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ABSTRACT 

Multiple regression outliers should be identified because of their potential effect on parameter estimates and 
inferences from the regression model. In recent years, researchers have proposed numerous strategies and 
procedures to identify the outliers. A Mathematica package PURO is introduced which implements seven 
methods from the latest and most respected outlier detection procedures in the statistics literature.  
 
Keywords: Regression outlier, Mathematica, Detection procedure, Masking, Swamping, Diagnostic plot.  

1. INTRODUCTION 

Identifying regression outliers can be very important task 
in many fields of science. They should be identified 
because of their potential effect on parameter estimates 
and inferences from the regression model. As a result of 
the need to detect and accommodate the outliers, several 
outlying measures and influence diagnostics have been 
designed. See, Belsly et al. (1980), Cook and Weisberg 
(1982), Rousseeuw and  Leroy (1987) for detailed 
discussions of the identification problem of multiple 
regression outliers.  

If a regression data set contains only a single or a few 
outliers, standard least squares outlying measures 
generally work well. However, when a group of 
observations clustered in an outlying cloud collaborate 
together, standard diagnostics would fail to identify the 
outliers (masking) or can identify the inlying 
observations as outliers (swamping). Although, of these 
two types of errors, masking can be viewed as a more 
serious problem than swamping, a good outlier procedure 
should keep both errors to a minimum. Researchers have 
proposed numerous strategies and procedures to 
overcome the insufficiency of standard least squares 
outlying measures. In Kianifard and Swallow (1990), and 
Hadi and Simonoff (1993), brief overviews of the 
procedures can be found. 

In the outlier detection tradition, generally there are two 
ways to evaluate the performance (the rates of masking 
and swamping) of any proposed outlier identification 
procedure. The first one is to identify the outliers in some 
commonly used data sets which have proved intractable 
to the standard diagnostics. Rousseuw telephone data, 
Hertzsprung and Russell star data, Hawkins, Bradu and 
Kass data, Hadi and Simonoff 1993 data, Modified Wood 
Gravity data, Stackloss data, and body and brain weight 
data are well known examples of these data sets of which 
some were created artificially to illustrate the failure of 
some popular procedures and/or to validate some other 
methods. Hadi and Simonoff (1993) claim that if an 
outlier detection procedure fails for first five of these data 
sets it should not be viewed as a viable method.  

The second common way to evaluate the performance of 
an outlier procedure is to use Monte Carlo simulations in 
various outlier scenarios depending on the factors such as 
number of variables in the model, sample size, outlier 
type, the percentage and the outlying distances of the 
outliers. Kianifard and Swallow (1990), Wisnowski et al. 
(2001) and Billor and Kiral (2008 ) are good examples of 
Monte Carlo experiments for outlier detection.  

Monte Carlo simulations show that many outlier 
detection procedures perform well. However, the 
performances of the outlier procedures may vary 
depending on the factors or model. For instance, some 
procedures working well for bad leverage points may not 
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be successful for vertical outliers, or a good performance 
in lower dimensions does not guarantee a success in 
higher dimensions. While some methods are good when 
the outlying distance is large, some methods are not 
influenced by the outlying distance. The methods which 
are good in unmasking rate may not be preferred because 
of high swamping rates. The methods differ in 
computation time as well. A very successful procedure 
may not be in demand because of a high computation 
time. In short, it seems unreasonable to claim that this or 
that outlier procedure is the best in all cases. 
Accordingly, the selection of the appropriate outlier 
procedure can be subjective based on the researchers' 
needs and limitations or a priori information about the 
data at hand such as an estimate of percent or type of 
outliers.  

Almost all of the well known statistical software 
packages like SPSS, S-Plus or Minitab provide standard 
regression outlier diagnostics such as hat matrix, Cook's 
distance, DFBETAS or COVRATIO on the Linear 
Regression dialog box as options. However, just a few 
statistical software have implemented multiple regression 
outliers procedures. Stata or Data Desk implementing 
Hadi's procedures Hadi (1992) and Hadi (1994) are some 
exceptions.  

The purpose of this paper is to present the Mathematica 
7.0 package PURO (A Package for Unmasking 
Regression Outliers) which implements the seven 
methods from the latest and most respected outlier 
detection procedures in the statistics literature. 
Mathematica is a very powerful computing environment 
for all forms of numeric and symbolic computation, and 
is an exceptionally flexible tool for producing 
mathematical graphics. The performance of Mathematica 
in precision could be an additional reason to use it. 
McCullough (1998) proposed a set of tests for assessing 
statistical software. His method has been applied to the 
several statistical and econometric software. See, for 
instance, McCullough (1999) and McCullough and 
Heiser (2008). In McCullough (2000), he applied his 
methodology to Mathematica 4.0 and found that the 
precision of Mathematica's calculations in the areas of 
linear and nonlinear estimation, random number 
generation, and statistical distributions are markedly 
superior to that of other major statistical packages such as 
SPSS, SAS, S-Plus, and Excel.  

In choosing a procedure for the package PURO, we 
considered the following factors: 

1)  Success in classical data sets and/or in Monte 
Carlo simulations, 

2)  Ease of implementation, 

3)  Simplicity in interpreting its results, 

4)  Time and space efficiency. 

The outlier procedures implemented by our package are 
HS in Hadi and Simonoff (1993), PY in Pena and Yahoi 
(1995), SMR in Sebert et al. (1998), BCH in Billor et al 
(2006), LMS in Rousseeuw (1984), RZ in Rousseeuw 
and Van Zomeren (1990) and MS in Marchette and Solka 
(2003).  

The motivation for the preparation of the package mainly 
comes from the shortage of the programs for multiple 
regression outliers in common statistical software. The 
other motivating reason is, as explained above, the 
absence of a unique procedure which is best in all cases. 
We believe that, for this reason, a user of an outlier 
detection software should see the results of several outlier 
procedures which may enable her to combine them into 
one result set, and hence can take initiative in making the 
final decision about the outliers and outlier clusters 
within her data. Hopefully, PURO providing the results 
of seven reliable outlier procedures can satisfy such a 
user's need.  The program file PURO.m and the demo 
file demoPURO.nb of the package can be freely 
downloaded from http://www... 

In the following section, we briefly describe the multiple 
outlier detection methods used in the package. In Section 
3, the package is introduced and its features are 
presented. This section provides an application for the 
package to show how the results of the procedures should 
be interpreted correctly.  

2. Brief descriptions of outlier detection procedures in 
the package 

Before giving the descriptions of the procedures, we need 
to fix the terminology and notation in the paper. First, let 
us illustrate the common terms (leverage points, outliers 
and regular points) used in outlier detection literature in 
an example of simple linear regression, which can be 
found in several  books and articles, see, for instance, 
Rousseeuw and Van Zomeren (1990).  

Regression outliers are observations that lie outside the 
regression plane defined by the bulk of the data. If the 
response value of an outlier is distant from responses of 
the clean cases, it is called a vertical outlier. If an 
observation has an outlying value in the space of 
explanatory variables (x-space), it is called a leverage 
point. If a leverage point is outlier, it is called a bad 
leverage point, otherwise it is called a good leverage 
point.  

Figure 1 shows a scatterplot of a data set of 30 
observations. The bulk of the data have a linear pattern. 
These 27 data points can be called clean, regular, well-
fitted or inlying observations. Based on the definitions 
above, we can say that the points A and C are outliers; A 
is a vertical outlier and C is a bad leverage point. B is a 
leverage point but not an outlier and hence a good 
leverage point since it fits to the linear pattern of the 
clean cases. In multiple regression, however, especially 
when the number of independent variables is greater than 
two, it is no longer possible to identify the outliers and 
leverage points visually in a scatterplot as the data can 
not be viewed in total. Nevertheless, the definitions 
remain the same as in the simple linear regression case.     

The aim of the standard regression diagnostics and the 
outlier detection procedures is to find the vertical outliers 
and bad leverages. We will now give the brief 
descriptions of the procedures implemented in our 
package. In these descriptions, we consider the standard 
linear regression model 

εXβy +=  
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where y is an n×1 vector of responses, X is an n×p matrix 
of predictor variables, β is an n×1 vector of parameters 
and ε an n×1 vector of random errors. The projection 
matrix X'X)X(X'H 1−=   will be denoted as hat 

matrix and ijh is the ijth element of that matrix. 
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Figure 1. 27 clean and 3 suspected points in a simple 
regression example.  
 
2.1 HS procedure 
 
HS proposed by Hadi and Simonoff (1993) is a forward 
search algorithm. It begins with a least squares fit of the 
regression model to the data. Next, observations are 

ordered by the adjusted residuals, iiii hea −= 1/  

where ie  is the OLS residual. The first p+1 observations 
constitute a basic subset. This subset is iteratively 
increased to a clean subset M of size h = integer part of 
(n+p−1)/2 by using the scaled residuals. Then, the 
absolute values of id  are calculated where id  is the 
internally studentized residual if the observation is in M 
or the prediction error if the observation is not in M. The 
h+1 arranged observations in ascending order according 

to id  constitute the new subset M. The procedure 

continues to add observations until the value of (s+1)th 

order statistic of id  exceeds psst −+ ),1(2/(α  where s is 

the size of current subset M. Observations s+1 to n are 
declared as outliers. Our package provides the outliers 
found by the procedure as a set. 
 
2.2 PY procedure 
 
PY proposed by Pena and Yahoi (1995) searches for 
breakpoints in the ordered components within the 
eigenvectors of the influence matrix 

2/ psEDHDEM =  where H is the hat (projection) 
matrix, E is the diagonal matrix that has the residuals on 
the main diagonal, D is a diagonal matrix with the 

elements 1)1( −− iih , and 2s  is the mean square error 
estimate of the variance. When the ratio of components 
exceeds 2.5, then all ordered observations after this value 
are considered as the prospective regression outliers.   
 

The package presents the final set of outliers found by the 
procedure. 
 
2.3 SMR procedure 
 
SMR which is a clustering based approach is suggested 
by Sebert et al (1998). In this procedure, the first job is to 
calculate the Euclidean distances between pairs of 
standardized predicted values and residuals from an OLS 
fit of the data. Then, observations are clustered by using 
single linkage clustering algorithm. Based on Mojena's 
stopping rule, the cluster tree (dendogram) is cut at a 

height of hsh 25.1+  and hence the final clusters are 

formed, where h is the average of the tree cluster heights 
for all N−1 clusters and sh is the unbiased standard 
deviation of the heights of the N−1 clusters. The purpose 
is to identify the bulk of the data as the inliers. All other 
observations are considered as outliers. See, Kim and 
Krzanowski (2007) for a modified version of SMR 
procedure.  
 
The package provides the prospective clusters and 
outliers detected by the procedure. The cluster tree which 
is useful to detect the outlier clusters visually is also 
presented. 
 
2.4 BCH procedure 

 
BCH proposed by Billor et al. (2006) has two main 
stages. In the first stage, the high leverage observations in 
the x-space which is spanned by the independent 
variables of regression are identified by the algorithms in 
Hadi (1992) and  Hadi (1994) to constitute a clean subset. 
Then, the procedure uses an iteratively re-weighted least 
squares routine where the weights are based on the robust 
distances to derive the final solution. The method is 
complemented by a simple diagnostic display in which 
the squared normalized distances are plotted versus the 
squared normalized residuals. This plot would be very 
useful in exploring the nature of all the observations, 
distinguishing among outliers, good leverages, and 
regular observations. The data points can be interpreted 
depending on where they locate on this plot. Billor et al. 
(2006) suggest the following 
 
• The points in the upper right region are both 
outliers and high leverage points. In other words, they are 
bad leverages. 
• The points in the lower right region are high 
leverage points but not outliers. In other words, they are 
good leverages. 
• The points in the upper left region are outliers 
but not high leverage points. In other words, they are 
vertical outliers. 
• The points in the lower left region are good or 
regular observations. 
• The outliers suggested by the BCH procedure 
are provided by the package as a set. The diagnostic plot 
of the procedure is also presented.  
 
2.5 LMS method and RZ diagnostic plot 
 
Least median of squares (LMS) which was first 
introduced by Rousseeuw (1984) as a high breakdown 
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method for regression minimizes hth largest squared 
residual and can resist the effect of nearly 50% of 
contamination in the data where h is integer part of 
(n+p+1)/2. The LMS procedure is first implemented in a 
computer software package entitled Program for RObust 
reGRESSion (PROGRESS) developed by Rouseeuw and 
Leroy (1987). Rousseeuw and Hubert (1997) prepared a 
new version of PROGRESS to facilitate its inclusion in 
S-PLUS and SAS/IML software. The algorithm in PURO 
is the same as in PROGRESS. This algorithm is to draw 
sub-sample of p different observations repeatedly. We 
consider the number of sub-samples as p×500, as 
suggested in Rousseeuw and Leroy (1987). If the 
standardized LMS residual of a data point is outside the 
interval [-2.5,2.5]  then it is declared as a regression 
outlier. We need to point out that there is no guarantee 
that the results of the LMS method will be the same on 
each run since the random procedure is used. The reader 
should also be aware of that even if the random algorithm 
used here takes less time than the brute force algorithms; 
it may be still time consuming when the sample size 
and/or the number of the independent variables are high.  
 
The minimum volume ellipsoid (MVE) method 
introduced by Rousseeuw (1985) seeks the ellipsoid of 
minimum volume containing at least h cases. After 
obtaining the MVE estimates, robust distances (RD) to 
the center of the ellipsoid can be calculated. If the robust 
distance of a data point exceeds the cutoff value 

2
975.0,pχ , then it is labeled as a multivariate outlier. 

Rousseeuw and Van Zomeren (1990) calculated robust 
distances and compared them with Mahalanobis distances 
for some classical data sets to show the robustness of 
MVE. Although MVE is generally used to detect 
multivariate outliers in data sets without a regression 
structure, when MVE is applied to x-space of regression 
and its results are combined with those of LMS, the 
nature of regression outliers can be explored. Rousseeuw 
and Zomeren's diagnostic plot in which LMS residuals 
are plotted versus robust distances of MVE does that job 
well by classifying the data into regular observations, 
vertical outliers, good leverage points, and bad leverage 
points. In Figure 2, we see an illustration of the plot we 
will call RZ diagnostic plot in the rest of the paper. MVE 
suggests that points to the right of the vertical border line 

through 2
975.0,pχ (The points in Region IV, V and VI) 

are leverage points, whereas LMS suggests that points 
outside the tolerance band [-2.5,2.5] (The points in 
Region I, III, IV and  VI) are regression outliers. Thus, 
we can expect to see the clean data points in Region II, 
bad leverages in Region IV and VI, the vertical outliers in 
Region I and III and finally the good leverages in Region 
V. 
 
The package provides the outliers explored by LMS 
method, and the RZ diagnostic plot to display the nature 
of the regression outliers.   

 
Figure 2. RZ diagnostic plot. 
 
2.6. MS data image 

 
The basic idea of MS procedure proposed by Marchette 
and Solka (2003) is to map the data into an image which 
provides a way to detect outliers and clusters within the 
data visually. In the method, after choosing a suitable 
distance metric, an n×n interpoint distance matrix 

)( ija is created where the ijth element is the distance 

between observations i and j, and n is the number of 
observations. Then, the matrix is transformed to a 
grayscale picture which is composed of shades of gray, 
varying from white at zero values to black at the 
maximum value. To investigate the potential outliers and 
clusters, one looks for some shades in the image. 
Generally, a "v" or "+" of dark is indicative of potential 
outliers. Figure 3 shows the examples of MS displays for 
two different data sets. On the left data image, the dark 
"v" indicates the observation 1 is outlier, on the right one, 
the dark "+" indicates the observations 5, 6 and 7 are 
outliers.

 
 
 

Figure 3: Two examples of MS data images 
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In the package, MS data image of a data set is given for 
Mahalanobis distances.  

 
3. THE PACKAGE AND AN APPLICATION 

 
Using the package is very easy, and no serious familiarity 
with Mathematica is required.  
 
The Mathematica package file PURO.m must be 
installed in some location so that it can be used by 
Mathematica Kernel. A simple way of doing this (there 
are many other ways which can be found in Mathematica 
web resources) is to copy the file into the   
 
Mathematica � 7.0 �AddOns � Applications         
 
folder on your computer's hard drive. Then, open a 
Mathematica notebook and load the PURO package by 
typing the following Mathematica command:  

 
<<PURO.m 
 
There is only one function to use:  
 
DetectOutliers[data,option1,option2].  
 
The user must specify two options in the function. The 
options must be set to True or False. First option deals 
with the intercept of the model. When the user selects 
True for this option, PURO performs a regression with a 
constant term. Otherwise, the program yields a regression 
through the origin.  
 
As indicated before, two of the seven outlier procedures 
employed in PURO may be time consuming when the 
sample size and/or the number of the independent 
variables are high. These are LMS method and RZ 
diagnostic plot. In Table 1 and 2, we see the CPU times 
of the program with and without these two methods for 
different values of n (the sample size) and p (the number 
of the independent variables). All times are averaged over 
25 runs on a Windows XP Professional system, P4, 2.7 
GHz, 512 MB RAM. Naturally, CPU times of PURO 
increase when n and p are increased. We also see that 
including LMS procedure and RZ diagnostic plot makes 
significant differences for large values of n and p. That is 
not so surprising since LMS and MVE inherently require 
excessive computations. The second option allows the 
user to exclude these two methods from the entire set. 
When the user selects True for this option, PURO 
performs all the procedures. Otherwise, the program does 
not apply LMS and RZ procedures, and gives the results 
of the remaining procedures.  
 
In brief, there are four possible usages of the function  

 
1) DetectOutliers[data,True,True]: A 
regression with intercept and all procedures performed  

2) DetectOutliers[data,False,True]: 
A regression through the origin and all procedures 
performed  
3) DetectOutliers[data,True,False]: 
A regression with intercept and LMS, and RZ procedures 
excluded  
4) DetectOutliers[data,False,False]
: A regression through the origin and LMS, and RZ 
procedures excluded  

 
The regression data in Mathematica must be a list of 
vectors. Each vector consists of the observed values of 
the independent variables and the associated response 
variable. Write your data as follows: 
    
myData={{x11,x12,....,y1},{x21,x22,....,y2},....}  
 
where xik is the value of the ith case of the kth 
independent variable and yi is the value of the ith case of 
the response variable. 
 
When you enter your regression data and type any of the 
four functions above Mathematica kernel makes all the 
calculations and gives the prospective outlier sets and 
graphics.  

 
 

Table 1. CPU times of PURO (in seconds) without LMS 
and RZ.  

p 

n 1 2 3 5 10 

20 0.54 0.56 0.59 0.61 0.67 

50 1.41 1.46 1.54 1.57 1.68 

100 3.90 4.05 4.34 5.17 5.48 

200 14.57 15.23 16.66 19.21 23.39 

500 107.14 118.96 134.44 159.96 228.68 

 

Table 2. CPU times of PURO (in seconds) with LMS and 
RZ. 

p 

n 1 2 3 5 10 

20 1.21 1.74 2.49 4.19 10.81 

50 2.27 3.17 4.37 7.22 17.49 

100 5.23 6.72 9.30 14.09 32.34 

200 16.89 21.35 25.23 35.33 69.82 

500 114.59 131.50 145.89 178.99 261.26 

The data set of 32 observations given in Table 3 is an 
artificial one created to illustrate the features of the 
package. As seen from the scatter plot in Figure 5, the 
majority of the data has a linear pattern. The observation  
 
 

28 is a good leverage point, the observation 29 is a 
vertical outlier, and the observations 30, 31 and 32 are 
bad leverage points. Let us examine the performances of 
the standard diagnostics and the outlier detection 
procedures for this data set. 
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Table 3. Artificial Data 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x 6.680 13.70 10.66 11.98 9.590 16.32 16.40 12.15 18.85 4.800 6.230 7.230 1.990 13.91 10.02 15.97
y 9.960 17.81 14.67 16.27 14.34 21.07 19.58 16.06 24.63 10.46 10.08 12.52 4.920 18.71 11.92 21.00 
 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

x 3.150 14.21 11.32 12.60 20.44 4.490 4.310 15.83 4.910 11.25 17.51 37.55 11.37 38.53 39.12 37.64
y 6.910 18.29 15.09 17.05 24.82 8.520 9.170 20.19 7.060 14.85 21.87 43.45 41.22 15.03 13.71 12.63 
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Figure 5. Scatter plot for the artificial data. 
 
There are three submenus of PURO: Procedures, 
Standard Diagnostics and Visual Diagnostics. Procedures 
menu has five submenus which show the results of five 
procedures described in Sections 2.1 through 2.5. In Fig. 
6, we see these submenus and the outliers identified by 
HS procedure. The other procedures suggest the 
following sets: 
 
SMR : {{28},{29},{30, 31, 32}} 
LMS : {10, 15, 29, 30, 31, 32} 
PY    :  {28, 29, 30, 31, 32}  
 

BCH :  {29, 30, 31, 32} 
 
SMR suggests the observations 28, 29, 30, 31, 32 are 
outliers. It also suggests that these suspected observations 
form three different groups. In LMS method, all outliers 
are found and two swampings occur (observations 10 and 
15). HS procedure finds all the outliers. The procedure is 
also successful in excluding the good leverage point 28 
from the bad leverage points. PY identifies all the outliers 
with one swamping. BCH procedure finds all the outliers 
without a swamping  

 
Figure 6. Procedures submenu of PURO and the identified outliers by HS procedure for  the artificial data. 
 
In Figure 7, we see the Standard Diagnostics submenu 
and the outliers identified by COVRATIO diagnostic. 
The other standard diagnostics suggest the following sets: 

Hat Diagonals    : {28, 30, 31, 32} 

Cook Distances :  {} 
DFBETAS         : {28, 29, 30, 31, 32} 
Stud. Res.          : {28, 29} 
DFFITS             : {28, 29} 
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Among the six standard diagnostics, Hat Diagonals and 
DFBETAS seem more successful than the other four 

diagnostics.   

 

 
 
Figure 7. Standard Diagnostics submenu of PURO and the identified outliers by COVRATIO diagnostic for the artificial data 
 
Visual Diagnostics submenu presents four displays: SMR 
cluster tree, RZ diagnostic plot, BCH diagnostic plot and 
MS data images. In Figure 8-11, we see these four 
displays.  
 
Referring to SMR cluster tree, it can be seen that below 
the red line there are four groups formed. Going across 
the tree from left to right, Group 1 consists of 
observations 1-27, Group 2 has only one member which 
is the data point 28, Group 3 consists of the observations 
30, 31 and 32, and finally Group 4 is a one-member 
cluster (observation 29) like the Group 2. Since the 
Group 1 contains the majority of the observations, this 
subset is the regular (inlying) observations. Thus the 
observations 28, 29, 30, 31, 32 forming the other groups 
are identified as the outliers. RZ diagnostic plot in Figure 

6 finds all the outliers. Recalling Figure 2, it can be seen 
that it is also successful in displaying the nature of the 
data, distinguishing among bad leverage points, vertical 
outliers, good leverage points, and the regular points. As 
mentioned in the above passages, BCH identifies all the 
outliers. The diagnostic plot of the BCH procedure in 
Figure 10 displays clearly the nature of all the data 
points. As one should expect, the regular observations 1-
27 are in the lower left region, vertical outlier 29 is in the 
upper left region, good leverage point 28 is in the lower 
right region and finally all the bad leverage points 30, 31 
and 32 are in the upper right region. MS data images in 
Figure 11 seems successful in identifying the outliers 
since there is a dark "v" including the observations 28-32 
in the upper right corner of the plots. There is one 
swamping in the procedure. 

 

 
 

Figure 8. Visual Diagnostics submenu of PURO and the SMR cluster tree for the  artificial data.  
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Figure 9. RZ diagnostic plot for the artificial data. 

 

 

Figure 10. BCH diagnostic plot for the artificial data. 
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Figure 11. MS Data images of interpoint distances matrix for the artificial data. 

 
4. CONCLUDING REMARKS 

In this paper, we presented our package PURO which 
implements some reliable outlier detection procedures in 
statistics literature. These procedures include both direct 
methods from algorithms and indirect methods from 
robust regression estimators. They also include purely 
graphical methods.  

The procedures HS, PY, LMS and MS identify the 
outliers without distinguishing among vertical outliers, 
good leverages, and bad leverages, whereas both RZ and 
BCH are proposed to classify the data into clean 
observations, vertical outliers, bad leverage points, and 
good leverage points. Although SMR procedure is not 
proposed to display the nature of outliers, each outlier 
cluster found by the procedure possibly include different 
type outliers.  

Although the outliers identified from each procedure may 
not be necessarily the same, the user would expect a 
general concordance between the procedures. For 
instance, the observations identified by both RZ and BCH 
diagnostic plots as the vertical outliers, good leverages 
and bad leverages will possibly lie in the different groups 
of SMR procedure, as in the application for the artificial 
data in the previous section.  

In the final analysis, the user can take initiative in making 
decisions about the outliers in her data by combining all 
the results to one resulting set.  
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