- equivalence relation
or a TL- equality if in addition,
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(E4) E(a,b) =1 implies a=b.

If E is a TL-equivalence relation on X it is shown
by (X, E).

Example. [2] Let X be non-empty set and a € L.
Then

D)EXy(x,y)=1

.. 1 x=
ll)EXL(x,y)Z{O xii

1 x=y

iii) EX(x,y) = {oc X *y

are TL-equivalence relations of X.

Theorem 2.7. [2] Let (X,E) and (Y,F) be two
equivalence relations. Then TL-subset E X F

EXF:(XXY)X (XXY) - L defined by
(Ex F)((x,y),(x',y)) = T(EQ@x,x"),F(y,y")

is a TL-equivalence relation.

Definition 2.8. [2] Let E be a TL-equivalence
relation on a set X. A L-subset p of X is
extensional or observable w.r.t. E if and only if

T(u(b),E(a,b)) < u(a) Va,be€X.

Definition 2.9. [13] Let XY and Z are sets and
f:XXY—>L and g:Y X Z = L be L-relations.
Then gor f:X XZ —> L L-relation is called
composition of f and g such that

for (x,z) EXXZ
ger f) = \[T(F ), 90.2)

YEY

Definition 2.10. [3] Let f:X XY — Lbe a L-
relation then we call the function

f~1:Y X X > L defined by
f~Y(y,x) = f(x,y) the inverse of f L-relation.

Definition 2.11. [3] Let f: X XY = L be a L-
relation and A € F(X,L) and B € F(Y,L). The
L-subsets f(A4), f~1(B) defined by for all x €
X,yeY

FA®) = Viex T(A(x), f(x,5)) and
FAB =\ TBO) )

YEY
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are respectively the image of A and the inverse
image of B.

Definition 2.12. [2] Let (X, E), (Y, F) be two TL-
equivalence relations and f € F(X X Y, L). Then;

a) fis called an E-extensional if the inequality
T(f(x,y), E(x,x"))<f(x"y)

is satisfied for all x,x' € X and forally €Y.
We call all E-extensional L-relations set as
F(XXY,E,L).

b) fis called a F-extensional if the inequality
T(f(x,y), F(y,y") < f(x,y")

Is satisfied for all x € X and for all y,y' €Y.
We denote all F-extensional L-relations set by
F(X XY,F,L).

c¢) A L-relation such as f is called E-F-
extensional if f is E-extensional and F-extensional
and denote all E-F- extensional relations set by
F(X XY,E,F,L).

Definition 2.13. [2] Let (X,E) and (Y,F) be two
TL-equivalence relations and f € F(X X
Y,E,F,L) then;

a) fis called partial TL-function if

T(f(x,y), f(x,y))<F(y,y") is satisfied forall x €
X and forally,y' €Y.

b) f is called fully defined if f fulfills the
condition V,¢y f(x,z) = 1 forall x € X.

c) A fully defined partial TL- function is called
a TL-function.

Definition 2.14. [3]Letf € F(X X Y,E,F,L) be
a TL-function,;

a) f 1is called surjective if and only if

Veex f(x,y) =1forally €Y.
b) fis called injective if and only if

T(f(x,y), f(x',y)) < E(x,x") forall x,x" €
Xandy €Y.

Proposition 2.15. Let (X,E) and (Y,F) be two TL-
equivalence relations, f € F(X X Y,E,F,L) and
A € F(X,L). If T is a infinitely V- distributive t-
norm then f(A) is F-extensional L-subset.

Proof. For x,x' € X,y,y' €Y and
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T(f(D»), Fy.y7)
=T <\/ T(ACO), f (x, y)),F(y,;v'))

xEX

= \/ 1 (T4, £ ). )
XEX

- \/ T (A(x), T(f(x, ), F(y,y’)))
XEX

< x\eéT(A(x), f@y)) = FAGN.

Proposition 2.16. Let (X,E) and (Y,F) be two TL-
equivalence relations, f € F(X XY,E,F,L) and
B € F(Y,L). If T is a infinitely V-distributive t-
norm then f~1(B) is E-extensional L-subset.

Proof. For x,x' € Xy,y' € Y and
T(f~1(B)(x),E(x,x"))

=7| \/T(BO). Fx. ) B x)

YEY

= \/ 7 (1O Fx ), B x)

YEY

_ \/ T (B(y), T(f(x,y),E (x'x')))

YEY

< \/T(B(y), fG, ) = FHBEN.

yEY

Theorem 2.17. Let f € F(XXY,E,F,L), g €
F(Y X Z,F,G,L) be TL-functions and T be a
infinitely V-distributive t-norm. Then g or f €
F(X X Z,E,G,L) is a TL-function.

Proof. Forx,x' €eXy,y ' €Y,z,z' €7

T((g °r f)(x' Z), E(x'x’))

=T \/T(f(x, ¥),9(,2)),E(x,x")

YEY

= \/ T (T(f(x, ¥),E(x,x")), g, Z))

yEeY

< \/T(f(x’,y),g(y, z)) = (gor ', 2)

yEY
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andso g or f is an E-extensional.

T((g or )(x,2),6(z,2"))

=7\ \/T(r 0. 90.2),66.2)

yEY

=\/ 7 (e 76 2,90,2))

yEY
< \/T(f(x, ¥, 90,2)) = (g o7 £)(x,2")
YEY

Hence g o7 f is a G-extensional.

7((g o1 (6,2, (g 1 @ 2)
=T (\/ T(F ), 90.2), \/ T(f(x,y'>.g<y',z'))>

YEY y'ey

_ \/ \/ T (T(f(x, W, fxy)),T(gW, Z),g(y’.Z’)))

YEY y'ey

< \/ \/ T(T(FG.¥),90,2),90',2))
YEY y'ey

< \/ T(9(y',2),9(y',2")
y'ey
< \/ G(z,z")=G(z,2").
y'ey
Hence gorf is a partial TL-function.

\V@ornea=\/\/10@».90.2)

ZEY ZEY YEY

_ \/T \/f(x,y),g(y,Z)

ZEY YEY

= \/T(l.g(y, 7)) = \/g(y, z) =1.

ZEY ZEY

Hence gorf is full defined.
Finally gotf is TL-function.

Theorem 2.18. Let (R1, E1), (R2, E2), (S1, F1) and
(S2, F2) be TL-equivalence relations and

fiRy XS - L

g:R, XS, = L be TL-functions. Then the TL-
equivalence relation is defined by

Sakarya University Journal of Science 23(6), 1163-1172, 2019

g X fi(Ry X Ry) X (§; X S,) = L such that
(g x f)((xl'xz)' (}’1'3’2))

=T(f(x1,¥1), 9(x2,2))
1s a TL-function.

Proof.

i) Forxy, x{ ER;xy, X, ER, y1 €ES;, ¥ €
S2

T ((g % (s x5), 01,72)), (B

X Ep)((x1,22), (67, 3)))
=T (T(f Cew, 71), 90 2)), T(Ey Gy, X9, By (25, 33)) )
=T (T(F Gew, y2), E1 (1, 6D), T(9 (e, ¥2), Ex (2, 33)) )
< T(f(x1,v1), 9(x3,72))

= (g X f)((x{,xé), (yl,yz)). Then, we prove
(g X f) is (E; X E,) extensional.

i) For x; €ERy, x, €ER,, V1, Y1 € S1, V2,
Y2 €5,

T ((g % (e x5), 01,2)), (Fy

x F)((0r0,72), 05,33)))
=T (T(f (1, 71), 902, ¥2)), T(F 0, ¥1), Fo (02, 93)) )
=T (T(f Cer, 710, Fu 0, yD), T(9Cez ¥2), Fo (32,73)) )
< T(f(x1,91), 9(x2,¥2))

= (9 X f)((x1,x2), (¥5,¥3))-Then, we prove
(g x f) is (F; X F,) extensional.

iii)) For x; € Ry, x5 €ER,, y1,Y1 € S1 V2,
y; €S,
T ((g % (e, 22), G1,92)), (g

x (G x2), 31,9)))

=T (T(f(xli yl)' g(x2i yZ))JT(f(xli yik)) g(x2i y;)))

= T (T(f(xll }’1), f(xlf Yik)): T(g(xZ' YZ)I g(xZI y;)))
< T(F(y1, ¥, F2(¥2,¥3))

= (F, X Fz)((yph); (yf,y’zk)). Then, we prove
(g X f) is partial TL-function.

iv) For each (xq,x;) € (Ry X Ry)
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(g x f)((xpxz); ()’1:)’2))

(¥1,Y2)ES1XS,

= \/ T(f(x1;y1);g(x2:y2))
(¥1,Y2)ES1 XS,

=T \/ fOLy1), \/ 9(x2,¥7)

Y1€Sy YV2€S5;
= T(1,1) = 1 (because fand g are fully defined)

Then, we prove (g X f) is fully defined and so
(g x f) is TL-function.

Definition 2.19. [14] Let R be aringand yu: R —
L, 9:R-L are L-subsets. Define
u+79, —u, u—79, u.r 9 € F(R, L) as follows.

(1+79)()
=\/Twm o@yze Ry +2=x

(=) (x) = p(=x)
(u=79)(x)

= \/Twm sz e Ry —2=1x
(r ) ()
= \/Twm 9@,z Ry 2 =)

Where x is any element of R. u+9, u—¢9, u.r 9
are called the T-sum, T-difference, and T-.
product of u and 9, respectively, and - u is called
the negative of p.

Definition 2.21. [14] Let u: R — L such that u
satisfies conditions (R1), (R2) and (R3). Then u
is called a TL-left ideal of R if it also satisfies the
condition

(R5); u(xy) = u(y) Vx,y €R;

a TL-right ideal of R if it also satisfies the
condition

(R5); p(xy) = pu(x) Vx,y € R;

and a TL-two sided ideal or TL-ideal of R if it is
also satisfies the condition

(R5) u(xy) = p(x) v u(y) vx,y € R.

In particular, when T =A, a TL-left ideal, TL-
right ideal and TL-ideal of R are referred to as an
L-left ideal, L-right ideal and L-ideal of R,

Sakarya University Journal of Science 23(6), 1163-1172, 2019

respectively we denote by TLIi(R), TLI(R) and
TLI(R), respectively, the set of all TL-left ideals
of R, the set of all TL-right ideals of R and the set
of all TL-ideals of R.

3. TL-Ring Homomorphisms

In this section we gave the definition of TL-ring
homomorphism and carry with this definition the
most of the theorems and definitions about ring
homomorphisms.

Definition 3.1. Let R and S be rings, (R, E), (S, F)
be TL-equivalence relations and f € F(R X
S,E,F,L) be TL-function. f is called TL-ring
homomorphism if it satisfies the following
conditions

forallx,x' €R and y,y' €S.
HD fx+x",y+y) = T(f(x, y),f(x’,y’))

(H2) f(x.x",y.y") 2 T(f Ce,9), f(x', 1)

Definition 3.2. Let f € F(RXS,E,F,L) be a
TL-ring homomorphism

a) If £(0,0) = 1 then fis called a perfect TL-
ring homomorphism.

b) If f(=x,—y) = f(x,y) forall x €
Randy € S, then f is called a strong TL-ring
homomorphism.

c) If f is both perfect and strong TL-ring
homomorphism, then it is called as a complete
TL-ring homomorphism.

Theorem 3.3.Let f € F(RX S,E,F,L)and g €
F(S X K,F,G,L) be TL-ring homomor-phisms
and T be a infinitely V-distributive t-norm. Then
geor f € F(RXK,E,G,L) TL-function is a TL-
ring homomorphism.

Proof From theorem 2.17 g o f is TL-function.
Now we show that only g o4 f satisfies the TL-
ring homomorphism conditions.

i) Forx,x' €R y,y'€Sand z z €K
@Ger x+x',z+2")
= \/ T(f(x+x',y),9(y,z+2"))

YES

_ \/ T(fx+x',y+y),9(y+y,z+2))

Y.YIES
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= \/ T(T(FCey) f&,Y)),T(9(r 2, 9(',2)))

YYIES

=T (\/T(f(x' }’)' g()" Z)); \/ T(f(x’,y’)’g(y”z’))>

YyES yIes
=T((g or Hx,2), (g or HI(X',2)).
ii) Forx,x' €R y,y' € Sandzz €K
(geor fx.x',z.2")

_ \/ T(f(x.x',9),9(y,2.2"))
Y. yI€ES

= \/ T(f(x.x",y.y),9(.y',2.2")
Y.yI€S

> \/ (1@ F ). (9002, 90, 2)))

Y.YI€S

=T (\/ T(Fe ), 90.2), \[ TG ), g(y'.z'>)>

yES YIES
=T((g °r (. 2), (g o7 H(x',2)).

Theorem 3.4. Let f € F(RXS,E,F,L) be a
perfect TL-ring homomorphism and T be a
infinitely V-distributive t-norm. If AiR —> L is a
TL-subring of R, then f(A):S—> L is a TL-
subring of S.

Proof. Forx, x’ €R y,y' €S
R1) Since forx =0
T(A(0), £(0,0)) = 1 then
F© = \/ (46, fx,0) =1

XER

R2) f(4)(-y) = (~f () )
= - \/ 1w, re»)

XER

= \/ 1000, £ )

XER

= \/ T4, 1)

XER

> \/T(A(x), f@y) = FA)

XER

R +y) = \/ T(46), fGoy +y7)

XER

Sakarya University Journal of Science 23(6), 1163-1172, 2019

= \/ TG+, fa+xy + 1)

x,x'€R

> \/ 7(T(4e, 4@ T(FCo ) f @YD)

X,X'ER

=T (\/ T(A(x), f(x, 7)), \/ T(AQ(), f(x', y’)))

XER XIER
=T(f(D ), f(AON)
R4)f(A)(y.y) = \/T(A(x),f (x,y.9))
X€ER

— \/ T(A(x.x), f(x.x",y.9"))

X,X'ER
> \/ 7(T(4e, 4@ T(FCo ) f @YD)

X,X'ER

=T (\/ T(A(x), f(x, 7)), \/ T(AQ(, f(x', y’)))

XER XIER

=T(f(ADW), f(AON)

Theorem 3.5. Let f € F(RXS,E,F,L) be a
perfect TL-ring homomorphism and T be a
infinitely V-distributive t-norm. If B:S - Lisa
TL-subring of S, then f~1(B):R - L is a TL-
subring of R.

Proof. Forx, x' €R y,y' €S
RU(B)(0) = \/ T(BO),£0,7)

YyES
fory =0 T(B(0),£(0,0)) = 1 then
fH(B)(0) = 1.
R2)f 71 (B)(—x) = —f "1 (B)(x)
= - \/T(B(y),f(x, )

YyES

YES

YES

>\/1(B6). @) = FB@.

YES
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R3) (B +x) = \ [ T(BO), f(x + %,7)

YES

= \/ TBy+y).fx+x,y+y")

Y, YIES

> \/ 7(T(BG.BON) T, F,))

Y.yI€S

=T (\/ T(BO), f(x,y)), \/ T(BO), f(x',¥))

YES YIES
= T(FI B f T BE))
ROF B x) = \ [ T(BOLfGex', )

YyES

= \/ T(B(y.y"), f(x.x',y.y")

Y.YI€S

> \/ 7(r(»).BEN). TG @Y. f&)))

V,YIES

=T (\/ T(BW), f(x, ), \/ T(BO), f(x, y’)))

YES YIES

=T(f (B, f(BY(X)).

Theorem 3.6. Let f € F(RXS,E,F,L) be a
surjective perfect TL-ring homomorphism and T
be a infinitely V-distributive t-norm. If A:R — L
is a TL-ideal of R, then f(A):S — L is a TL-ideal
of S.

Proof. The conditions R1, R2 and R3 are
provided by Theorem 3.4.

RS)/(D0.y) = \[/ T(4@., £ (x,.5))

XER

- \/ T(A(x.x), f(x.x",y.9")

X,X'ER

> \/ 7(A@.1(F e, £))

X,X1ER

=T (\/ T(A(x), f(x,)), \/ f, y’))

XER XIER

(fis surjective then

\/ reyn=n

x'€R

- \/T(A(x), f@y) = FA).

XER

Sakarya University Journal of Science 23(6), 1163-1172, 2019

RS),f(D)(-¥) = \[ T(400, f(.7.3))

XER

= \/ T (A(x.x’,f(x-x',Y- y')))

X,X1ER

> \/ 7(a) (G £ ).

X,X'ER

Theorem 3.7. Let f € F(RXS,E,F,L) be a
perfect TL-ring homomorphism and T be a
infinitely V-distributive t-norm. If B:S — Lis a
TL-ideal of S, then f~1(B):R — L is a TL-ideal
of R.

Proof. The conditions R1, R2 and R3 are
provided by Theorem 3.5.

Forx,x' €R y,y' €S
RS),/ T (B)Cxx) = \ [ T(BO), fx. )

YES

= \/ 1Oy ey )
v,y'es

=T (\/ (B, ), \/ f(x',y'>>

YVES v'es

\/f(x’,y’) = 1forallx’ €R
y'es

because fis TL — function. Then

=T (\/ T(BO). () 1)

YES

_ \/T(B(y),foc, ») =1 B)X).

YES

RS),f 1 (B)(e.x) = \ [ T(BG), f(x.x', )

YyES

- \/ T(B(y.y"), f(x.x",y.y"))
yy'es

> \/ T(B(y’),T(f(x,y),f(X’,y’)))

yy'es

= T(\/f(x;y)' \/ T(B(y’),f(x’,y’))>

YVES y'es
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\/f(x,y) =1forallx €R

y€es

because f is TL-function. Then

= \/ 1(BON.1 e y) = FEE.
y'es

Definition 3.8. Let f € F(RXS,E,F,L) be a
TL-ring homomorphism. Define Kerf€ F(R, L)
and Imf € F(S,L) as follows.

(Kerf)(x) = f(x,0) and
amH©) = \[ 16

XER

where x € R and y € S. Kerf is called the kernel
of fand Imf is called the image of f.

Theorem 3.9. Let f€ F(RXS,E,F,L) be a
complete TL-ring homomorphism then Kerf €
F(R,L) is a TL-subring of R.

Proof. For x,y € R

R1) Kerf(0) =f(0,0) =1 because f is
complete TL-ring homomorphism.

R2) Kerf(—x) = f(—x,0) = f(x,0)

= Kerf(x).

R3) Kerf(x+y)=f(x+y,0)
=fx+y0+0)2T(f(x,0),f(,0)

= T(Kerf(x),Kerf(y)).

R4) Kerf(xy) = f(xy,0) = f(xy, 00)

> T(f(x, 0), f(y, O)) = T(Kerf(x), Kerf(y)).

Theorem 3.10. Let f € F(RXS,E,F,L) be a
complete TL-ring homomorphism and T be a
infinitely V-distributive t-norm. Then Imfé€
F(S,L) is a TL-subring of S.

Proof.For x,x' €R y,y' €S
R1) It follows (Imf)(0)
= \/f(x, 0) = 1 because forx =0

XER

£(0,0) = 1.
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R2)(mN (=) = \[ fG-») = \ [ rx)

XER XER

= (Imf)(y) (because f is complete).
RN +y) = \[ fGy+5)

XER

\/ ra+xy+yn

x,x'€R

\/ 10w rayn)

\/ Feen )

= T(Imf (y), Imf ().
RNy = \/ £ yy)

XER

v

1]
H
<
\H
N\
Ry
<
e

= \/ fxx',yy')

x,x'€R

> \/ T(f (), f(x',9")

r (\/f(x, ».\/ f(x',y')>

= T(Imf ), Imf (")

Theorem 3.11. Let R and S be rings, (R,ER1) and
(S,FSp) be TL-equalities and f: R — S function
be a ring homomorphism. Then TL-function fe
F(RXS,E,F,L) f:R X S — L defined by

(L f@=y
fen={y jw=y

is a TL-ring homomorphism.

Proof. It is clear that f is a TL-function. Let
obtain the TL-ring homomorphism conditions.

a)  flx+x,y+y)
{1 fx+x)=y+y'
0 fx+x)Y+y+y'
:{1 f)+f)=y+y
0 f)+f)#=y+y
i) If f(x+x") =y +y'then
f(x+x',y +y") = 1 and the inequality

Fac+x',y+y) =T (Fley), Fx',y1)
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is satisfied.

i) Iff(x+x") #y+7y'then

f(x) =yand f(x") = y' can’t be both because if
it can

fO+fED=y+y' = flx+x)=y+y
so one of them doesn’t exist then

T (FCa ), fx',y)) = T(0,1) = 0

and the inequality

foc+x,y+y) = T(Fle ), Fx',y1)

1s satisfied.
r ! ! 1
b fe ) ={

_ {1 fQf &) =y’
0 fOf(x") #yy'
i) If f(xx") = yy' then

flex',yy") = Land f(xx’, yy")

>T (f(x, ), f(x', y’)) is satisfied.

i) If f(xx") # yy' then

f(x) =yand f(x") = y' can’t be both because if
it can

fOf(x) =yy' = fxx") = yy’

so one of them doesn’t exist then

T (FG».f&,y))=TOD =0 and the
inequality

flex',yy) =T (f (¥, f (x’,y’)) is satisfied.

Theorem 3.12. Let f € F(RXS,E,F,L) and
g€ F(SXK,F,G,L) be TL-ring
homomorphisms. Then

a)  Ker(gerf)=f""(Kerg).
b) Im(g or ) = g(Umf).
Proof. a) Ker(g oy ) = (g o7 f)(x,0)

- \/ T(f(x,),9(,0))

YES

- \/ T(f(x,y),Kerg(») = f~(Kerg)(x).

YES

b) Im(g o7 (@) = \ [ (g o Nx.2)

XER

_ \/ \/T(f(x, ¥),9(7,2))

XER \ YES

=\/T \/f(x,y),g(y,Z)

YES XER

flxx") =yy'
fxx") #yy'
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= \/ 1(tmH.90.2) = gump@.

YyES

Theorem 3.13. Let f € F(RXS,E,F,L) be a
strong TL-ring homomorphism and T be a
infinitely V-distributive t-norm. Then for A €
F(R,L),

fH(f(4A) < A+ Kerf.

Proof.

FAr@)@ =\ 1@, £ »)

YyES

T <\/ T(A(x'),f(x'»}’))) S y)
yES x'€R

= \/ \/ T (T(A(x’),f(x’,y)),f(x, y))

y€S x'€R

<\/ \/ 7(ra). r& ). £ (=3 -9)

y€ES x'€R

VAV CCORCBINICEREM)

VES x'€R

< \/ \/ T(A(), f(x' =%,y —y))

yeS x'€Rr

< \/T(A(x’), flx—x',0))

= \/ 146, Kerp e - x)

(byx"+ (x—x") =x) = (A+ Kerf)(x).

Theorem 3.14. Let (R1, E1), (R2, E2), (S1, F1) and
(S2, F2) be TL-equivalence relations and

fiRy XS =-Lg:R, xS, - L be TL-ring
homomorphisms. Then the TL-function defined
by

g X fr(Ry X Ry) X (81 X5) > L

(g x f)((xpxz), ()’1'}’2)) =T(f (x1,¥1), 9(x2,¥2))
is a TL-ring homomorphism.

Proof. We proved that (g X f) is a TL-function
in Theorem 2.18. Now we will prove the TL-ring
homomorphism conditions.

H1. xl,Xik € Rl;erx; € RzJ’l;y; € Sl
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Y2, Y2 €5,

(g x )((x1, %) + (x5, %3), 1, ¥2) + 1, ¥3))
= (g % (0 + x5, 224%3), 01 +¥7, 2 +y3))
= T(f (o + x5, y1+ ¥1), g2 +23, y2+y3))

> T (T(F Gea, v, £ (i, YD) T (9292, 90530 99)))

T (T(fGeo 1) 9 G y2)). T(F (2, 1), 9(x3,93)))

T ((g % F(Cerx2), 01,32), (g

x (G, 23), 31,95) )
H2. x;,x; € R{,x5,x; € Ry, y1,¥1 €54,
Y2,Y2 €5,

(g % F)(Cer, x2). (x5, %3), 1, 2)- 01, ¥3))
= (g % )(Cer. x5, %2.%3), 1. Y1, ¥2-73))

= T(fCGer- x5, y1.¥1), 9 (2. %3, V2. 73))

> T (T(F Goa, v, £ (i, YD) T (92 92, 9053, 95)))

= T (T(f G, y2), 9 Gz yD) T(F i, ¥, 923, 75)) )

=T ((g X f)((xpxz); (yli yZ))J (g
x 1)(Geh %), 03, 9)) ).
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