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ANALYSIS OF THE RAYLEIGH WAVE FIELD DUE TO A
TANGENTIAL LOAD APPLIED ON THE SURFACE OF A

COATED ELASTIC HALF-SPACE

ONUR ŞAHIN

Abstract. The paper deals with 3D dynamic response of a coated elastic
half space subject to in-plane surface loading. The problem is formulated by
a pair of elliptic equations over the interior and a two dimensional singularly
perturbed hyperbolic equation expressed in terms of shear wave potentials
along the interface. As an example, a point force acting one of the in-plane axis
is considered and the integral solution of the normal displacement along the
interface is derived through the use of the relation between the wave potentials.

1. Introduction

Propagation of surface waves has been the focus of intensive research since its
introduction by the monumental work of Rayleigh [1]. Rayleigh waves, therefore,
have been extensively studied by scientists and engineers due to their applicability
to acoustic, seismology, electromagnetism, among others. One of the most impor-
tant contribution to the Rayleigh wave was made by Friedlander who presented the
Rayleigh wave field for an elastic half plane in terms of arbitrary plane harmonic
functions [2]. In a later publication, Chadwick extended Friedlander’s analysis and
expressed the Rayleigh wave field in terms of a single harmonic function via a re-
lation between the wave potentials at the surface of the elastic half-plane [3]. This
relationship was, then, extended to three dimensions in [4].
The significance of the surface waves on an elastic half-plane or half-space mo-

tivates an alternative analysis under more general assumptions, which may help to
extract the Rayleigh wave contribution. Therefore, recent studies have generally
focused on employing approximate models to derive the Rayleigh wave contribu-
tion which is often hidden in the problem formulation, see, e.g., [5]—[8]. In [8], an
explicit model for the Rayleigh and Bleustein-Gulyaev surface waves was presented.
The derivations were based on perturbing in slow time the self-similar solution for
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Figure 1. Tangential loading on the surface of coated half-space

homogeneous surface waves given in [2] and [3]. Thus, the developed models for
the surface waves consisted of hyperbolic equation on the surface with two elliptic
equations in the interior domain. The formulation in [8] was later generalized to
the three dimensional linear, isotropic, coated elastic half-space taking into account
the effect of a thin coating [9]. The hyperbolic-elliptic model for surface wave on
an orthorhombic half space was presented in [10]. A surface wave of arbitrary pro-
file in anisotropic half-space was constructed by means of the Stroh formalism in
[11]. We also mention [12] which considered surface waves in a coated half-space
with a clamped surface because of the applicability of the hyperbolic-elliptic model
for surface wave in high frequency domain. Analysis of the Rayleigh field in a
three dimensional elastic half space subject to in-plane surface loading was given in
[13]. In addition we cite [14] summarizing the asymptotic model for Rayleigh and
Rayleigh type waves and [15] which includes a recent composite model joining both
low-frequency and high-frequency models. Along with the latest advancement of
technology, moving load problems also find various modern industrial applications
in modern engineering, see [16]-[19]. The developed hyperbolic elliptic models have
also been utilized for investigation of the near-resonant regimes of moving loads on
elastic and coated elastic half-spaces, see e.g [20]-[24].
The organization of the paper is described as follows. Section 2 contains the

statement of the problem, presenting the governing equations together with the
boundary conditions. In Section 3 an asymptotic model for the Rayleigh wave
field in the case of an elastic half-space coated with a thin layer is developed. An
illustrative example for the derived model is given in Section 4. In the last section
numerical computations based on the derived approximate formulae are presented.

2. Statement of the problem

Consider a 3D homogeneous isotropic elastic half-space coated by a thin layer of
constant thickness h, loaded with a tangential force of amplitude P , see Figure 1.
The equations of motion in 3D elasticity are written as (see, e.g. [25])

(λ+ µ)grad divu+ µ∆u = ρutt, (1)
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where u = (u1, u2, u3) is the displacement vector, ρ is the volume density and ∆ is
the 3D Laplace operator.
The constitutive relations for a linear isotropic elastic solid are given by

σij = λδijdivu+ µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, i = 1, 2, 3, (2)

where σij are the components of the Cauchy stress tensor, λ and µ are the Lamé
constants and δij is the Kronecker delta.
The boundary conditions at the surface x3 = 0 of the coating are specified as

(σ13, σ23, σ33) = −P. (3)

The tangential load may be decomposed through the Helmholtz theorem [25] as

P(x1, x2, t) = (∇P0 +∇× P̃) =
(
P (1), P (2), 0

)
, (4)

where

P̃ = (0, 0, P1) and
(
P (1), P (2)

)
=

(
∂P0
∂x1

+
∂P1
∂x2

,
∂P0
∂x2
− ∂P1
∂x1

)
. (5)

All of the equations above describe the substrate x3 > h. In the case of coating,
0 ≤ x3 ≤ h, subscript “0” is used for the material parameters, e.g. ρ0, λ0, µ0 etc.
Our first aim is to state the boundary conditions at the interface x3 = h. To

this end, taking into consideration the effective boundary conditions presented in
[9], the boundary conditions at the surface x3 = 0 may be carried on the surface of
the substrate. As a result, the boundary conditions at x3 = h can be written as

σi3 = µ

(
∂ui
∂x3

+
∂u3
∂xi

)
= ρ0h

{
∂2ui
∂t2

− c220

(
∂2u3
∂x2j

+ 4(1− κ−20 )
∂2ui
∂x2i

+(3− 4κ−20 )
∂2uj
∂xi∂xj

)}
− P (i),

(6)

and

σ33 = λ

(
∂ui
∂xi

+
∂uj
∂xj

)
+ (λ+ 2µ)

∂u3
∂x3

= ρ0h
∂2u3
∂t2

, i 6= j = 1, 2 (7)

where c10, c20 are the longitudinal and transverse wave speeds, ρ0 is the density of
the coating and κ0 = c10/c20.

3. Asymptotic Model

In this section an asymptotic model is established for the substrate governed by
equation (1) and subject to the effective boundary conditions (6)-(7) at the surface
x3 = h. First, on applying the Radon transform to the equations of motion (1), see
[26], the problem is reduced to a two-dimensional one and, then, the explicit model,
derived for an elastic half-plane in [8], is applied to the reduced two-dimensional
boundary value problem. Thus, an elliptic-hyperbolic model may be developed for
the considered problem.
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Let us apply the Radon transform to eqs. (1), (6) and (7), resulting, respectively,
in

[
(λ+ µ) cos2α+ µ

]∂2u(α)1

∂χ2
+ µ

∂2u
(α)
1

∂x23

+ (λ+ µ) cosα

(
sinα

∂2u
(α)
2

∂χ2
+
∂2u

(α)
3

∂χ∂x3

)
= ρ

∂2u
(α)
1

∂t2
,

[
(λ+ µ) sin2α+ µ

]∂2u(α)2

∂χ2
+ µ

∂2u
(α)
2

∂x23
,

+ (λ+ µ) sinα

(
cosα

∂2u
(α)
1

∂χ2
+
∂2u

(α)
3

∂χ∂x3

)
= ρ

∂2u
(α)
2

∂t2
, (8)

(λ+ µ)

(
cosα

∂2u
(α)
1

∂χ∂x3
+ sinα

∂2u
(α)
2

∂χ∂x3

)
+ µ

∂2u
(α)
3

∂χ2
,

+ (λ+ 2µ)
∂2u

(α)
3

∂x23
= ρ

∂2u
(α)
3

∂t2
,

and

σ
(α)
13 = µ

(
∂u

(α)
1

∂x3
+ cosα

∂u
(α)
3

∂χ

)
= ρ0h

[
∂2u

(α)
1

∂t2
− c220

(
sin2α

∂2u
(α)
1

∂χ2

+4
(
1− κ−20

)
cos2α

∂2u
(α)
1

∂χ2
+
(
3− 4κ−20

)
sinα cosα

∂2u
(α)
2

∂χ2

)]
(9)

−
(

cosα
∂P

(α)
0

∂χ
+ sinα

∂P
(α)
1

∂χ

)
,

σ
(α)
23 = µ

(
∂u

(α)
2

∂x3
+ sinα

∂u
(α)
3

∂χ

)
= ρ0h

[
∂2u

(α)
2

∂t2
− c220

(
cos2α

∂2u
(α)
2

∂χ2

+4
(
1− κ−20

)
sin2α

∂2u
(α)
2

∂χ2
+
(
3− 4κ−20

)
sinα cosα

∂2u
(α)
1

∂χ2

)]
(10)

−
(

sinα
∂P

(α)
0

∂χ
− cosα

∂P
(α)
1

∂χ

)
,

σ
(α)
33 = λ

(
cosα

∂u
(α)
1

∂χ
+ sinα

∂u
(α)
2

∂χ

)
+ (λ+ 2µ)

∂u
(α)
3

∂x3
= ρ0h

∂2u
(α)
3

∂t2
.
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Here, the Radon transform is defined as

u
(α)
k (χ, α, x3, t) =

∞∫
−∞

uk (χ cosα− ζ sinα, χ sinα+ ζ cosα, x3, t) dζ,

where
χ = x1 cosα+ x2 sinα, ζ = −x1 sinα+ x2 cosα

with the angle α varying on the interval 0 ≤ α ≤ 2π, see Figure 2. The original

Figure 2. Rotation of Cartesian frame

displacements may be written in terms of the transformed displacements as

u1 = uαχ cos(α)− uαζ sin(α), u2 = uαχ sin(α) + uαζ cos(α). (11)

Assuming that the surface wave field is not distributed by anti-plane motion, it can
be emphasized that uαζ = 0, see [9]. Substituting eq. (11) into eq. (8) and taking
into account the assumption above , eq. (8) takes the following plane problem form:

(λ+ 2µ)
∂2u

(α)
χ

∂χ2
+ µ

∂2u
(α)
χ

∂x23
+ (λ+ µ)

∂2u
(α)
3

∂χ∂x3
= ρ

∂2u
(α)
χ

∂t2
,

(λ+ µ)
∂2u

(α)
χ

∂χ∂x3
+ µ

∂2u
(α)
3

∂χ2
+ (λ+ 2µ)

∂2u
(α)
3

∂x23
= ρ

∂2u
(α)
χ

∂t2
,

(12)

with the boundary conditions

σ
(α)
χ3 = µ

(
∂u

(α)
χ

∂x3
+
∂u

(α)
3

∂χ

)
= µ0h

[
c−220

∂2u
(α)
χ

∂t2
− 4

(
1− κ−20

) ∂2u(α)χ

∂χ2

]
− ∂P

(α)
0

∂χ
,

(13)

σ
(α)
33 = λ

∂u
(α)
χ

∂χ
+ (λ+ 2µ)

∂u
(α)
3

∂x3
= ρ0h

∂2u
(α)
3

∂t2
.

It is well known that the displacement vector u may expressed through the sum
of gradient of scaler potential φ and the curl of a vector potential ψ, that is

u = ∇φ+∇×ψ, (14)
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where ψ = (−ψ2, ψ1, 0), see [25] and [9]. Thus, the transformed displacement
components can be expressed in terms of the transformed wave potentials as

u(α)χ =
∂φ(α)

∂χ
− ∂ψ(α)

∂x3
and u

(α)
3 =

∂φ(α)

∂x3
+
∂ψ(α)

∂χ
. (15)

On inserting the transformed potentials into displacement and boundary equations
(12) and (13) we obtain

∂2φ(α)

∂χ2
+
∂2φ(α)

∂x23
− 1

c21

∂2φ(α)

∂t2
= 0,

∂2ψ(α)

∂χ2
+
∂2ψ(α)

∂x23
− 1

c22

∂2ψ(α)

∂t2
= 0,

(16)

and

µ

[
2
∂2φ(α)

∂χ∂x3
+
∂2ψ(α)

∂χ2
− ∂2ψ(α)

∂x23

]
= µ0h

[
c−220

(
∂3φ(α)

∂χ∂t2
− ∂3ψ(α)

∂x3∂t2

)

−4
(
1− κ−20

)(∂3φ(α)
∂χ3

− ∂3ψ(α)

∂x3∂χ2

)]
− ∂P

(α)
0

∂χ
,

µ

[(
κ2 − 2

) ∂2φ(α)
∂χ2

+ κ2
∂2φ(α)

∂x23
+ 2

∂2ψ(α)

∂χ∂x3

]
= µ0hc

−2
20

(
∂3φ(α)

∂x3∂t2
+
∂3ψ(α)

∂χ∂t2

)
.

(17)
where c1 and c2 are the longitudinal and shear wave speeds and κ = c1/c2. It can
easily be seen from the boundary equations that the surface wave is only induced
by gradient part of the applied load P0.
The considered three dimensional problem of elasticity, thus, is reduced to a

two dimensional plane problem with the help of the Radon transform. We can
now employ the explicit model dealing with the wave propagation along the surface
of the two dimensional elastic half-plane with the Rayleigh wave speed, see [8].
Following the same asymptotic methodology performed in [8] and [9], the wave
equations (16) are cast into a pair of elliptic equations in the interior of the half
plane, given by

∂2φ(α)

∂x23
+ k21

∂2φ(α)

∂χ2
= 0,

∂2ψ(α)

∂x23
+ k22

∂2ψ(α)

∂χ2
= 0.

(18)
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Similarly, the boundary conditions (17) give a partial differential equation along
the surface x3 = h

∂2ψ(α)

∂χ2
− 1

c2R

∂2ψ(α)

∂t2
+
bh

k2

∂3ψ(α)

∂χ2∂x3
=

(
1 + k22

)
2µB

∂P
(α)
0

∂χ
, (19)

with the relation between the wave potentials on the surface expressed through

∂ψ(α)

∂χ
= − 2

1 + k22

∂φ(α)

∂x3
, or

∂φ(α)

∂χ
=

2

1 + k22

∂ψ(α)

∂x3
, (20)

where k2i = 1− c2R/c2i ; i = 1, 2, m = µ0/µ and

B =
(
1− k21

) k2
k1

+
(
1− k22

) k1
k2
−
(
1− k42

)
,

b =
m

2B

(
1− k22

) [(
1− k220

)
(k1 + k2)− 4k2

(
1− κ−20

)]
.

(21)

By taking the inverse Radon transform of eqns. (18)-(20) we arrive at the asymp-
totic formulation given by two elliptic equations in the interior

∂2φ

∂x23
+ k21∆2φ = 0,

∂2ψi
∂x23

+ k21∆2ψi = 0, i = 1, 2, (22)

with the surface equation along the plane x3 = h

∆2ψi −
1

c2R

∂2ψi
∂t2

− bh
√
−∆2∆2ψi =

(
1 + k22

)
2µB

∂P0
∂xi

, i = 1, 2, (23)

and the relations between the potentials

∂φ

∂xi
=

2

1 + k22

∂ψi
∂x3

, (i = 1, 2),
∂ψ1
∂x1

+
∂ψ2
∂x2

= − 2

1 + k22

∂φ

∂x3
, at x3 = h, (24)

where ∆2 = ∂21 + ∂22 and
√
−∆2 is a pseudo differential operator, see [9].

4. Illustrative Example

In this section, the dynamic response of the coated elastic half space, which is
loaded by a tangential force, is evaluated within the framework of the asymptotic
formulation derived in the previous section. Consider a tangential point load acting
along the x1 axis given by

P = (Mδ(x1)δ(x2)δ(t), 0, 0) . (25)

From the decomposition introduced in (5), P may be written as

(Mδ(x1)δ(x2)δ(t), 0, 0) =

(
∂P0
∂x1

+
∂P1
∂x2

,
∂P0
∂x2
− ∂P1
∂x1

, 0

)
,

resulting in
∆2P0 = Mδ′(x1)δ(x2)δ(t), (26)



ANALYSIS OF THE RAYLEIGH WAVE FIELD 165

where ∆2 = ∂21 + ∂22 is two dimensional Laplacian. On using the well-known fun-
damental solution for two dimensional Laplace operator, [27],

E (x1, x2) =
1

4π
ln
(
x21 + x22

)
, (27)

P0 may be expressed as the convolution of eq. (26) with the fundamental solution
(27), namely

P0 (x1, x2, t) = E (x1, x2) ∗Mδ′(x1)δ(x2)δ(t) =
M

2π

x1
x21 + x22

δ(t). (28)

Thus, the hyperbolic equations on the surface x3 = h are written as

∆2ψ1 −
1

c2R

∂2ψ1
∂t2

− bh
√
−∆2∆2ψ1 = M0

x22 − x21
(x21 + x22)

2 δ(t), (29)

∆2ψ2 −
1

c2R

∂2ψ2
∂t2

− bh
√
−∆2∆2ψ2 = −2M0

x1x2

(x21 + x22)
2 δ(t), (30)

where

M0 =
M(1 + k22)

4πµB
. (31)

Introducing scaled variables

η1 =
x1
b h
, η2 =

x2
b h
, τ =

cR
b h

t, (32)

the surface equations (29) and (30) take the forms

∂2ψ1
∂η21

+
∂2ψ1
∂η22

−∂
2ψ1
∂τ2

−

√
−
(
∂2

∂η21
+
∂2

∂η2

)(
∂2ψ1
∂η21

+
∂2ψ1
∂η22

)
=
M0cR
bh

η22 − η21
(η21 + η22)

2 δ(τ),

(33)

∂2ψ2
∂η21

+
∂2ψ2
∂η22
−∂

2ψ2
∂τ2

−

√
−
(
∂2

∂η21
+
∂2

∂η2

)(
∂2ψ2
∂η21

+
∂2ψ2
∂η22

)
=
-2M0cR
bh

η1η2

(η21 + η22)
2 δ(τ).

(34)

Let us first consider the surface equation of shear potential ψ1. Applying a double
Fourier and a Laplace transform to eq. (33) result in

ψFFL1 = −M0cR
bh

ξ21(
ξ21 + ξ22

)(
s2 +

(
ξ21 + ξ22

)(
1−

√
ξ21 + ξ22

)) (35)
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where (ξ1, ξ2) and s are the Fourier and Laplace transform parameters, respectively.
Taking the inverse double Fourier and Laplace transforms gives

ψ1(η1, η2, τ) = −M0cR
4π2bh


∫
ρ>1

ξ21 e−ρ
√
ρ−1 τ

2ρ3
√
ρ− 1

eiρ·rdρ

+

∫
ρ<1

ξ21 sin
(
ρ
√

1− ρ τ
)

ρ3
√

1− ρ eiρ,·rdρ

 ,

(36)

where r = (η1, η2) = (r cos θ, r sin θ) and ρ = (ξ1, ξ2) = (ρ cosω, ρ sinω) with
|r| = r and |ρ| = ρ. The above integral may then be written as

ψ1(r, θ, τ) = −M0cR
4π2bh


∞∫
1

e−ρ
√
ρ−1 τ

2
√
ρ− 1

2π∫
0

cos2 ω eirρ cos(ω−θ)dωdρ

+

1∫
0

sin
(
ρ
√

1− ρ τ
)

√
1− ρ

2π∫
0

cos2 ω eirρ cos(ω−θ)dωdρ

 .

(37)

Using the trigonometric relation for cos2 ω the first integral in the above equation
can be written as

2π∫
0

cos2 ω eirρ cos(ω−θ)dωdρ =
1

4

2π∫
0

(
e2iω + e−2iω + 2

)
eirρ cos(ω−θ)dωdρ. (38)

Changing the variable ω − θ = γ, the first integral on the right hand side of (38)
takes the form

2π∫
0

e2iω eirρ cos(ω−θ)dω = −e2iθ
2π+θ0∫
θ0

ei(2γ−rρ sin γ)dγ = −2πe2iθJ2(rρ), (39)

where θ0 = −θ − π/2 and J2(rρ) is Bessel function of the first kind defined as

Jn(x) =
1

2π

π∫
−π

ei(x sin γ−nγ)dγ.

Similarly, the second and third integrals on the right hand side of (38) are written,
respectively, as

2π∫
0

e−i2ω eirρ cos(ω−θ)dω = −2πe−2iθJ−2(rρ), (40)
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and

2

2π∫
0

eirρ cos(ω−θ)dω = 4πJ0(rρ). (41)

The shear potential ψ1, thus, can be expressed in terms of Bessel functions of the
first kind as

ψ1(r, θ, τ) =
M0cR
4π bh


1∫
0

sin
(
ρ
√

1− ρ τ
)

√
1− ρ (cos 2θJ2(rρ)− J0(rρ)) dρ

+

∞∫
1

e−ρ
√
ρ−1 τ

2
√
ρ− 1

(cos 2θJ2(rρ)− J0(rρ)) dρ

 .

(42)

Repeating an almost identical procedure, the shear potential ψ2 may be put in the
form

ψ2(r, θ, τ) =
M0cR
4π bh

sin 2θ


1∫
0

sin
(
ρ
√

1− ρ τ
)

√
1− ρ J2(rρ)dρ

+

∞∫
1

e−ρ
√
ρ−1 τ

2
√
ρ− 1

J2(rρ)dρ

 .

(43)

It is known from eq. (14) that the normal displacement at the surface x3 = h may
be given in terms the wave potentials by

u3|x3=h =
∂φ

∂x3
+
∂ψ2
∂x1

+
∂ψ1
∂x2

,

which can be expressed in terms of the new variables as

u3|x3=h =
1− k22

2bh

(
cos θ

∂ψ1
∂r
− sin θ

r

∂ψ1
∂θ

+ sin θ
∂ψ2
∂r

+
cos θ

r

∂ψ2
∂θ

)
. (44)

On using the relation between the potentials (24), it is possible to write the scaled
normal displacement from the related derivative of the integral expressions of ψ1
and ψ2 as

U3(r, θ, τ) = cos θ


1∫
0

sin
(
ρ
√

1− ρ τ
)

√
1− ρ ρJ1(rρ)dρ+

∞∫
1

e−ρ
√
ρ−1 τ

2
√
ρ− 1

ρJ1(rρ)dρ

 , (45)

where

U3 =
4πb2h2

McR(1− k22)
u3. (46)

As it is formidable to calculate the integrals in equation (45) analytically we employ
numerical integration schemes to illustrate the surface displacement.
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5. Numerical Results

In this section numerical illustrations of the scaled longitudinal displacement U3
defined in (45) are presented. Fig. 3 shows the variation of the vertical displacement
U3 on the variable r depending on θ at τ = 1. As might be expected, the amplitude
of the normal displacement U3 decreases away from the surface load. Another
important point is that the dispersive effect of the coating causes smoothing of
the discontinuities, arising in the uncoated half-space problem, see [13]. It should
also be emphasized that the normal displacement becomes zero at θ = π/2, 3π/2
because of the definition of U3, see (45). Since we concerned with the tangential
load applied on the surface, a load applied perpendicular to the surface results in
nonzero displacement. The variation of the displacement U3 on the angle θ for
several values of the polar distance r at τ = 0.01 is depicted in Fig. 4. Similar to
the previous case, the magnitude of displacement decreases for the larger values of
r. It is also observed that the displacement becomes zero at θ = π/2 and θ = 3π/2
because the applied load, then, becomes perpendicular.

Figure 3. The scaled vertical displacement U3 versus r

Figure 4. The scaled vertical displacement U3 versus θ
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6. Conclusions

In this paper, a 3D problem for a coated elastic half-space loaded by a tangential
force along the surface is investigated. A long wave model for the coated half space
derived in [9] and an asymptotic model for the in-plane surface wave of elastic
half-space derived in [13] have been extended to the case of an in-plane loading
for a three-dimensional elastic half-space coated by a thin layer. The problem
is, then, formulated by two elliptic equations in the shear potentials ψ1 and ψ2
over the interior and a two-dimensional hyperbolic equation singularly perturbed
by a pseudo-differential operator given along the interface x3 = h, see (24). The
longitudinal and shear potentials are also related at x3 = h. It can be seen from
the established model that the rotational part of the tangential load does not have
any effect on the boundary equation clearly seen in (23). An integral solution of the
normal displacement is expressed for the illustrative examples of point load acting
on one of the in-plane axis. This solution shows that there is no displacement for
a load applied perpendicular to the the surface of the half-space. It can be also
observed that the presence of a coating results in smoothing the singularities arising
in the corresponding problem of an uncoated half space, see [13].
The proposed approach may be generalized to more complicated structure in-

cluding the effects of pre-stress, anisotropy, layered structures and viscosity, see
[28]—[30]. The obtained asymptotic formulation may also be applied to in-plane
moving load problems, see e.g. [20] and [21].
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