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ABSTRACT 

The Riesz sequence space 
q

cr  including the space c has recently been defined  in [14] and its some properties 

have been investigated. In the present paper, we introduce a new type core, Kq-core, of a complex valued 
sequence and also determine the required conditions for a matrix B for which Kq-core (Bx) ⊆  K-core (x), Kq-

core (Bx) ⊆  stA-core (x) and Kq-core (Bx) ⊆  Kq-core (x) hold for all x ∈  ∞A . 
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1. INTRODUCTION 
 
Let E be a subset of N={0,1,2,...}. Natural density δ  of 
E is defined by  

δ (E) = lim
n

1
n

 |{k ≤  n: k ∈  E}|, 

where the vertical bars indicate the number of elements 
in the enclosed set. A sequence x = (xk) is said to be 
statistically convergent to the number A  if for every 
ε , δ {k: |xk - A |≥  ε } = 0, [9]. By st and st0, we 
denote the sets of statistically convergent and 
statistically null sequences. 
 
For a given nonnegative regular matrix A=(ank), the 
number δ A(F) is defined by  

δ A(F) = lim
n nk

k F
a

∈
∑  

and it is said to be the A-density of F⊆  N, [10]. A 
sequence x=(xk) is said to be A-statistically convergent 
to a number s if for every ε > 0 the set δ {k: |xk - s|≥  
ε } has A-density zero, [4]. 
 

In this case, we write stA-lim x = s. By st(A) and st(A)0, 
we respectively denote the sets of all A-statistically 
convergent and A-statistically null sequences. 
 
Let x=(xk) be a sequence in C, the set of all complex 
numbers, and Rk be the least convex closed region of 
complex plane containing xk, xk+1, xk+2,.... The Knopp 
Core (or K-core) of x is defined by the intersection of 
all Rk (k=1,2,...), [3, p.137]. In [15], it is shown that 

K-core(x)= ( )x
z C

B z
∈
∩  

for any bounded sequence x=(xk), where Bx(z) = {w ∈  
C: |w-z| ≤  limsupk|xk-z|}. 
 
In [8], the notion of the statistical core of a complex 
valued sequence introduced by Fridy and Orhan [11] 
has been extended to the A-statistical core (or stA-core) 
and it is shown for a A-statistically bounded seqeunce x 
that  

stA-core(x) = ( )x
z C

C z
∈
∩ , 

where Cx(z) = {w ∈  C: |w-z| ≤  stA-limsupk|xk-z|}. 
 
The inequalities related to the core of a sequence have 
been studied by many authors. For instance, see [1, 5, 6, 
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7, 8, 11, 15] and the others. The matrix R=(rnk) defined 
by  

rnk=
/ ,

0 ,
k nq Q k n

k n
≤⎧

⎨ >⎩
 

is called Riesz matrix and denoted by (R, qk) or shortly 
R, where (qk) is a sequence of non-negative numbers 
which are not all zero and Qn = q1+q2+…+qn, n∈  N; q1 
> 0. It is well-known that R is regular if and only if limn 
Qn =   ∞, [14]. 
  
Using the convergence domain of the Riesz matrix, the 
new sequence spaces rc

q and r0
q respectively including 

the spaces c and c0 have been constructed by 
Malkowsky & Rakòević in [13] and Altay & Başar in 
[2] and their some properties have been investigated, 
where c and c0 are the spaces of all convergent and null 
sequences, respectively. 
 
Let B be an infinite matrix of complex entries bnk and x 
=(xk) be a sequence of complex numbers. Then Bx = 
{(Bx)n} is called the B transform of x, if (Bx)n = 

nk kk
b x∑  converges for each n. For two sequence 

spaces X and Y we say that B=(bnk) ∈   (X, Y) if Bx∈  Y 
for each x=(xk) ∈  X. If X and Y are equipped with the 
limits X-lim and Y-lim, respectively, B=(bnk) ∈  (X, Y) 
and Y-limn (Bx)n = X-limk xk for all x=(xk) ∈  X, then 
we say B regularly transforms X into Y and write 
B=(bnk) ∈  (X, Y)reg. 
 
In the present paper, we firstly introduce a new type 
core, Kq-core, of a complex valued sequence and also 
determine the necessary and sufficient conditions on a 
matrix B for which Kq-core (Bx) ⊆  K-core (x), Kq-core 
(Bx) ⊆  stA-core (x) and Kq-core (Bx) ⊆  Kq-core (x) 

for all x ∈  ∞A , where ∞A  is the space of all bounded 
complex sequences. To do these, we need to 
characterize the classes (c, rc

q)reg, (rc
q, rc

q)reg and (st(A) 
∩ ∞A , rc

q)reg. 
 
2. LEMMAS 
 
In this section, we prove some lemmas which will be 
useful to our main results. For brevity, in what follows 

we write nkb�  in place of 

0

1 n

k nk
kn

q b
Q =
∑ ; (n,k ∈  N). 

 
Lemma 2.1. B ∈  ( ∞A ,rc

q) if and only if  

||B|r = supn | |nk
k

b∑ �  < ∞,                                       (2.1) 

lim
n nkb� = αk    for each k,                                       (2.2) 

lim
n

| |nk k
k

b α−∑ � = 0.                                       (2.3) 

Proof. Let x ∈  ∞A and consider the equality 

0 0

1 n m

k nk k
j kn

q b x
Q = =
∑ ∑ = 

0 0

1m n

k jk k
k jn

q b x
Q= =

∑ ∑ ; (m, n)∈  N) 

which yields as m → ∞ that 

0

1 ( )
n

k j
jn

q Bx
Q =
∑ = (Dx)n; ( n ∈  N),                   (2.4) 

where D = (dnk) defined by 

dnk = 0

1 , 0

0 , .

n
k jkj

n

q b k n
Q

k n

=

⎧ ≤ ≤⎪
⎨
⎪ >⎩

∑
 

Therefore, one can easily see that B ∈  ( ∞A ,rc
q) if and 

only if D∈ ( ∞A , c) (see [13]) and this completes the 
proof. 
 
Lemma 2.2. B ∈  (c, rc

q)reg if and only if the conditions 
(2.1) and (2.2) of the Lemma 2.1 hold with αk = 0 for all 
k ∈  N and  
 

lim
n nk

k
b∑ � =1.                                                   (2.5) 

Since the proof is easy we omit it. 
 
Lemma 2.3. B ∈  (st(A) ∩ ∞A , rc

q)reg if and only if B 
∈  (c, rc

q)reg 
and 

lim
n

| |nk
k E

b
∈
∑ �  = 0                                              (2.6) 

for every E ⊂  N with δA(E) = 0. 
 
Proof (Necessity). Because of c ⊂  st(A) ∩ ∞A , B ∈  

(c, rc
q)reg . Now, for any x ∈ ∞A  and a set E ⊂  N with 

δA(E) = 0, let us define the sequence z = (zk) by 

zk = 
,

0 , .
kx k E

k E
∈⎧

⎨ ∉⎩
 

Then, since z ∈  st(A)0, Az ∈  r0
q, where r0

q is the space 
of sequences consisting the Riesz transforms of them in 
c0. Also, since 

nk k
k

b z∑ � = nk k
k E

b x
∈
∑ � , 

the matrix D = (dnk) defined by dnk = nkb�  (k∈E), = 0 

(k∉E) is in the class ( ∞A , rc
q). Hence, the necessity of 

(2.6) follows from Lemma 2.1. 
 
(Sufficiency). Let x ∈ st(A) ∩ ∞A  with stA-lim x = ℓ. 
Then, the set E defined by E = {k:|xk- ℓ | ≥ ε} has A-
density zero and :|xk- ℓ | ≤ ε if k∉  E. Now, we can 
write  
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( )nk k nk k nk
k k k

b x b x l k b= − +∑ ∑ ∑� � � .          (2.7) 

Since 

| ( ) | || || || ||nk k nk
k k E

b x l x b Bε
∈

− ≤ +∑ ∑� � , 

letting n→ ∞ in (2.7) with (2.6), we have 

lim
n nk k

k

b x∑ �  = ℓ. 

This implies that B ∈  (st(A) ∩ ∞A , rc
q)reg and the proof 

is completed. When B is chosen as the Cesáro matrix in 
Lemma 2.3,  we have the following corollary. 
 
Corollary 2.4. B ∈  (st ∩ ∞A , rc

q)reg if and only if B ∈  
(c, rc

q)reg 
and 

lim
n

| |nk
k E

b
∈
∑ �  = 0 

for every E ⊂  N with δ(E) = 0. 
 
Lemma 2.5. B ∈  (rc

q, rc
q)reg if and only if 

(bnk) ∈  cs                                                            (2.8) 
holds and C ∈   (c, rc

q), where C = (cnk) is defined by  

cnk = nk
k

k

b Q
q

⎛ ⎞
∆⎜ ⎟
⎝ ⎠

 

for all n,k ∈  N and cs is the space of all convergent 
series. 
 
Proof. (Sufficiency). Take x∈  rc

q. Then, the sequence 
{bnk}k∈N ∈  [rc

q]β for all n∈N and thisimplies the 
existence of the B-transform of x. 
 
Let us now consider the following equality derived by 
using the relation, 

yk = 
0

k
i

i
i k

q x
Q=

∑  

from the mth partial sum of the series nk kk
b x∑ , 

0

m

nk k
k

b x
=
∑ =

1

0

m
nk

k k
k k

b Q y
q

−

=

⎛ ⎞
∆⎜ ⎟
⎝ ⎠

∑ + nm
m m

m

b Q y
q

(m,n

∈N).                                                                     (2.9) 
Then, using (2.1), we obtain from (2.9) as m → ∞ that 

nk k
k

b x∑ = nk
k k

k k

b Q y
q

⎛ ⎞
∆⎜ ⎟
⎝ ⎠

∑ ,                    (2.10) 

i.e. Bx = Cy. Since x∈rc
q if and only if y∈  c, (2.2) 

implies that B∈  (rc
q, rc

q). 
 
(Necessity). Conversely, let B∈  (rc

q, rc
q). Then, since 

{bnk}k∈N∈  [rc
q]β for all n∈N, the necessity of (2.1) is 

immediate. On the other hand, (2.2) follows from (2.4). 
 
 
 
 

3. Kq-CORE 
 
Let us write 

tn
q(x) = Ar(x) = 

0

1 n

k k
kn

q x
Q =
∑ . 

Then, we can define Kq-core of a complex sequence as 
follows. 
 
Definition 3.1. Let Hn be the least closed convex hull 
containing tn

q, 
tn+1

q, tn+2
q, .... Then, Kq-core of x is the intersection of 

all Hn, i.e., 

Kq-core(x) = 
1

n
n

H
∞

=
∩ . 

Note that, actually, we define Kq-core of x by the K-
core of the sequence (tn

q). Hence, we can construct the 
following theorem which is an analogue of K-core, (see 
[16]).  
 
Theorem 3.2. For any z∈C, let 
Gx(z) = {w∈C: |w-z| ≤ limsup

n
|tn

q-z|}. 

Then, for any x∈ ∞A , 

Kq-core = ( )x
z C

G z
∈
∩ . 

Note that in the case qn=1 for all n, the Riesz core is 
reduced to the Cesáro core. 
 
Now, we may give some inclusion theorems. 
 
Theorem 3.3. Let B∈  (c, rc

q)reg. Then, Kq-core (Bx) 
⊆  K-core (x) for all x∈ ∞A  if and only if 

lim
n

| |nk
k

b∑ �  = 1.                                                 (3.1) 

Proof (Necessity). Let us define a sequence x = x(k) = 
{x(k)

n} by 

x(k)
n = sgn nkb�  

for all n∈  N. Then, since limsup x(k)= 1 for all n∈  N, 
K-core(x) ⊆  B1(0). Therefore, by hypothesis, 

:| | limsup | |nk
n k

w C w b⎧ ⎫∈ ≤⎨ ⎬
⎩ ⎭

∑ � ⊆  B1(0) 

which gives the necessity of (3.1). 
 
(Sufficiency). Let w∈Kq-core(Bx). Then, for any given 
z∈C, we can write 
|w-z| ≤ limsup

n
| tn

q (Bx)-z|                                   (3.2) 

= limsup
n

|z- nk k
k

b x∑ � | 

≤ limsup
n

| ( )nk k
k

b z x−∑ � |+ limsup
n

|z||1-

nk
k

b∑ � | 
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= limsup

n
| ( )nk k

k

b z x−∑ � |. 

Now, let limsupk |xk-z| = l. Then, for any ε > 0, |xk-z| ≤ ℓ 
+ ε whenever k ≥ k0. Hence, one can write that 

( )nk k
k

b z x−∑ � = 

|
0

( )nk k
k k

b z x
<

−∑ � +
0

( )nk k
k k

b z x
≥

−∑ � |                 (3.3) 

≤ sup
k

|z-xk|
0

| |nk
k k

b
<
∑ � + (ℓ + ε) 

0

| |nk
k k

b
≥
∑ �  

≤ sup
k

|z-xk|
0

| |nk
k k

b
<
∑ � + (ℓ + ε) | |nk

k
b∑ � . 

Therefore, applying limsupn under the light of the 
hypothesis and combining (3.2) with (3.3), we have 

|w-z| ≤ limsup
n

| ( )nk k
k

b z x−∑ � | ≤ ℓ + ε 

which means that w∈K-core(x). This completes the 
proof. 
Theorem 3.4. Let B∈  (st(A) ∩ ∞A , rc

q)reg. Then, Kq-

core (Bx) ⊆  stA-core (x) for all x∈ ∞A  if and only if 
(3.1) holds. 
 
Proof.(Necessity). Since stA-core (x) ⊆  K-core (x) for 
any sequence x [9], the necessity of the condition (3.1) 
follows from Theorem 3.3.  
 
(Sufficiency). Take w∈  Kq-core (Bx). Then, we can 
write again (3.2). Now; if stA-limsup |xk-z| = s, then for 
any ε > 0, the set E defined by E = {k: |xk-z|> 
s+ ε } has A-density zero, (see [9]). Now, we can write 

| ( )nk k
k

b z x−∑ � | = | ( )nk k
k E

b z x
∈

−∑ �  + 

( )nk k
k E

b z x
∉

−∑ � | 

≤ sup
k

|z-xk| | |nk
k E

b
∈
∑ �  + (s+ ε) | |nk

k E
b

∉
∑ �  

≤ sup
k

|z-xk| | |nk
k E

b
∈
∑ �  + (s+ ε) | |nk

k

b∑ � . 

Thus, applying the operator limsupn and using the 
condition (3.1) with (2.6), we get that 

limsup
n

| ( )nk k
k

b z x−∑ � |  ≤ s+ ε.                (3.4) 

Finally, combining (3.2) with (3.4), we have  
|w-z| ≤ stA-limsupk |xk-z| which means that w ∈  stA-
core(x) and the proof is completed. As a consequence of 
Theorem 3.4, we have 
 
Theorem 3.5. Let B∈  (st ∩ ∞A , rc

q)reg. Then, Kq-core 

(Bx) ⊆  st -core (x) for all x∈ ∞A  if and only if (3.1) 
holds. 
 

Theorem 3.5. Let B∈  (rc
q, rc

q)reg. Then, Kq-core (Bx) 
⊆  Kq -core (x) for all x∈ ∞A  if and only if (3.1) 
holds. 
 
Proof. (Necessity). Since Kq -core (x) ⊆  K-core (x) for 

all x∈ ∞A , the necessity of the 
condition (3.1) follows from Theorem 3.3. 
 
(Sufficiency). Let w ∈  Kq-core (Bx). Then, we can 
write (3.2). Now; if             limsupk |tk

q(x)-z|= v, then for 
any ε > 0, | tk

q(x)-z| ≤ v + ε whenever k ≥ k0. Hence, we 
can write 

( )nk k
k

b x z−∑ � | = |
0

( ( ) )q
nk k

k k
c t x z

<

−∑  + 

0

( ( ) )q
nk k

k k
c t x z

≥

−∑ |                                 (3.5) 

≤ sup | ( ) |q
k

k
t x z−

0

| |nk
k k

c
<
∑  + (v + ε) 

0

| |nk
k k

c
≥
∑  

≤ sup | ( ) |q
k

k
t x z−

0

| |nk
k k

c
<
∑  + (v + ε) | |nk

k
c∑ , 

where cnk is defined as in Lemma 2.5. 
 
Therefore, considering the operator limsupn in (3.5) and 
using the hypothesis, we get that |w-z| ≤ v + ε. This 
means that w ∈  Kq-core (x) and the proof is completed. 
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