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ABSTRACT 

Simultaneous consideration of both demand and price uncertainties is not studied extensively in the literature.  
This problem is mathematically intractable for cases where complex problem structure exists.  This study 
proposes new heuristics that consider demand and purchasing price uncertainties simultaneously. When all the 
costs are constant over time, this is the classical dynamic lot sizing problem for which the optimal solution can 
be obtained by the Wagner-Whitin algorithm. Purchasing decisions are made on a rolling horizon basis rather 
than fixed planning horizon. Well-known Least Unit Cost and Silver-Meal algorithms are modified for both 
time varying purchasing price and rolling horizon. The proposed heuristic is basically based on a cost-benefit 
evaluation at decision points. A numerical example is explained for showing how heuristics are working in 
detail. The aim of study is to enlighten about problem that is taken into account. 
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1. INTRODUCTION 

Inventory management is one of the important areas 
where management science has had a significant 
impact. Systems that need inventory can range from 
raw materials, spare parts, cash, and finished goods to 
hotel rooms and airline flight seats. The major decisions 
in inventory control concern when a replenishment 
order should be placed and what the quantity of such an 
order should be. The conventional inventory models can 
be placed into two categories: deterministic and 
stochastic. In deterministic models, all input data are 
assumed deterministic and given, and based upon the 
known data a model is applied to minimize the total 
inventory costs. 

In stochastic models, a probabilistic distribution of the 
input data is specified, and a mathematical model is 
used to minimize the total expected inventory costs. 
Silver [1] suggested a heuristic procedure for the 
stochastic lot-sizing problem assuming that the forecast 
errors are normally distributed. 

The rolling horizon approach is commonly applied 
because forecasts for periods further in the future are 
likely to be both of poorer quality and more expensive 
to make. In the rolling horizon procedure, one first 
solves a finite horizon forecast window (M) period 

problem but implements only the decision related to the 
first period. Next period the inventory status is revised, 
the multi-period problem is updated as better forecasts 
become available, and the approach continues until the 
end of the planning horizon [2]. 

The ‘‘static-dynamic uncertainty’’ strategy proposed by 
Bookbinder and Tan [3] is one approach to work out the 
parameters of non-stationary (R,S) policies. 
Bookbinder-Tan’s solution heuristic is a two-stage 
process of firstly fixing the replenishment periods and 
then secondly determining what adjustments should be 
made to the planned orders as demand is realized. The 
total cost, composed of ordering and inventory holding 
costs, is minimized under a minimal service level 
constraint. 

A formulation of Bookbinder and Tan problem that 
determines both the replenishment periods and the 
associated order-up-to-levels simultaneously, hence 
gives the optimal solution, is presented by Tarim and 
Kingsman [4]. In addition to the inventory holding and 
ordering costs of Bookbinder and Tan, Tarim and 
Kingsman take into account the direct item costs. The 
expected total cost during the planning horizon is 
minimized also under a minimal service level 
constraint. 
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Chan et al. [5] consider the problem of determining 
order quantities of a single product to satisfy known 
demands over some finite set of future periods with 
varying cost parameters. When all the costs are constant 
over time, this is the classical dynamic lot sizing 
problem for which the optimal solution can be obtained 
by the Wagner-Whitin (WW) algorithm. 

When the ordering, purchasing and holding costs vary 
over time, the problem becomes more complicated with 
the possibility of speculation and hedging on the timing 
of ordering and on-hand inventories. No heuristic 
algorithm has been developed and the existing 
heuristics are not readily applicable. Chan et al. develop 
new heuristic algorithms for the lot sizing problem with 
time varying cost parameters and without backlogging 
[5]. 

2. PROBLEM STATEMENT 

This paper deals with the simulation modelling of the 
multi-period single-item lot sizing problem with 
stochastic non-stationary demand and price on a rolling 
horizon basis. This paper is similar to Bookbinder and 
Tan [3], Tarim and Kingsman [4] papers.  Stochastic 
demand process in our simulation model is based on 
non-stationary stochastic demand that Tarim and 
Kingsman [4] proposed. We extend these works by new 
assumptions. We assumed that purchasing price has 
uniform distribution. The purchasing price uncertainty 
is not the only difference from these papers. The 
simulation model permits lost sale (outsourcing) and 
backordering. One of the new assumptions is minimum 
order quantity (R). A new order can not be less 
minimum order quantity. This paper proposes three new 
heuristics based on a rolling horizon to this problem. 
We revise the well-known Silver-Meal (SM) and Least-
Unit Cost (LUC) heuristic for varying purchasing price 
and rolling horizon. So, we get Revised Silver-Meal 
heuristic (RSM) and Revised Least-Unit Cost (RLUC) 
heuristics. Last heuristic is a new proposed heuristic 
that evaluates the cost of giving a new order for the 
benefit of giving a new order from demand and price 
expectations at decision points. We call this new 
heuristic Cost-Benefit (CB) heuristic. 

We explain our problem formulation starting with the 
simplest deterministic case and then extending the 
formulation with stochastic demand and price. We first 
briefly describe the deterministic version of problem. 

Problem-1 (Deterministic Case) 

In this problem, demand and price are known with 
certainty. Lead-time is zero. There is no permission to 
backorder. The problem is to determine lot sizing 
decisions that minimize the total relevant cost (TRC) 
subject to the demand constraint as the following [3]. 

{ }Minimize TRC .
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TRC is equal to the sum of set-up cost (S), holding cost 
(h) and purchasing cost (v). Equation 1 is the 
mathematical expression for inventory balance of all 
periods with no backorders. Xt, lot size in period t. 
( )tXδ  is a binary variable that takes the value of 1 if a 

replenishment order is placed in period t.  It is inventory 
level at the end of period t. 

Problem 2 (Stochastic Case)  

Bookbinder and Tan [3] formulate the stochastic 
demand problem as a chance-constrained programming 
problem. The objective is minimization of the Expected 

Total Relevant Cost ( [ ]E TRC ) over a finite number of 

periods T, subject to inventory service-level constraints. 
Their original mathematical formulation is as follows:   
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Equation 4 states the service-level constraint. The static 
uncertainty decision rule requires that values of all 

decision variables be determined at the beginning of the 

time horizon. Since all tX , in this strategy are decided 

at the beginning of period 1 and can be considered 

constants, the random variables tI of Problem 2 can be 

obtained from (6) as 

0
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Applying equation (8) to constraint (4), we have 
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Problem 3 (Proposed Stochastic Formulation) 

Bookbinder and Tan [3] showed the mathematical 
structure of static dynamic model was the same as the 
deterministic model in their work. They proposed 
heuristics to solve this problem like deterministic 
problem. They used a transformation procedure from 
stochastic problem to deterministic problem. They 
proposed a procedure for the probabilistic lot sizing 
problem in a rolling horizon environment. They ignored 
the unit variable cost in the determination of lot sizing. 

Tarim and Kingsman [4] extend a single-item stochastic 
lot sizing problem with stochastic demands and service-
level constraint with the purpose of determining 
replenishment quantity without considering the lead-
time. Tarim and Kingsman expanded Bookbinder and 
Tan studies by taking deterministic unit variable cost 
into account. Tarim and Kingsman used fix planning 
instead of rolling horizon. 

We use same analogy that was used by Bookbinder and 
Tan with some differences. We assumed that 
purchasing price (Vt) is non-stationary and stochastic as 
demand. We use demand (E(Dt)) and price expectations 
(E(Vt)) in our simulation decision process. The cost 
components which we taken purchasing cost, set-up 
cost (S), holding cost (h), lost sale cost (l) and 
backordering cost (e) into account. Total relevant cost 
(TRC) is equal to the sum of these cost components. We 
use simulation to model this non-stationary stochastic 
inventory model. 

We made certain assumptions for modelling non-
stationary stochastic inventory system. Our formulation 
is more realistic with the following characteristics: 

Demand sizes are assumed to be normal random 
variable, and prices are uniform random variable. 

Expected value for demand size and price are required 
before the lot sizing decisions. 

Both stationary and non-stationary demand and price 
patterns are permitted. 

Partial or complete backlogging (or lost sale) is 
permitted. Order lead time is zero. 

We assumed that the demand in each period is normally 
distributed about the expected value with a constant 
coefficient variation (CVd). It is a well accepted 
assumption in the non-stationary stochastic dynamic lot 
sizing literature [3, 4]. We assumed that the demand in 

each period is normally distributed about the forecast 
value with the same coefficient of variation in our work. 
The mean rate of demand and price may vary from 
period to period. Coefficient of variation is constant 
over time to use cumulative distribution of demand [3]. 
It is a well-accepted assumption in the literature [3, 4]. 
We assumed price is uniform random variable for the 
aim of easy understanding and coefficient of variation is 
constant over time to use cumulative distribution of 
price. 

Overall, decision-making process undertaken in this 
study is illustrated in Figure 1. Figure-1 is a flow chart 
that summarizes associate steps and decisions for all 
heuristics through planning horizon length (T). 
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       Figure 1. Illustration of decision-making process. 
 

The initial inventory level (I0) is taken as zero. In first step, 
user should enter R, S, h, M, T, b, e, l, Z, dCV , pCV , 

α, ( )tE D , ( )tE V  values. Process aim is to make stock 

level upto target level, which called order-up level by 
orders. We calculated order-up level by equation (10). OLt 
is order up level in period t. J is order number. Z is standard 
normal value corresponding to α service level. Backorder 
ratio (b) is determined by user at the beginning of the 
planning period. b value is a ratio of backordered demand to 
unsatisfied demand (Eq.11). Unsatisfied demand (UDt) 
quantities are known at the end of the period. The 
backordered (BOt) (Eq.12) and lost demand (LDt) (Eq.13) 
quantities are calculated by b value. 

 

[ ] ( ) [ ] [ ]

1
1 1 1 22. . .

r J r J r J

t t t d tD r J
t r t r t r

OL E d Z S E d Z CV E dα α

+ − + − + −

+
= = =

 
 = + = +
 
 

∑ ∑ ∑
   (2.10) 

t

t

BO
b

UD
=                                                                        (2.11) 

.t tBO bUD=                                                                  (2.12) 

t t tLD UD BO= −                                                          (2.13) 

Calculation of order size tQ  depends on the following 

cases. The first two cases are common for all three 
heuristics. In case I, inventory level is enough to satisfy the 
total demand which covers j period. The order which is 
given is cancelled. In case II, inventory level is not enough 
and the system gives order with amount of Qt. We assumed 
that the order quantity can not be less than minimum order 
quantity (R). We must satisfy the total backordered demand 
(TBOt-1) up to period t. If there is an unsatisfied demand, 
Case III is valid for RSM and RLUC while Case IV is used 
for CB. The CB heuristic gives the amount of order in Case 

IV. The 
S

h
 ratio, commonly used in lot sizing literature, 

shows whether total demand of covering periods are 

ordered as a single or multiple orders. We assume that 
S

h
 is 

order up level in CB heuristic. Our intention is upgrade 

inventory level is up to 
S

h
 ratio by new order. This is one 

of different character of CB heuristic from other heuristics. 

tQ  is always positive because of the inventory level of 

previous period in case 4 being negative. 

Case I : if tt OLI ≥−1  then 0=tQ  

 END  M=M+1 

Enter input variables 
R, S, h, M, T, b, e, l, Z, CVd, CVp, α, E(Dt), E(Vt) 

 

Release the order with Qt 
 

Feed the realized Dt  and Vt  
 

Calculate r, J, OLt  and Qt  
 

Determine the order plan  
 

RSM 

 RLUC 

 CB 

               Is 
           M>T? N Y 
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Case II : if tt OLI <−1  and   01 ≥−tI  then  

( )( )RITBOOLMaxQ tttt ,11 −− −+=
 

Case III: if tt OLI <−1  and 01 <−tI  then 

( )( )RTBOOLMaxQ ttt ,1−+=
 

Case IV: if tt OLI <−1 and 01 <−tI then 







−= −1tt I

h

S
Q  

 

These order quantities covering a forecast window (M) 
form an order plan. All heuristics may revise the order plan 
on a rolling horizon basis as actual demand size and prices 
are fed into the system until the end of planning horizon (T) 
is reached. 

3. HEURISTICS 

In this section of the study revisions which were carried out 
in order to use SM, LUC in the conditions where demand 
and price are uncertain. First, we revise the well-known SM 
heuristic for varying purchasing price and rolling horizon. 
SM heuristic seeks the minimum Total Relevant Cost per 
Unit Time (TRCUT) as shown in equation (14). We state 
different notations in order not to confuse formulation for 
stochastic case with formulations for deterministic case. We 
use t notation for stochastic case and i notation for 
deterministic case. Equation-14, 15, 16 and 17 are for 
deterministic cases. Equation 14 shows the calculation of 
total relevant cost per unit time that determines whether an 
order is given or not in SM heuristic. Similarly, equation 15 
shows the calculation of total relevant cost per unit 
quantity. We also revise LUC heuristic in the same way as 
SM. In LUC, whether to include demand of time period t is 
determined by Total Relevant Cost per Unit Quantity 
(TRCUQ) as shown in equation (15). N shows the number 

of periods of order which iX covers. The order size for 

deterministic case is iX calculated by equation (16). 

Equation 17 shows the calculation of total cost for time 
varying price in deterministic case. 
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Extending TRCi to include time-varying deterministic 
purchasing price and holding cost results in the following 
equation: 

( ) ii
N

i ii XVDihSTRC +−+= ∑ =2
1                               (3.4) 

CB, RLUC and RSM heuristics take the simultaneous 
consideration of both demand and price uncertainties into 
account. Heuristics use expected demand and price of 
periods for calculating expected TRCt. Expected TRCt 
which includes time varying stochastic purchasing price and 
holding cost is presented by equation 18. Equation 18 states 
this case. 

( ) ( ) ( ) ( ) tt
N

t tt QVEDEthSTRCE +−+= ∑ =2
1                (3.5) 

TRCt of CB is the same as RSM and RLUC. TB is the 
benefit cost (no set-up cost and lower purchase cost) of 
combining ordering period and trial period demands instead 
of giving a new order in trial period. TL is the lost cost 
(higher holding cost and purchase cost) of combining 
ordering period and trial period demands instead of giving a 
new order in trial period. The rationale behind CB heuristic 
is evaluating cost with the benefit of combining trial period 
demand. We compare TB with TL for CB heuristic. CB 
heuristic determines order plan by these comparisons. 

ACP is the value of total relevant cost per unit time in the 
ordering period, (TRCUTr). NCP is the value of total 
relevant cost per unit time in the trial period (TRCUTu). 
ACD is the value of total relevant cost per unit quantity in 
the ordering period, (TRCUQr). NCP is the value of total 
relevant cost per unit quantity in the trial period (TRCUQu). 
The rationale behind these heuristics is evaluating cost for 
the benefit of combining trial period demand. We compare 
ACP with NCP for RSM heuristic and ACD with NCD for 
RLUC heuristic. If first notation is greater than second 
notation then trial period demand is added to total demand 
and no order is given, else a new order is given with the 
amount of total demand until this period. Associate 
procedure of heuristics is given in Table 1. 
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Table 1. Associate procedure for heuristics. 
 
Step 1: Determine R, S, h, M, b, e, l, Z, CVd, CVp, E(Dt), E(Vt). Go to Step 2 for RSM.  

Go to Step 3 for RLUC. Go to Step 4 for CB. 
Step 2: Calculate ACP, NCP.  If ACP NCP>   then go to Step 5 else go to Step 6. 
Step 3: Calculate ACD, NCD.  If ACD NCD>  then go to Step 5 else go to Step 6. 
Step 4: Calculate TB, TL.   If TLTB >    then go to Step 5 else go to Step 6. 
Step 5: Assign 0J =  and 1u u= + . Go to Step 7. 
Step 6: Assign   t r= .  Determine J u r= − .  Assign r u= .  

Go back Step 2 for RSM, Step 3 for RLUC and Step 4 for CB. 
Step 7: If  0J >  then go to Step 8, else Step 9. 
Step 8: Calculate tOL .  If  1t tI OL− >   then go to Step 9 else go to Step 12. 

Step 9: Assign 0tQ = . No order is given. 

Step 10: If   1 0tI − <   then go to Step 11 for RSM and RLUC, go to Step 12. Else go to Step 13.  

Step 11: Give the order which amount is ( )( )1 ,t t tQ Max OL TBO R−= +  then go to Step 14. 

Step 12: 
Give the order which amount is

  








−= −1tt I

h

S
Q

 
 and go to Step 14. 

Step 13: Give the order which amount is ( )( )1 1 ,t t t tQ Max OL TBO I R− −= + − . 

Step 14: Determine Vt , Dt and It. Calculate TRC.  
Step 15: If planning horizon is over then stop. Else go to Step 16 
Step 16: If forecast window is over then determine new period’s expectation. Then assign r=r+1 and go to step 2 for 

RSM or Step 3 for RLUC. Else assign t=t+1 and go to step 2 for RSM, step 3 for RLUC, step 4 for CB. 
 

4. NUMERICAL EXAMPLE 

Parameters considered in the example are shown in Table 2. 
The initial inventory level is taken as zero. It is assumed 
that the demand in each period is normally distributed about 
the expected value with 0.33dCV = . The price in each 

period is uniformly distributed about the expected value 
with 0.33pCV = . b=0.5 means, 50 % percent of unsatisfied 

demand are backordered and 50 % percent of unsatisfied 
demand are lost. Expectations of demands and prices for 
periods are shown in Table 3. The rolling procedure and  

 

RSM heuristic solution of example are shown in Figure 2. 
Realized data of applications of heuristics are shown in 
Table 4, 5 and 6. RSM heuristic solved the given example 
by 4 orders and total cost of 20,096 currency unit. RSM 
heuristic is less sensitive than CB. For that reason RSM 
gives order in periods when prices are high. The rolling 
procedure and RLUC heuristic solution of example is 
shown in Figure 3. RLUC heuristic solved example as 5 
orders and total cost of 15,180 currency unit. The rolling 
procedure and CB heuristic solution to the example is as 
shown in Figure 4. 

 

 

 

Table 2. Parameters considered in the example. 

CVd CVp T M S h b R α e 

0.33 0.33 10 5 400 1 0.5 100 90 20 
 
 

 

 

Table 3. Expectations of demands and prices for periods. 

Period 1 2 3 4 5 6 7 8 9 10 

E(dt) 150 134 129 148 125 158 155 165 137 177 

E(Vt) 10 9 8 9 8 12 9 10 11 10 
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t= 1* 2 3 4* 5           

E(dt) 150 134 129 148 125           
E(Vt) 10 9 8 9 8           
 OL1=515 Q1=515        

t= 1 2 3 4* 5 6*         

E(dt) 150 134 129 148 125 158         

E(Vt) 10 9 8 9 8 12         

    OL4=370 Q4=224     

t= 1 2 3 4* 5 6* 7       

E(dt) 150 134 129 148 125 158 155       

E(Vt) 10 9 8 9 8 12 9       

      OL6=407 Q6=323  

t= 1 2 3 4* 5 6* 7 8*     

E(dt) 150 134 129 148 125 158 155 165     

E(Vt) 10 9 8 9 8 12 9 10     

           

t= 1 2 3 4 5 6* 7 8* 9   

E(dt) 150 134 129 148 125 158 155 165 137   

E(Vt) 10 9 8 9 8 12 9 10 11   

           

t= 1* 2 3 4* 5 6* 7 8* 9 10 

E(dt) 150 134 129 148 125 158 155 165 137 177 

E(Vt) 10 9 8 9 8 12 9 10 11 10 
* ordering periods    OL8=598 Q8=558 

                           

Figure 2. The rolling procedure and RSM heuristic solution. 

 

 

 

 

 

 

Table 4. Realized data of application RSM heuristic. 

 

t= 1* 2 3 4* 5 6* 7 8* 9 10 

dt 109 91 169 161 125 170 197 210 26 212 

vt 6 7 7 8 9 9 4 15 8 5 

It 406 315 146 209 84 237 40 388 362 150 

TCt 3896 4211 4357 6758 6842 10386 10426 19584 19946 20096 
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t= 1* 2 3* 4 5           

E(dt) 150 134 129 148 125           

E(Vt) 10 9 8 9 8           

 OL1=370 Q1=370        

t= 1 2* 3 4 5* 6         

E(dt) 150 134 129 148 125 158         

E(Vt) 10 9 8 9 8 12         

  OL2=512 Q2=251       

t= 1 2 3 4 5* 6 7*       

E(dt) 150 134 129 148 125 158 155       

E(Vt) 10 9 8 9 8 12 9       

     OL5=369 Q5=278    

t= 1 2 3 4 5* 6 7* 8     

E(dt) 150 134 129 148 125 158 155 165     

E(Vt) 10 9 8 9 8 12 9 10     

           

t= 1 2 3 4 5 6 7* 8 9*   

E(dt) 150 134 129 148 125 158 155 165 137   

E(Vt) 10 9 8 9 8 12 9 10 11   

       OL7=417 Q7=343  

t= 1* 2* 3 4 5* 6 7* 8 9* 10 

E(dt) 150 134 129 148 125 158 155 165 137 177 

E(Vt) 10 9 8 9 8 12 9 10 11 10 
* ordering periods                      OL9=410 Q9=400  

 
                            Figure 3. The rolling procedure and RLUC  heuristic solution. 

 
Table 5. Realized data of application RLUC heuristic. 

 

t= 1* 2* 3 4 5* 6 7* 8 9* 10 

dt 109 91 169 161 125 170 197 210 26 212 

vt 6 7 7 8 9 9 4 15 8 5 

It 261 421 252 91 244 74 220 10 384 172 

TCt 2881 5459 5711 5802 8948 9022 11014 11024 15008 15180 
 

Firstly, M period’s data are taken into account. CB solves 
this problem. According to CB solution, CB plans to give 
order in the first and third periods. While solution is put 
into practice, the amount of the order is given as 370 units. 
After this, expected values of 6th period are taken into 
account. CB avoids giving order in the third period 
dynamically because of the cost. CB order plan changes 
dynamically while the plan is rolling. Finally, CB gives four 
orders in order 1st, 2nd, 3rd and 7th periods. CB heuristic 
solved example as total cost of 13,320 currency unit. 
Randomly generated demands and prices are known, T-
period realized-demand and price problem can be solved 
using WW to obtain a lower bound on the solution. We 
calculate the deviation from lower bound of heuristics by 
equation (4.1) 

Deviation%
( )TRC Heuristic LB

LB

−
=                         (4.1) 
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t= 1* 2 3* 4 5           

E(dt) 150 134 129 148 125           

E(Vt) 10 9 8 9 8           

 OL1=370 Q1=370        

t= 1 2* 3 4* 5 6         

E(dt) 150 134 129 148 125 158         

E(Vt) 10 9 8 9 8 12         

  OL2=342 Q2=R=100       

t= 1 2 3* 4 5 6 7*       

E(dt) 150 134 129 148 125 158 155       

E(Vt) 10 9 8 9 8 12 9       

   OL3=680 Q3=410      

t= 1 2 3 4 5 6 7* 8     

E(dt) 150 134 129 148 125 158 155 165     

E(Vt) 10 9 8 9 8 12 9 10     

           

t= 1 2 3 4 5 6 7* 8 9   

E(dt) 150 134 129 148 125 158 155 165 137   

E(Vt) 10 9 8 9 8 12 9 10 11   
* ordering periods    OL7=770 Q3=715  

t= 1* 2* 3* 4 5 6 7* 8 9 10 

E(dt) 150 134 129 148 125 158 155 165 137 177 

E(Vt) 10 9 8 9 8 12 9 10 11 10 
 

                           Figure 4. The rolling procedure and CB heuristic solution. 
 

Table 6. Realized data of application CB heuristic. 
 

t= 1* 2* 3* 4 5 6 7* 8 9 10 

dt 109 91 169 161 125 170 197 210 26 212 

vt 6 7 7 8 9 9 4 15 8 5 

It 261 270 511 350 225 55 573 363 337 125 

TCt 2881 4251 8032 8382 8607 8662 12495 12858 13195 13320 
 
Table 7. Lower Bound (WW) solution. 

 

t= 1* 2 3* 4 5 6 7* 8 9 10* 

dt 109 91 169 161 125 170 197 210 26 212 

vt 6 7 7 8 9 9 4 15 8 5 

It 91 0 456 295 170 0 236 26 0 0 

TCt 1691 1691 6922 7217 7387 7387 9755 9781 9781 11241 

Qt= 200  625    433   212 
 

Realized data of applications of WW is shown in Table 7. 
The lower bound on the total cost based on WW solution for 
this example is 11,241 currency units. The CB heuristics 
has the best performance in terms of percent deviation from 
the lower bound (%18.49) while the RSM has the worst 
performance with %78.77 deviation. 

5. CONCLUSIONS 

This paper addresses lot-sizing problem in the system of the 
multi-period and single-item inventory with stochastic 
demand and price under rolling horizon. The demand does 

not have to be satisfied in all periods. It is assumed that the 
demand in a period can be backlogged. New heuristics for 
dynamically making lot sizing decisions on a rolling 
horizon basis under both demand and price uncertainties are 
proposed. We explain our problem formulation starting 
with the simplest case and then extending the formulation 
with stochastic demand and price. Proposed heuristics are 
explained in detail. A detailed numerical example is given. 

There are some places that can be analyzed a number of 
directions for future research. Looking back at our model 



106                                                                   G.U. J. Sci., 22(2):97-106 (2009)/ Ercan SENYIGIT
 ♠

                                                           

 

formulations, further research may be warranted concerning 
the calculation of lower bound, the probability distributions 
of demand and price. Lower bound would be calculated by 
stochastic linear programming. Different distributions can be 
tested for demand and price. In addition, it is possible to 
extend the current heuristics for non-zero replenishment 
lead-time. 
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