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ABSTRACT 

     Let A be a Banach algebra with a bounded approximate identity. Let 
2Z  and 2

~Z  be respectively, the topological 
centers of the algebras A** and (AA*)* with respect to the second Arens multiplication. In this paper, we show that 

2
~M  is isometrically isomorphic to )(ALM , where 2

~M  is a closed subalgebra of 2
~Z  and )(ALM  is the set of 

left multipliers operators of the Banach algebra A. 

Key words: Topological center, Arens multiplication, Banach algebra, Left multiplier operator 
 

 

                                                           
* Corresponding authour, e-mail: danyal@gazi.edu.tr 

1. INTRODUCTION,   NOTATIONS   AND 
PRELIMINARIES 

    Let A  be a Banach algebra with a bounded 
approximate identity. By  *A  we denote its normed dual. 
We always regard A  as naturally embedded into its 
second dual **A . For a  in A  and f  in *A , by 

〉〈 af ,  or 〉〈 fa,  we denote the natural duality between 

A  and *A . The first Arens multiplication is defined in 
three steps as follows. For a,b A∈ , *Af ∈  and 

**, Anm ∈ , the elements fmaf ⋅⋅ ,  of *A  and 

nm ⋅  of **A  are defined as follows: 

.,,
,,,

,,,

〉⋅〈=〉⋅〈
〉⋅〈=〉⋅〈

〉〈=〉⋅〈

fnmfnm
afmafm

abfbaf
 

     The second Arens multiplication is defined as follows. 
For a,b A∈ , *Af ∈  and **, Anm ∈  , the element 

mffa ∆∆ ,  of *A  and  nm∆  of **A  are defined  
by the equalities 

,,, 〉〈=〉∆〈 bafbfa  

,,, 〉∆〈=〉∆〈 famamf  

, , .m n f n f m〈 ∆ 〉 = 〈 ∆ 〉  

We define the subspaces AA*  and *AA  of *A  as  

{ }AaAfafAA ∈∈⋅= *,:* , 

}{ *,:* AfAafaAA ∈∈∆= . 

     It is well-known that these subspaces are norm-closed 
linear subspaces of *A  Hewitt &Ross (2). On the other 
hand, the second dual **A  of A is a Banach algebra 
with respect to both the first and the second Arens 

multiplication (1). In the case where )(1 GLA = and G is 
a locally compact Abelian group, we denote the spaces  

AA*  and *AA , respectively, by )(GLUC  and  

)(GRUC as in (3). In the case where )(GAA = , the 

space AA* , which is the same as *AA , is denoted by 

)ˆ(GUCB  as in (4). In (5), Lau and Ülger showed that 

)(~
1 ARMZ ≅ . Terminologies and notations not 

explained in this section will be explained or referenced in 
the next section. 

2. ARENS     MULTIPLICATIONS   AND 
TOPOLOGICAL CENTERS  

Definition 2.1. Let A  be a Banach algebra.  A left [right] 
approximate identity for A  is a net }{ Λ∈αα :e , 

where Λ is some directed system, such that for all 
Aa∈ ,  
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aae =)(lim α
α

  [ ])(lim aae =α
α

 in the norm topology. 

The approximate identity is said to be bounded if 

1≤αe  for all. An approximate identity is said to be 

two-sided if it is both a right and a left one. An algebra A  
with a bounded two-sided approximate identity is  called 
‘with a bounded approximate identity’. Every unital 
Banach algebra has an approximate identity. However, the 
converse is not true in general. 

Definition 2.2. Let A  be a Banach algebra and consider 
the natural duality between A  and *A . We denote the 
weak topology on A  by  (σ A,A*) and the weak* 

topology  on *A  by )*,( AAσ .   

     As is mentioned in the previous section, we will explain  
the basic properties of “ ⋅ ” and “∆ ” Arens 
multiplications: 

     For an element n fixed in **A , the mapping 
m m n→ ⋅   is weak*-weak* continuous with respect to 
the topology ( **, *)A Aσ  on **A . However, for an 

element m fixed  in **A , the mapping nmn .→   is 
in general not weak*-weak* continuous unless m is in A . 
Hence ,by making use of these explanations, the 
topological center of  **A  with respect to the first Arens 
multiplication is defined as follows: 

{1 **:Z m A= ∈  The mapping nmn .→  is weak*-

weak* continuous on **A } 

      = { **: . ,m A m n m n∈ = ∆ for all }**n A∈  

     For m fixed in **A , the mapping nmn ∆→  is 
weak*-weak* continuous on **A . But, for n fixed  in 

**A , the mapping nmm ∆→   is in general not 
weak*-weak* continuous unless n is in A . Whence the 
topological center of **A  with respect to the second 
Arens multiplication is defined as follows: 

{2 **:Z n A= ∈  The mapping nmm ∆→  is 

weak*-weak* continuous on **A } 

     Recall that the equalities mama ∆= ˆ.ˆ  and 
amam ˆˆ. ∆=  hold for a in A  and m in **A . Since 

the mapping aa ˆ→  ( ˆ **A A A→ ⊆ ) is an algebraic 

isometrical isomorphism we can write Â  instead of A  if 

necessary. It is clear that 21 ZZA ∩⊆  and that iZ  

(i=1,2) is a closed subalgebra of **A . For detailed 
information see (5).  

Let 1M and 2M  be two subspaces of **A  such that  

{ }1 **: .M m A A m A= ∈ ⊆ , 

{ }2 **: .M m A m A A= ∈ ⊆ . 

Like preceding  subspaces, We define the  following sets: 

    { }1 ( * )*: .M A A A Aµ µ= ∈ ⊆%  

    { }2 ( *)*: .M AA A Aµ µ= ∈ ⊆%  

     Let A  be a Banach algebra with a bounded 

appoximate identity then 1
~M  is a closed subalgebra of 

( AA* )* and 11
~~ ZM ⊆   (5, Proposition 4.1). An 

algebra A  is a subalgebra of all **A , ( * )*A A  and 

( *)*AA  algebras. Note that for a∈A and 

( *)*AAµ∈ , the multiplication element a.µ is an 

element of ** )(AA . Morever, if µ~  is any Hahn-Banach 

extension of µ  to *A  then for *f A∈ , a∈A, 

( *)*AAµ∈  and **~ A∈µ   the equalities 

>=<
>∆>=<∆=<
>∆>=<∆=<
>∆>=<∆=<
>∆>=<∆>=<<

fa
fafa

faaf
fafa
affafa

,.
,,ˆ

,ˆ,
,,ˆ

,ˆˆ,ˆ,.~

µ
µµ

µµ
µµ
µµµ

 

hold and hence we have the equalities a.µ = a.~µ and  

a∆µ = a∆µ~ . Whence we can consider a.µ  as  an 

element of **A .  

     Let the mapping . : **f m A C
∧

→   be defined by 

>∆>=<<
∧

mnfnmf ,,. . The functional 
∧

mf .   belongs to *** *A A A⊥= ⊕  but it does not 

have to be an element of  *A . Similarly, let the mapping 
( . ) : ( *)*f AA Cµ →%  be defined by 

>∆>=<< µλλµ ,,)~.( ff . Although the functional 

)~.( fµ   belongs to ( *)**AA  it may not be an 

element of  *A , see (5) for detail. 
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     Now, the following lemma which plays an important 
role in our study will be given. 

Lemma 2.3: Let A  be a Banach algebra with a bounded 
appoximate identity. Let m  be an element in **A  and 
µ   be an element in ( *)*AA . Then the following 
assertions hold: 

 a) m  is in 2Z  if and only if, for each f in *A , 

the functional 
∧

mf .  is in *A . If this happens, 

fmmf .. =
∧

 and fm.  is in *AA . 

 b) µ  is in 2
~Z  if and only if, for each g in 

*AA , the functional )~.( gµ  is in *AA . 

 c) µ  is in 2
~Z  if and only if, for each a in A , 

a.µ  is in 2Z . 

Proof: a) Assume  m  is in 2Z , and let f be an element of 

*A . Then, for all n in **A ,  

>=<
>=<
>∆>=<<

∧

nfm
mnf

mnfnmf

,.
.,

,,.
 

so that fmmf .. =
∧

, and 
∧

mf .  is in *A  since fm.  

is in *A . 

Conversely, assume that, for each f in *A , the functional 
∧

mf .  is in *A  and let { } Λ∈ααn  be a convergent net in 

**A  that converges to some n in the (σ **A , *A ) 
topology . Then  

 , >=<∆< mnf α

>∆>=<<→>
∧∧

mnfnmfnmf ,,.,. α  

so that m  is in 2Z  since, for **An∈ , the mapping 

mnn ∆→   is (σ **A , *A )-continuous on **A . 

Now suppose m  is in 2Z  and f is in *A . Let 

{ } Λ∈ααa  be a convergent net in A  that converges to 

some m in the (σ **A , *A ) topology. Then, since 
∧

mf .  is in *A  and for each n in **A , 

 , >=<∆< nfaα

>>=<∆>=<<→>
∧

nmfmnfmnfanf ,.,.,., α   

we see that the net { }a fα α∈Λ
∆  converges weakly to the 

element
∧

mf .  in *A . Since *AA  is a closed subspace 

of  *A , we conclude that
∧

mf .  is in *AA . 

 b) Suppose that µ   is in 2
~Z , and let g be in 

*AA . Let { } Λ∈ααλ  be a net in ( *)*AA  that 

converges to some λ  in ( *)*AA  in the 

(σ ( *)*AA , *AA ) topology . Then by the definition 

of 2
~Z  

>>=<∆<→>∆>=<< λµµλµλλµ αα ,)~.( , ,,)~.( gggg

     This shows that the functional )~.( gµ  is weak* 

continuous on ( *)*AA  . Since we have the duality 

( ( *)*AA , (σ ( *)*AA , *))* *AA AA= , )~.( gµ i

s in *AA . 

     Conversely, assume that g and )~.( gµ are in *AA   

and let  { } Λ∈ααλ  be a weak* convergent  net in 

( *)*AA  converging to some λ  in ( *)*AA . Then,   

>∆>=<<→>>=<∆< µλλµλµµλ αα  ,,)~.(,)~.( , gggg

holds which means µ   is in 2
~Z . 

c) Let µ   is in 2
~Z . Then, for each fag ∆=   

in *AA , )~.( gµ  belongs to *AA  from assertion b). 

Given an element n of  **A , let n~  be its restriction 
*AA . Then the equality anan µµ ∆=∆~  holds and 

we have 
∧

= afg µµ .)~(   by the following equalities 

.,.

~,

~,)~(,)~(

>=<

>∆=<
>>=<<

∧

naf

anf
ngng

µ

µ
µµ

 

     Since 
∧

af µ.  is in *AA , we conclude, by assertion 

a), that a.µ  is in 2Z . The converse implication also 
follows by the same operations. 
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Proposition 2.4: Let A  be a Banach algebra with a 

bounded appoximate identity. Then  2
~M  is a closed 

subalgebra of ( *)*AA  and 22
~~ ZM ⊆  . 

Proof: From the definition of 2
~M  we have the inclusion 

2 ( *)*M AA⊆% . Let )( nµ  be a sequence in 2
~M . 

Then for all  n  we have AAn ⊆.µ . Let µ  be an 

element in ( *)*AA  such that 0lim =− µµnn
. For 

an element a in A , ).( anµ  is a sequence in A . Since  

A  is closed and the multiplication is norm-continuous, we 

have 0.. →− aan µµ , that is, a.µ  is in A . Hence 

2
~M  is a closed subalgebra of ( *)*AA . 

     On the other hand, let µ  be an element in 2
~M . Then, 

for an element a in A , a.µ  is in 2ZA ⊂ . By the 

assertion c) of Lemma 2.3, µ  is in 2
~Z  and hence 

22
~~ ZM ⊆ . 

Definition 2.5: Let A  be a Banach algebra with a 
bounded appoximate identity. A bounded linear operator 

AAT →:  is said to be a left multiplier if 
baTabT )()( =  holds for all a,b in A . The set of all 

left multiplier of A  is denoted by LM(A). 

Theorem 2.6: Let A  be a Banach algebra with a bounded 

appoximate identity. Then the closed algebra 2
~M  is 

isometrically isomorphic to LM(A). 

Proof: For each element µ  in 2
~M , let AAT →:µ  

be the linear operator  defined by the rule aaT µµ =)( , 

for all a in A . As, for a,b in  A , 

baTbaababT )()()()( µµ µµ === , 

     µT  is a left multiplier on A . Since aa .µµ ≤ , it 

is obvious that µµ ≤T . Actually µµ =T . To 

show the inequality µµ ≥T , let Λ∈αα )(e  be a 

bounded appoximate identity. As we can suppose 

1≤αe  for all α  in Λ , 

)(.supsup.sup)(sup
1

faeeeTT
fa

∆==≥
≤∆

α
α

α
α

αµ
α

µ µµ

.Since, for  f in *A  a in A ,and 

,0..).(. →−≤−∆=∆−∆ fefafefafaefa ααα

.).()).((lim)(sup fafaefae ∆=∆≥∆ µµµ ααα
α

Hence µµµ
α

α
α

=∆≥∆
≤∆≤∆

)(sup)(.supsup
11

fafae
fafa

 

so that µµ ≥T . Since we have the equality 

µµ =T , it follows that the mapping 

)(~: 2 ALMMS →  defined by µµ TS =)(  is an 

isometry.  To show that S is a Banach algebra 

homomorphism, let 21 ,µµ  be in 2
~M  and a in A . 

Indeed, 

).)(().()(.))((

))(().().()())(.(

21

12121.21

2121

221

aSSaTTaTT

aTaaaTaS

µµ

µµµµµµµ

µµµµ

µµµ

===

====

To complete the proof, it is enough to show that S is onto. 
Let T be any element in LM(A). Since we can consider A  
as a subalgebra of ( *)*AA , the net Λ∈αα ))(( eT  is in 

( *)*AA  and, for each  f.a in ( *)*AA ,  it follows 

>>→<>=<>=<∆< )(,).(,).(,)(, aTfaeTfaeTfeTfa ααα

This shows that the net Λ∈αα ))(( eT  is a weak*-Cauchy 

in ( *)*AA  . Hence it converges to some element µ  of 
(AA*)* in the weak* topology of this space. The above 
equalities 

>>=<∆< )(,), aTffa µ  

for all f in *A and  a in A . Then 
>>=<>=<∆< )(,).,), aTfaffa µµ , which 

means )(. aTa =µ  so that µTT = . Since, for each T 

in LM(A), there is an element µ  in 2
~M  such that 

TTS == µµ)( , the mapping S is onto.  

Corollary 2.6: Let A  be a Banach algebra with a 
bounded appoximate identity. If 2Z A A⊆  then, 

2 2 ( )M Z LM A= ≅% % . 
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