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ABSTRACT 

Our aim in this paper is to investigate the local stability of the positive solutions of the difference equation 

n n 1
n 1

n 1 n

y y
y

y y
−

+
−

α − γ −
= −
β β

,    n 0,1,2,...,=  

where the initial conditions 1y− , 0y  are arbitrary positive real numbers such that ny 0≠  for 

n 1,0,1,...,= − , , , (0, )α β γ∈ ∞  and α > γ . Furthermore we investigate the periodic nature of the mentioned 

difference equation. 
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1. INTRODUCTION 

Consider the difference equation  

n n 1
n 1

n 1 n

y y
y

y y
−

+
−

α − γ −
= −
β β

,    n 0,1,2,...,=  (1) 

where the initial conditions 1y− , 0y  are arbitrary 

positive real numbers such that ny 0≠  for 

n 1,0,1,...,= − , , , (0, )α β γ∈ ∞  and α > γ . Our aim in 

this paper is to investigate the local asymptotic  stability 
of  the positive equilibrium point of Eq. (1), furthermore 
the periodic nature of the solutions of Eq. (1) under 
specified conditions of the parameters α , β  and γ . 

Other nonlinear, rational difference equations were 
investigated in [1]-[6]. In [1], the global stability, the 
boundedness character and the periodic nature of the 
positive solutions of the recursive sequence 

n 1
n 1

n

x
x

x
−

+ = α + ,   n 0,1,2,...,=   (2) 

was investigated by Amleh et al.[1], where [0, )α∈ ∞  

and  the initial conditions 1x−  and  0x  are arbitrary 

positive real numbers. They showed that a necessary 

and sufficient condition which every positive solution 
of Eq. (2) be bounded is 1α ≥ . H. M. El-Owaidy et al. 
[2] studied the recursive sequence 

n k
n 1

n

x
x

x
−

+ = α + , n 0,1,2,...= ,  (3) 

where [ )1,α∈ ∞ , { }k 1,2,...∈  and the initial conditions 

k 0x ,..., x−  are arbitrary positive real numbers. 

R. DeVault et al. [3] investigated the global stability 
and the periodic character of solutions of the equation 

n 1 n k n n ky (p y ) /(qy y )+ − −= + +  where p and q are 

positive, k {1,2,...}∈  where the initial conditions 

k 0x ,..., x−  are arbitrary positive numbers. W. S. He 

and W. T. Li [4] studied the global stability and the 
periodic character of the positive solutions of the 
difference equation 

n k
n 1

n

a bx
x

A x
−

+
−

=
+

,    n 0,1,2,...= ,  (4) 

where a 0≥ , b,A 0> , { }k 1,2,...∈  and initial 

conditions k 0x ,..., x−  are arbitrary real numbers. They 
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showed that the positive equilibrium of the equation is a 
global attractor with a basin that depends on certain 
conditions posed on the coefficients. Also, Yan et al. [5] 
investigated the global asymptotic stability, the global 
attractivity, the boundedness character, the periodic 
nature and chaotic behavior of solutions of the 

difference equation  n 1
n 1

n

x
x

x
−

+ = α − ,   n 0,1,2,...,=  

where α   is a real  number and the initial conditions 

1x− ,  0x  are arbitrary positive real numbers. 

We first recall some results which will be useful in the 
sequel. 

Let  I R⊂  and let f : I I I× →  be a continuous 
function. Consider the difference equation 

( )n 1 n n 1y f y , y+ −= ,   n 0,1,2,...= ,  (5) 

where the initial conditions 1 0y , y I− ∈ . We say that y  

is an equilibrium of Eq. (5) if 

( )y f y, y= . 

Let 

( ) ( )
f f

s y, y    and  t y, y
u v

∂ ∂
= =
∂ ∂

 

denote the partial derivatives of ( )f u,v  evaluated at an 

equilibrium y  of Eq. (5). Then the equation 

n 1 n n 1x sx tx+ −= + ,    n 0,1,2,...=  

is called the linearized equation associated with Eq. (5) 
about the equilibrium point y  [6]. 

2. LOCAL ASYMPTOTIC STABILITY AND 

PERIOD-TWO SOLUTIONS 

In this section, we discuss the local stability of the 
positive equilibrium point y  and period-two solutions 

of Eq. (1). The equilibrium points of Eq. (1) are 
solutions of the equation 

2y ( ) 0β − α − γ = .    (6) 

So the equilibrium points of Eq. (1) are 

y
α − γ

= ±
β

,    (7) 

where α > γ . The linearized equation associated with 

Eq. (1) about the equilibrium point y  is 

n 1 n n 1
2y 2y

x x x 0+ −
γ − α −

− + =
α − γ α − γ

,    n 0,1,2,...= (8) 

Hence, its characteristic equation is 

2 2y 2y
0

γ − α −
λ − λ + = ⋅

α − γ α − γ
   (9) 

 

Theorem 2.1. Suppose that  , , (0, )α β γ∈ ∞  and α > γ . 

Then the following statements are true. 

(i) The positive equilibrium point y  of Eq. (1) is 

locally asymptotically stable if 

2 2

4( ) 4( )α − γ α − γ
< β <

α γ
.   (10) 

(ii) The positive equilibrium point y  of Eq. (1) is 

unstable (furthermore is a repeller point) if  

2 2

4( ) 4( )α − γ α − γ
< < β

α γ
.   (11) 

Proof. (i) Since 

2

4( )
,

α − γ
β <

γ
    (12) 

then 

2 4( )α − γ
γ <

β
    (13) 

and 

2
α − γ

γ < ⋅
β

    (14) 

Using positive equilibrium point of Eq. (1) in (7) and 
(14), we have 

2y 0γ − <  

and 

2 2y 2 2 .α − γ − < α − γ    (15) 

Hence from (15), we get 

2y
1 2

α −
+ < ⋅
α − γ

    (16) 

On the other hand, using positive equilibrium point of 
Eq. (1) in (7) and 

2

4( )
,

α − γ
< β

α
 

we have 

2y < α  

and 

2y 2y
1

γ − α −
− < + ⋅
α − γ α − γ

   (17) 

 

Since 

2y 0γ − <  

we can write 
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2y 2y
1

γ − α −
− < + ⋅
α − γ α − γ

   (18) 

Then, one can see from (16) and (18) that, the positive 
equilibrium point y  of Eq. (1) is locally asymptotically 

stable. This completes the proof of the first part in the 
theorem. 

(ii)  Since 

2

4( )
,

α − γ
< β

γ
    (19) 

then 

24( )α − γ
< γ

β
    (20) 

and 

2
α − γ

γ > ⋅
β

    (21) 

Using positive equilibrium point of Eq. (1) in (7) and 
(21), we have 

2y 0γ − >  

and 

2y .α − > α − γ     (22) 

Thus we get 

2y
1

α −
− > ⋅
α − γ

    (23) 

On the other hand, using positive equilibrium point of 
Eq. (1) in (7) and 

γ < α  

we have 

2y 2yγ − < α − γ + α −  

and 

2y 2y
1

γ − α −
< + ⋅

α − γ α − γ
   (24) 

Since 

2y 0γ − > , 

we can write 

2y 2y
1

γ − α −
< + ⋅

α − γ α − γ
   (25) 

Then, one can see from (23) and (25) that, the positive 
equilibrium point y  of Eq. (1) is unstable (furthermore 

a repeller point).  This completes the proof. 

Theorem 2.2 Suppose that , , (0, )α β γ∈ ∞ ,  α > γ  and 

2 2

4( ) 4( )α − γ α − γ
β = < ⋅

α γ
   (26) 

Then the positive equilibrium point y  of Eq. (1) is 

non-hyperbolic point. 

Proof. Since 

2

4( )
,

α − γ
β =

α
    (27) 

then 

2
α − γ

α = ⋅
β

    (28) 

Using positive equilibrium point of Eq. (1) in (7) and 
(28), we have 

2y 0α − =  

and 

2yγ − = γ − α ⋅     (29) 

Hence from (29), we can write 

2yγ − = γ − α = α − γ ⋅    (30) 

On the other hand, since 

2y 0,α − =  

we have 

2y 2yγ − = α − γ + α −    (31) 

and 

2y 2y
1

γ − α −
= + ⋅

α − γ α − γ
   (32) 

Thus, we get s 1 t= −   where  
2y

s
γ −

=
α − γ

 and 

2y
t

α −
= ⋅
α − γ

 Then the positive equilibrium point y  of 

Eq. (1) is non-hyperbolic point. 

Theorem 2.3 Suppose that  , , (0, )α β γ∈ ∞ , α > γ   and  

2 2

4( ) 4( )α − γ α − γ
β = > ⋅

γ α
   (33) 

Then the positive equilibrium point y  of Eq. (1) is 

non-hyperbolic point. 

 

 

Proof. Since 

2

4( )
,

α − γ
β =

γ
    (34) 

then 
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( )
2

α − γ
γ = ⋅

β
    (35) 

Using positive equilibrium point of Eq. (1) in (7) and 
(35), we have 

2y 0γ − =  

and 

2yα − = α − γ ⋅     (36) 

Hence from (36), we can write 

2y
1

α −
= ⋅

α − γ
    (37) 

On the other hand, we have 

2y
t 1

α −
= − = − ⋅

α − γ
 

Furthermore, since 2y 0γ − =  we get 

2y
s 0 2

γ −
= = < ⋅

α − γ
   (38) 

Thus, the positive equilibrium point y  of Eq. (1) is 

non-hyperbolic point under the condition (33). 

Example 2.1. Let 5α = , 4=β , 1=γ , 1y 1− =  and 

0y 0.5= . The values of ,α β  and γ  verify (10). The 

graph of the first 100 iterations of Eq. (1) is given in 
Figure 1. The graph suggests that the solution of Eq. (1) 
is converging to a stable equilibrium value of about 
y 1= . If this converge continues in the form of a limit 

as n →∞ , future values of  ny  can be predicted to be 

at or extremely near the equilibrium value (furthermore 
see Table 1). 

Example 2.2.  Let 20α = , 2.8β = , 5γ = , 1y 0.2− =  

and 0y 0.5= . Note that the values of ,α β  and γ  

verify (11). The graph of the first 50 iterations of Eq. 
(1) is given in Figure 2. It does not contain any of the 
predictable patterns of solutions. Absent of any pattern 
or repetition, the general long-term behavior and 
specific values of ny  for large n are impossible to 

predict from the graph (furthermore see Figure 2 and 
Table 2). 

Theorem 2.4. Suppose that { }n n 1y
∞
=−

 is a solution of 

Eq. (1) and , , (0, )α β γ∈ ∞ . Then the following 

statements are true. 

(i) If  1y−
α + γ

=
β

 and 0y
α + γ

= −
β

 (or 

1y−
α + γ

= −
β

 and 0y
α + γ

=
β

), then Eq. (1) has 

period-two solutions. 

(ii) Assume that 2 4( )
A 0

α − γ
= α − >

β
. If 

1
A

y
2

−
α +

=  and 0
A

y
2

α −
=  (or 1

A
y

2
−

α −
=  

and 0
A

y
2

α +
= ) , then Eq. (1) has period-two 

solutions. 

Proof. Let 

..., , , , ,...φ ψ φ ψ  

be a period-two solutions of Eq. (1). Then, 

2 2α −ψ γ − φ αψ −ψ − γφ + φ
φ = − =

βφ βψ βφψ
, (39) 

2 2α − φ γ − ψ αφ − φ − γψ + ψ
ψ = − = ⋅

βψ βφ βφψ
 (40) 

Subtracting (40) from (39), we have 

( )[ 2( )] 0φ − ψ βφψ + α + γ − φ + ψ = .  (41) 

Since φ  and ψ  period-two solutions of Eq.(1), then 

ψ ≠ φ . Hence from (41), we have 

2( ) 0βφψ + α + γ − φ + ψ = .   (42) 

Thus period-two solutions of Eq.(1) are also the 
solutions of (42). From (39) and (40), we get 

2 2

2 2

φ αψ −ψ − γφ + φ
=

ψ αφ − φ − γψ + ψ
 

and 

( )( )( ) 0φ − ψ φ + ψ α − φ −ψ = .  (43) 

Firstly, assume that 0φ + ψ =  in (43). From this, we 

get ψ = −φ . Using ψ = −φ  in (42), we obtain 

1,2
α + γ

φ = ± ⋅
β

    (44) 

So the period-two solutions must be of the form 

..., ,   ,...
α + γ α + γ

−
β β

   (45) 
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Table 1. Values of the iteration solutions of Eq. (1) for 5α = , 4=β , 1=γ , 1y 1− =  and 0y 0.5= . 

 
TermsValues 

 
Terms Values 

 
Terms  Values 

 
Terms  Values 

 
Terms  Values 

y1      1.1250 
y2      1.8264 
y3      0.7224 
y4      0.8715 
y5      1.3492 
y6      1.0234 
y7      0.8221 
y8      1.0277 
y9      1.1646 
y10     0.9390 

y11      0.9156     
y12      1.0708    
y13      1.0532 
y14      0.9383 
y15      0.9783 
y16      1.0558    
y17      1.0028  
y18      0.9604  
y19      1.0078 
y20      1.0294 

y21      0.9868 
y22      0.9821 
y23      1.0145 
y24      1.0101 
y25      0.9868 
y26       0.9958 
y27      1.0111 
y28     1.0004 
y29      0.9917 
y30      1.0018 

y31      1.0059  
y32      0.9972 
y33      0.9963 
y34      1.0030 
y35      1.0020 
y36      0.9972 
y37      0.9992 
y38      1.0023 
y39      1.0000 
y40      0.9983 

y41        1.0004 
y42        1.0012 

y43      0.9994 
y44        0.9993 
y45       1.0006 
y46        1.0004 
y47         0.9994 

y48         0.9998 

y49         1.0005 
y50         1.0000 

 

 

 

Figure 1. Graph of the iteration solutions of Eq. (1) for 5α = , 4=β ,  1=γ , 1y 1− =  and 0y 0.5= . 

 

 

Table 2. Values of the iteration solutions of Eq. (1) for 20α = , 2.8β = ,  5γ = , 1y 0.2− =  and 0y 0.5= . 

 
Terms  Values 

 
Terms  Values 

 
Terms    Values 

 
Terms  Values 

 
Terms  Values 

y1       31.3929 
y2      -8.1889 
y3      -0.8304 
y4       4.7641     
y5      -6.9900 
y6       2.0354 
y7      -3.0217 
y8       4.3900 
y9      -2.4976 
y10      1.9175 

y11      -3.9822 
y12       4.7432 
y13      -2.0446 
y14        1.7047 
y15      -4.6716 
y16       5.4207 
y17      -1.7518 
y18       1.3474 
y19      -5.5924 
y20       7.0171 

y21     -1.3682 
y22       0.5611 
y23     -9.1278 
y24      18.7150 
y25     -0.3199 
y26      -14.9249 
y27      -38.8659 
y28     -1.2255 
y29       12.5883 
y30      -2.3365 

y31      -0.5262  
y32       1.8422 
y33     - 13.3959 
y34        6.5586 
y35      -1.3601 
y36        0.7539 
y37     - 8.0670 
y38       13.4849 
y39      -0.6345 
y40      -4.2293 

y41      -13.1619 
y42       -2.5499 
y43      1.9319 
y44       -3.9264 
y45       4.7023 
y46       -2.0694 
y47          1.7276 

y48        -4.6149 
y49          5.3420 
y50        -1.7772 
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Figure 2. Graph of the iteration solutions of Eq. (1) for 20α = , 2.8β = ,  5γ = , 1y 0.2− =  and 0y 0.5= . 

 

Table 3. Values of the iteration solutions of Eq. (1) for 6α = , 0.2β = , 5γ = , 1y 5− = , 0y 1= . 

 
Terms    Values 

 
Terms   Values 

 
Terms       Values 

 
Terms     Values 

y1               5 
y2               1 
y3               5 
y4               1 
y5               5 

y6               1 
y7               5 
y8               1 
y9               5 
y10              1 

y11               5 
y12               1 
y13               5 
y14               1 
y15               5 

y16               1 
y17               5 
y18               1 
y19               5 
y20               1 

 

 

 

Figure 3. Graph of the period-two solutions of Eq. (1) for 6α = , 0.2β = , 5γ = , 1y 5− = , 0y 1=
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Secondly, assume that ( ) 0α − φ − ψ = . By using 

ψ = α − φ  in (42) we obtain 

3,4
A

2

α ±
φ = ⋅     (46) 

(i) Let B
α + γ

=
β

, 1y B− =  and 0y B= − . Then from 

Eq. (1), we have 

0 1
1

1 0

y y B B
y B

y y B B
−

−

α − γ − α + γ −
= − = + =
β β β β

,        

01
2

0 1

yy B B
y B

y y B B

γ −α − α − γ +
= − = − = −

β β −β β
,     

2 1
3

1 2

y y B B
y B

y y B B

α − γ − α + γ −
= − = + =

β β β β
,        

3 2
4

2 3

y y B B
y B

y y B B

α − γ − α − γ +
= − = − = −

β β −β β
,  … 

The case 1y B− = −  and 0y B=  is similar and will be 

omitted. 

(ii) Using 1
A

y
2

−
α +

=  and 0
A

y
2

α −
=  in Eq. (1), 

we have 

0 1
1

1 0

y y A
y

y y 2
−

−

α − γ − α +
= − =
β β

,       

01
2

0 1

yy A
y

y y 2

γ −α − α −
= − =

β β
 

2 1
3

1 2

y y A
y

y y 2

α − γ − α +
= − =

β β
,         

3 2
4

2 3

y y A
y

y y 2

α − γ − α −
= − =

β β
,  … 

The case 1
A

y
2

−
α −

=  and 0
A

y
2

α +
=  is similar 

and will be omitted. This completes the proof. 

 

Example 2.3. Let 6α = , 0.2β = , 5γ = . Using the 

initial conditions 1y 5− =  and 0y 1= , we have the the 

graph of the first 100 iterations of Eq. (1) and this graph 
is shown in Figure 3. The graphs show that, the solution 
of Eq. (1) oscillates between two values of 5 and 1. It is 
easy to predict future values of ny  (furthermore see 

Figure 3 and Table 3). 
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