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ABSTRACT

Our aim in this paper is to investigate the local stability of the positive solutions of the difference equation

O 7¥n YVl 01,2,

Yn+t1 = >
Byn—1 Byn

where the initial conditions y_j, Yy are arbitrary positive real numbers such that y, #0 for

n=-10,1,...,, o,B,y € (0,00) and o >y . Furthermore we investigate the periodic nature of the mentioned

difference equation.
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1. INTRODUCTION

Consider the difference equation

S0 Tl op-01,2,., (1)

Yn+1 =
" Bynt Byn

where the initial conditions y_j, yo are arbitrary
positive real numbers such that y,=0 for
n=-10,1,...,, a,pB,y€(0,0) and o>y . Our aim in
this paper is to investigate the local asymptotic stability
of the positive equilibrium point of Eq. (1), furthermore
the periodic nature of the solutions of Eq. (1) under
specified conditions of the parameters o, f and 7.

Other nonlinear, rational difference equations were
investigated in [1]-[6]. In [1], the global stability, the
boundedness character and the periodic nature of the
positive solutions of the recursive sequence

Xpe=a+-0=L n=012,., )

Xn
was investigated by Amleh et al.[1], where o €[0,0)
and the initial conditions x_; and Xx( are arbitrary

positive real numbers. They showed that a necessary
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and sufficient condition which every positive solution
of Eq. (2) be bounded is a>1. H. M. El-Owaidy et al.
[2] studied the recursive sequence

Xy =o+-0=K h-01,2,., 3)
Xn

where a €[l,0), ke{l,2,..} and the initial conditions

X_k,.-»,X( are arbitrary positive real numbers.

R. DeVault et al. [3] investigated the global stability
and the periodic character of solutions of the equation

Yn+1 =(P+Yn-k)/(q¥n + Yn-k) Wwhere p and q are
positive, ke{l,2,..} where the initial conditions
X_k,.-»,X(Q are arbitrary positive numbers. W. S. He

and W. T. Li [4] studied the global stability and the
periodic character of the positive solutions of the
difference equation

b
Xnal =%, n=0,12,., (4)
n

where a>0, bA>0, ke{l,2,..} and initial

conditions X_y,...,X( are arbitrary real numbers. They
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showed that the positive equilibrium of the equation is a
global attractor with a basin that depends on certain
conditions posed on the coefficients. Also, Yan et al. [5]
investigated the global asymptotic stability, the global
attractivity, the boundedness character, the periodic
nature and chaotic behavior of solutions of the

. . Xp—
difference equation x,,.]=a _Zn-l , n=0,1,2,..,
Xn
where o is a real number and the initial conditions
X_1, Xq are arbitrary positive real numbers.

We first recall some results which will be useful in the
sequel.

Let IcR and let f:IxI—>1 be a continuous
function. Consider the difference equation

Yol =f(Yn:yn1), n=012,.., (5)
where the initial conditions y_j,yo el. We say that y
is an equilibrium of Eq. (5) if

y=£(3.5).

Let

s =%(y,y) and t:%(y,y)

denote the partial derivatives of f (u,V) evaluated at an

equilibrium y of Eq. (5). Then the equation
Xp4] =SXp +tXp_1, n=0,12,..

is called the linearized equation associated with Eq. (5)
about the equilibrium point y [6].

2. LOCAL ASYMPTOTIC STABILITY AND
PERIOD-TWO SOLUTIONS

In this section, we discuss the local stability of the
positive equilibrium point y and period-two solutions
of Eq. (1). The equilibrium points of Eq. (1) are
solutions of the equation

By ~(a-7)=0. (©)
So the equilibrium points of Eq. (1) are

y=+ 2T -
y 5 @)

where o >y . The linearized equation associated with
Eq. (1) about the equilibrium point y is

-2y o-2y
Xn+l — Xp +
a-—-y a-—-y

Xp1=0, n=012,..(8)

Hence, its characteristic equation is

kz_ﬂ;ﬁ_ﬂzo, )
o=y o=y

Theorem 2.1. Suppose that a,f,y €(0,0) and o >y.
Then the following statements are true.

(i) The positive equilibrium point y of Eq. (1) is
locally asymptotically stable if
Ho-y) g Ha=y) (10)

OL2 y2

(ii) The positive equilibrium point y of Eq. (1) is
unstable (furthermore is a repeller point) if

Ho—y) Ha-p) g an

0.2 Y2

Proof. (i) Since

ﬁ<4((x72—y)’ (12)
Y

then

2 _4o-y)

<—"" 13
Y b (13)
and

5 [T 14
y< 5 (14)

Using positive equilibrium point of Eq. (1) in (7) and
(14), we have

vy-2y<0
and
20—y -2y <20 —2y. (15)

Hence from (15), we get

14975 . (16)
a-y

On the other hand, using positive equilibrium point of
Eq. (1) in (7) and

(P

az

we have
2y<a

and

Y=2Y %72, (17)
a-y oy

Since
vy-2y<0

we can write
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-2y
<1+274Y.

_r-2y a8)

a-=y

-y
Then, one can see from (16) and (18) that, the positive
equilibrium point y of Eq. (1) is locally asymptotically

stable. This completes the proof of the first part in the
theorem.

(ii) Since

Yo g (19)
Y

then

oy 2 o)
p

and

Py i 21
Y>‘,B (e2))

Using positive equilibrium point of Eq. (1) in (7) and
(21), we have

vy-2y>0

and

a-2y>o-—1. (22)

Thus we get

_eZ2 . 23)
-y

On the other hand, using positive equilibrium point of
Eq. (1) in (7) and

y<a
we have

y-2y<o-y+o-2y

and

ﬂ<l+a—72y. (24)
oa-y o=y

Since

y-2y>0,

we can write

ot—Zﬂ.

v-23|_ |
a-y

1+
o |

(25)

Then, one can see from (23) and (25) that, the positive
equilibrium point y of Eq. (1) is unstable (furthermore
a repeller point). This completes the proof.

Theorem 2.2 Suppose that a,p,y €(0,0), a>y and

4(a—y) 4(a—vy)
SEASRI AP A Sl PAN 26
P (26)

Then the positive equilibrium point y of Eq. (1) is
non-hyperbolic point.

Proof. Since

_4a-y)

B 7 27
o

then

=2 % (28)

Using positive equilibrium point of Eq. (1) in (7) and
(28), we have

0-2y=0
and

y-2y=7-a- 29)
Hence from (29), we can write
[v=25|=lr~a|=a-v| (30)

On the other hand, since

o-2y=0,

we have

ly—2y|=|a—v+oa-2y| (31
and

v=2y| |, 229, (32)
av| [ a-v

_2y
Thus, we get \s\ = \l - t\ where s=+—=Y and
o—

oa—-2y
o=y
Eq. (1) is non-hyperbolic point.

t=

- Then the positive equilibrium point y of

Theorem 2.3 Suppose that «,f,y € (0,0), o>y and

4oa-v) _ 4a-y)
AN P Sl 5 33

Then the positive equilibrium point ¥ of Eq. (1) is
non-hyperbolic point.

Proof. Since

p=2D, (34)

Y

then
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(a—y)
—o 7YV 35
Y 5 (35)

Using positive equilibrium point of Eq. (1) in (7) and
(35), we have

y-2y=0
and
a-2y=0—7v- (36)

Hence from (36), we can write

a-2y_,. (37)
a-y

On the other hand, we have

_a—2§_

t= -1

oa—y
Furthermore, since y—2y =0 we get

y=2y
a-—y

s/ =

=0<2- (38)

Thus, the positive equilibrium point ¥ of Eq. (1) is
non-hyperbolic point under the condition (33).

Example 2.1. Let a=5, B=4, y=1, y_;=1 and
yo =0.5. The values of a,p and y verify (10). The

graph of the first 100 iterations of Eq. (1) is given in
Figure 1. The graph suggests that the solution of Eq. (1)
is converging to a stable equilibrium value of about
y =1. If this converge continues in the form of a limit
as n — oo, future values of y, can be predicted to be

at or extremely near the equilibrium value (furthermore
see Table 1).

Example 2.2. Let =20, =28, y=5, y_ =02

and yy=0.5. Note that the values of o,p and y
verify (11). The graph of the first 50 iterations of Eq.
(1) is given in Figure 2. It does not contain any of the
predictable patterns of solutions. Absent of any pattern
or repetition, the general long-term behavior and
specific values of y, for large n are impossible to
predict from the graph (furthermore see Figure 2 and
Table 2).

Theorem 2.4. Suppose that {yn}fz_1 is a solution of

Eq. (1) and o,B,y€(0,0). Then the following
statements are true.

M If  y= /O‘T” and  yg=- O‘T” (or
y_1=- (XT‘H/ and yq = aT”), then Eq. (1) has

period-two solutions.

(i) Assume that A=o? —@ >0. If

a+VA a—VA oa-VA
y-1= and yo = (or y_j=
2 2 2
and yg= ¢ +2\/X ) , then Eq. (1) has period-two
solutions.
Proof. Let
e O UL 0, 9,

be a period-two solutions of Eq. (1). Then,

¢:a—w_y—¢:w—\u2—v¢+¢2

(39)
Po  Bv Pow
_o=b_y-v_ o=’ —yy+y® (40)
Pv B Pow
Subtracting (40) from (39), we have
(O—wWIBY +o+y-2(¢+y)]=0. (41)

Since ¢ and y period-two solutions of Eq.(1), then
v # ¢ . Hence from (41), we have

Bow+o+y—-2(¢+y)=0. (42)

Thus period-two solutions of Eq.(1) are also the
solutions of (42). From (39) and (40), we get

9 ay —y? 7o +¢°

Vooap-¢? —py eyl

and

@-w)o+w)(a-¢-y)=0. (43)
Firstly, assume that ¢+y =0 in (43). From this, we

get v =—¢ . Using y =—¢ in (42), we obtain

bo=+ “T” (44)

So the period-two solutions must be of the form

[o+y [a+v
= | s 45
5 5 (45)
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Table 1. Values of the iteration solutions of Eq. (1) for o =5, =4, y=1, y_1=1 and yy=0.5.

TermsValues | Terms Values | Terms Values | Terms Values Terms Values
y; L1250 | y;; 09156 yor  0.9868 vy 1.0059 ya  1.0004
y, 1.8264 |y, 1.0708 vy 0.9821 vy 0.9972 vy 1.0012
ys  0.7224 | y;;  1.0532 yos  1.0145 vz 0.9963 vz 0.9994
ys 08715 |y 09383 vy 1.0101 vy 1.0030 yas  0.9993
ys 13492 | y;5  0.9783 yas  0.9868 y3s  1.0020 vas  1.0006
ye 1.0234 |y 1.0558 yas  0.9958 yis  0.9972 vas  1.0004
y; 0.8221 |y;; 1.0028 yy;  1.0111 vz 0.9992 ya7  0.9994
ys  1.0277 | yi5  0.9604 yas  1.0004 yg  1.0023 yag  0.9998
Yo 1.1646 | y;o  1.0078 Yo 0.9917 y39  1.0000 Ya9 1.0005
yio 09390 |y, 1.0294 vy 1.0018 vy  0.9983 ys0  1.0000
2 T T T T T T T T T
181 B
16} B
14} .
=12t i
=4
L]
g It o
=
= i
= 0a
0B B
04} .
02 B
D 1 1 1 1 1 1 1 1

1
0 10 20 a0 40 a0 ] 70 a0 o0 1ao
Values of n

Figure 1. Graph of the iteration solutions of Eq. (1) for a =5, B=4, y=1, y_1=1 and y;=0.5.

Table 2. Values of the iteration solutions of Eq. (1) for a =20, f=28, y=5, y_1=02 and yp=0.5.

Terms Values | Terms Values | Terms Values Terms Values Terms Values

v 31.3929 | y;;  -3.9822 |y, -1.3682 v -0.5262 y4 -13.1619
y,  -8.1889 yi2 47432 | yx» 0.5611 Y32 1.8422 Vi  -2.5499
Y3 -0.8304 Yi3 -2.0446 Yo3 -9.1278 Y33 -13.3959 Y43 1.9319
V4 4.7641 Yi4 1.7047 | yoy  18.7150 Y34 6.5586 Yaq  -3.9264
ys  -6.9900 yi5  -4.6716 | ys -0.3199 y3s  -1.3601 yas 47023
ve  2.0354 Yie 54207 | yps -14.9249 Y36 0.7539 Va6 -2.0694
y;  -3.0217 iz -L7518 | y»; -38.8659 y37 - 8.0670 Ya7 1.7276
ys  4.3900 Y18 1.3474 | ypy  -1.2255 yig  13.4849 yas  -4.6149
yo  -2.4976 Yio  -5.5924 |y,  12.5883 vy -0.6345 yao  5.3420
Yio 1.9175 Y20 7.0171 Y30 -2.3365 Ya0 -4.2293 ¥Yso -1.7772
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40 T T T T T T T T T
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_40 1 1 1 1 1 1 1 1 1
I 10 20 30 40 a0 B0 70 g0 a0 100

Values of n

Figure 2. Graph of the iteration solutions of Eq. (1) for =20, B=2.8, y=5, y_1=0.2 and y5=0.5.

Table 3. Values of the iteration solutions of Eq. (1) for a =6, =02, y=5, y_=5,yp=1.

Terms Values | Terms Values Terms Values Terms Values
Yi 5 Ye 1 Y 5 Yie 1
Y2 1 Y7 5 Yi2 1 Y17 5
Y3 5 Y8 1 Yi3 5 Yis 1
Ya 1 Yo 5 Yia 1 Y19 5
Ys S Yio 1 Yis S Y20 1
5]
45 E
4t |
35
E 3
=4
=
w 2.5
H
G
= 2
14
']ilidd11111111111111111111d11111111111111111111111117-
0&F B
D 1 1 1 1 1 1 1 1

1
0] 10 20 30 a0 a0 B0 70 a0 an 100
Values of n

Figure 3. Graph of the period-two solutions of Eq. (1) for aa.=6, B=02, y=5, y_1=5,yp=1
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Secondly, assume that (a—¢—y)=0. By using
vy =0 —¢ in (42) we obtain

aix/X.

2

(i) Let B= OLTJFY , y_1=B and yg=-B. Then from

Eq. (1), we have

b34 = (46)

_9-yo _y-yy _o+B y-B_

Y B,
By Byo pB BB
o— Y=Yy a—B +B
yp =l 0= -2 - B,
Byo Bvi BB BB
y3:0v—Y2_Y—Y1:0t+B+Y—B:B’
By By pB BB
a-y - a—-B +B
y4= 3_Y=Ya_ B g

By Bys BB BB

The case y_; =—B and yy =B is similar and will be

omitted.

. A VA .
(ii) Using y_; =# and yO:a 2\/— in Eq. (1),
we have
ylza_YO_y_y_I:a+\/X

By-1  Byo 2
,yen 1y _aVR

Byo  Bwi 2
y3:0t—.‘yz_v—m:0t+\/X

Byi  By2 2 7
y4:q—y3_y—y2:a—JX

By  By3 2

—-VvA L

The case y_lza VA and yO:OH— is similar

and will be omitted. This completes the proof.

Example 2.3. Let a=6, f=0.2, y=5. Using the
initial conditions y_;=5 and yy =1, we have the the
graph of the first 100 iterations of Eq. (1) and this graph
is shown in Figure 3. The graphs show that, the solution
of Eq. (1) oscillates between two values of 5 and 1. It is
easy to predict future values of y, (furthermore see

Figure 3 and Table 3).

(1]
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