

On the Topological Centers of Banach Algebras

Hayri AKAY*, Danyal SOYBAŞ

ABSTRACT

Let A be a Banach algebra with a bounded approximate identity. Let Z_2 and \widetilde{Z}_2 be respectively, the topological centers of the algebras A** and (AA*)* with respect to the second Arens multiplication. In this paper, we show that \widetilde{M}_2 is isometrically isomorphic to LM(A), where \widetilde{M}_2 is a closed subalgebra of \widetilde{Z}_2 and LM(A) is the set of left multipliers operators of the Banach algebra A.

Key words: Topological center, Arens multiplication, Banach algebra, Left multiplier operator

1. INTRODUCTION, NOTATIONS AND PRELIMINARIES

Let A be a Banach algebra with a bounded approximate identity. By A^* we denote its normed dual. We always regard A as naturally embedded into its second dual A^{**} . For a in A and f in A^* , by $\langle f,a\rangle$ or $\langle a,f\rangle$ we denote the natural duality between A and A^* . The first Arens multiplication is defined in three steps as follows. For $a,b\in A$, $f\in A^*$ and $m,n\in A^{**}$, the elements $f\cdot a,m\cdot f$ of A^* and $m\cdot n$ of A^{**} are defined as follows:

$$\langle f \cdot a, b \rangle = \langle f, ab \rangle,$$

 $\langle m \cdot f, a \rangle = \langle m, f \cdot a \rangle,$
 $\langle m \cdot n, f \rangle = \langle m, n \cdot f \rangle.$

The second Arens multiplication is defined as follows. For a,b $\in A$, $f \in A^*$ and $m,n \in A^{**}$, the element $a\Delta f$, $f\Delta m$ of A^* and $m\Delta n$ of A^{**} are defined by the equalities

$$\langle a\Delta f, b \rangle = \langle f, ba \rangle,$$

 $\langle f\Delta m, a \rangle = \langle m, a\Delta f \rangle,$
 $\langle m\Delta n, f \rangle = \langle n, f\Delta m \rangle.$

We define the subspaces
$$A * A$$
 and $AA *$ of $A *$ as $A * A = \{f \cdot a : f \in A^*, a \in A\},$ $AA^* = \{a\Delta f : a \in A, f \in A^*\}.$

It is well-known that these subspaces are norm-closed linear subspaces of A^* Hewitt &Ross (2). On the other hand, the second dual A^{**} of A is a Banach algebra with respect to both the first and the second Arens multiplication (1). In the case where $A=L^1(G)$ and G is a locally compact Abelian group, we denote the spaces A^*A and AA^* , respectively, by LUC(G) and RUC(G) as in (3). In the case where A=A(G), the space A^*A , which is the same as AA^* , is denoted by $UCB(\hat{G})$ as in (4). In (5), Lau and Ülger showed that $\widetilde{Z}_1\cong RM(A)$. Terminologies and notations not explained in this section will be explained or referenced in the next section.

2. ARENS MULTIPLICATIONS AND TOPOLOGICAL CENTERS

Definition 2.1. Let A be a Banach algebra. A left [right] approximate identity for A is a net $\{e_{\alpha}: \alpha \in \Lambda\}$, where Λ is some directed system, such that for all $a \in A$,

^{*} Corresponding authour, e-mail: danyal@gazi.edu.tr

 $\lim_{\alpha} (e_{\alpha}a) = a$ $[\lim_{\alpha} (ae_{\alpha}) = a]$ in the norm topology. The approximate identity is said to be *bounded* if $\|e_{\alpha}\| \le 1$ for all. An approximate identity is said to be two-sided if it is both a right and a left one. An algebra A with a bounded two-sided approximate identity is called 'with a bounded approximate identity'. Every unital Banach algebra has an approximate identity. However, the converse is not true in general.

Definition 2.2. Let A be a Banach algebra and consider the natural duality between A and A^* . We denote the weak topology on A by $\sigma(A,A^*)$ and the weak topology on A^* by $\sigma(A^*,A)$.

As is mentioned in the previous section, we will explain the basic properties of " \cdot " and " Δ " Arens multiplications:

For an element n fixed in A^{**} , the mapping $m \to m \cdot n$ is weak*-weak* continuous with respect to the topology $\sigma(A^{**}, A^*)$ on A^{**} . However, for an element m fixed in A^{**} , the mapping $n \to m.n$ is in general not weak*-weak* continuous unless m is in A. Hence ,by making use of these explanations, the topological center of A^{**} with respect to the first Arens multiplication is defined as follows:

 $Z_1 = \big\{ m \in A^{**} \colon \text{ The mapping } n \longrightarrow m.n \text{ is weak*-}$ weak* continuous on $A^{**} \big\}$

$$= \left\{ m \in A^{**} : m.n = m\Delta n , \text{ for all } n \in A^{**} \right\}$$

For m fixed in A^{**} , the mapping $n \to m\Delta n$ is weak*-weak* continuous on A^{**} . But, for n fixed in A^{**} , the mapping $m \to m\Delta n$ is in general not weak*-weak* continuous unless n is in A. Whence the topological center of A^{**} with respect to the second Arens multiplication is defined as follows:

 $Z_2 = \left\{ n \in A^{**} \colon \quad \text{The mapping} \quad m \to m \Delta n \quad \text{is} \right.$ weak*-weak* continuous on A^{**}

Recall that the equalities $\hat{a}.m = \hat{a}\Delta m$ and $m.\hat{a} = m\Delta\hat{a}$ hold for a in A and m in A^{**} . Since the mapping $a \to \hat{a}$ $(A \to \hat{A} \subseteq A^{**})$ is an algebraic isometrical isomorphism we can write \hat{A} instead of A if necessary. It is clear that $A \subseteq Z_1 \cap Z_2$ and that Z_i

(i=1,2) is a closed subalgebra of A^{**} . For detailed information see (5).

Let M_1 and M_2 be two subspaces of A^{**} such that

$$M_1 = \{ m \in A^{**} : A.m \subseteq A \},$$

$$M_2 = \{ m \in A^{**} : m.A \subseteq A \}.$$

Like preceding subspaces, We define the following sets:

$$\tilde{M}_1 = \{ \mu \in (A * A) * : A \cdot \mu \subseteq A \}$$

$$\tilde{M}_2 = \{ \mu \in (AA^*)^* : \mu A \subseteq A \}$$

Let A be a Banach algebra with a bounded appoximate identity then \widetilde{M}_1 is a closed subalgebra of (A*A)* and $\widetilde{M}_1\subseteq\widetilde{Z}_1$ (5, Proposition 4.1). An algebra A is a subalgebra of all A**, (A*A)* and (AA*)* algebras. Note that for $a\in A$ and $\mu\in (AA*)*$, the multiplication element $\mu.a$ is an element of $(AA^*)^*$. Morever, if $\widetilde{\mu}$ is any Hahn-Banach extension of μ to A* then for $f\in A*$, $a\in A$, $\mu\in (AA*)*$ and $\widetilde{\mu}\in A**$ the equalities

$$\begin{split} <\widetilde{\mu}.a,f> &=<\widehat{a},f\Delta\widehat{\mu}> =< f\Delta\widehat{\mu},a> \\ &=<\widehat{\mu},a\Delta f> =< \mu,a\Delta f> \\ &=< f\Delta\mu,a> =<\widehat{a},f\Delta\mu> \\ &=< \mu\Delta\widehat{a},f> =< \mu\Delta a,f> \\ &=< \mu.a,f> \end{split}$$

hold and hence we have the equalities $\mu.a = \widetilde{\mu}.a$ and $\mu\Delta a = \widetilde{\mu}\Delta a$. Whence we can consider $\mu.a$ as an element of A^* .

Let the mapping $\widehat{f.m}:A^{**}\to C$ be defined by $<\widehat{f.m},n>=<\widehat{f},n\Delta m>$. The functional $\widehat{f.m}$ belongs to $A^{***}=A^*\oplus A^\perp$ but it does not have to be an element of A^* . Similarly, let the mapping $(\mu.f):(AA^*)^*\to C$ be defined by $<(\mu.f),\lambda>=<\widehat{f},\lambda\Delta\mu>$. Although the functional $(\mu.f)$ belongs to $(AA^*)^{**}$ it may not be an element of A^* , see (5) for detail.

Now, the following lemma which plays an important role in our study will be given.

Lemma 2.3: Let A be a Banach algebra with a bounded approximate identity. Let m be an element in A^* and μ be an element in $(AA^*)^*$. Then the following assertions hold:

- a) m is in Z_2 if and only if, for each f in A^* , the functional f.m is in A^* . If this happens, f.m = m.f and m.f is in AA^* .
- b) μ is in \widetilde{Z}_2 if and only if, for each g in AA*, the functional $(\mu.g)$ is in AA*.
- c) μ is in \widetilde{Z}_2 if and only if, for each a in A , $\mu.a$ is in Z_2 .

Proof: a) Assume m is in Z_2 , and let f be an element of A^* . Then, for all n in A^{**} ,

$$<\hat{f.m.n}>=<\hat{f.n\Delta m}>$$

= $<\hat{f.n.m}>$
= $<\hat{m.f.n}>$

so that $\widehat{f.m} = m.f$, and $\widehat{f.m}$ is in A^* since m.f is in A^* .

Conversely, assume that, for each f in A^* , the functional f.m is in A^* and let $\{n_\alpha\}_{\alpha\in\Lambda}$ be a convergent net in A^{**} that converges to some n in the $\sigma(A^{**},A^*)$ topology. Then

$$< f, n_{\alpha} \Delta m > = <$$
 $f \cdot m, n_{\alpha} > \rightarrow < f \cdot m, n > = < f, n \Delta m >$

so that m is in Z_2 since, for $n \in A^{**}$, the mapping $n \to n\Delta m$ is $\sigma(A^{**}, A^*)$ -continuous on A^{**} .

Now suppose m is in Z_2 and f is in A^* . Let $\left\{a_{\alpha}\right\}_{\alpha\in\Lambda}$ be a convergent net in A that converges to some m in the $\sigma(A^{**},A^*)$ topology. Then, since $\widehat{f.m}$ is in A^* and for each n in A^{**} ,

$$\langle a_{\alpha} \Delta f, n \rangle = \langle f, n \Delta m \rangle = \langle f, n \Delta m \rangle = \langle f, m \rangle = \langle f, n \Delta m \rangle = \langle f, m \Delta m \rangle = \langle f,$$

we see that the net $\left\{a_{\alpha}\Delta f\right\}_{\alpha\in\Lambda}$ converges weakly to the element f in A^* . Since AA^* is a closed subspace of A^* , we conclude that f is in AA^* .

b) Suppose that μ is in \widetilde{Z}_2 , and let g be in AA^* . Let $\left\{\lambda_{\alpha}\right\}_{\alpha\in\Lambda}$ be a net in $(AA^*)^*$ that converges to some λ in $(AA^*)^*$ in the $\sigma((AA^*)^*,AA^*)$ topology . Then by the definition of \widetilde{Z}_2

$$<(\mu.g), \lambda_{\alpha}>=< g, \lambda_{\alpha}\Delta\mu> \to < g, \lambda\Delta\mu>=<(\mu.g), \lambda>$$
 This shows that the functional $(\mu.g)$ is weak* continuous on $(AA^*)^*$. Since we have the duality
$$((AA^*)^*, \sigma((AA^*)^*, AA^*))^* = AA^*, (\mu.g)$$
 is sin AA^* .

Conversely, assume that g and $(\mu.g)$ are in AA* and let $\{\lambda_{\alpha}\}_{\alpha\in\Lambda}$ be a weak* convergent net in (AA*)* converging to some λ in (AA*)*. Then,

 $<\!g,\lambda_{\alpha}\Delta\mu>=<\!(\mu.g\,\widetilde{}),\lambda_{\alpha}>\to<\!(\mu.g\,\widetilde{}),\lambda>=<\!g,\lambda\Delta\mu>$ holds which means μ is in \widetilde{Z}_2 .

c) Let μ is in \widetilde{Z}_2 . Then, for each $g=a\Delta f$ in AA^* , $(\mu.g\widetilde{\ })$ belongs to AA^* from assertion b). Given an element n of A^{**} , let \widetilde{n} be its restriction AA^* . Then the equality $\widetilde{n}\Delta\mu a=n\Delta\mu a$ holds and

we have $(\mu g) = f \cdot \mu a$ by the following equalities

$$<(\mu g), n> = <(\mu g), \tilde{n}>$$

= $$
= $.$

Since $f.\mu a$ is in AA*, we conclude, by assertion a), that $\mu.a$ is in Z_2 . The converse implication also follows by the same operations.

Proposition 2.4: Let A be a Banach algebra with a bounded appoximate identity. Then \widetilde{M}_2 is a closed subalgebra of $(AA^*)^*$ and $\widetilde{M}_2 \subseteq \widetilde{Z}_2$.

Proof: From the definition of \widetilde{M}_2 we have the inclusion $\widetilde{M}_2 \subseteq (AA^*)^*$. Let (μ_n) be a sequence in \widetilde{M}_2 . Then for all n we have $\mu_n.A \subseteq A$. Let μ be an element in $(AA^*)^*$ such that $\lim_n \lVert \mu_n - \mu \rVert = 0$. For an element a in A, $(\mu_n.a)$ is a sequence in A. Since A is closed and the multiplication is norm-continuous, we have $\lVert \mu_n.a - \mu.a \rVert \to 0$, that is, $\mu.a$ is in A. Hence \widetilde{M}_2 is a closed subalgebra of $(AA^*)^*$.

On the other hand, let μ be an element in \widetilde{M}_2 . Then, for an element a in A, $\mu.a$ is in $A\subset Z_2$. By the assertion c) of Lemma 2.3, μ is in \widetilde{Z}_2 and hence $\widetilde{M}_2\subseteq\widetilde{Z}_2$.

Definition 2.5: Let A be a Banach algebra with a bounded appoximate identity. A bounded linear operator $T:A\to A$ is said to be a left multiplier if T(ab)=T(a)b holds for all a,b in A. The set of all left multiplier of A is denoted by LM(A).

Theorem 2.6: Let A be a Banach algebra with a bounded approximate identity. Then the closed algebra \widetilde{M}_2 is isometrically isomorphic to LM(A).

Proof: For each element μ in \widetilde{M}_2 , let $T_\mu:A\to A$ be the linear operator defined by the rule $T_\mu(a)=\mu a$, for all a in A. As, for a,b in A,

$$T_{\mu}(ab) = \mu(ab) = (\mu a)b = T_{\mu}(a)b$$
,

 T_{μ} is a left multiplier on A . Since $\|\mu a\| \leq \|\mu\| \|a\|$, it is obvious that $\|T_{\mu}\| \leq \|\mu\|$. Actually $\|T_{\mu}\| = \|\mu\|$. To show the inequality $\|T_{\mu}\| \geq \|\mu\|$, let $(e_{\alpha})_{\alpha \in \Lambda}$ be a bounded appoximate identity. As we can suppose $\|e_{\alpha}\| \leq 1$ for all α in Λ ,

$$\begin{split} & \left\| T_{\mu} \right\| \geq \sup_{\alpha} \left\| T_{\mu}(e_{\alpha}) \right\| = \sup_{\alpha} \left\| \mu.e_{\alpha} \right\| = \sup_{\alpha} \sup_{\|a\Delta f\| \leq 1} \left\| \mu.e_{\alpha}\left(a\Delta f\right) \right\| \end{split}$$
 . Since, for f in A * a in A , and

$$\begin{aligned} &\|a\Delta f.e_{\alpha}-a\Delta f\|=\|a\Delta(f.e_{\alpha}-f)\|\leq\|a\|\|f.e_{\alpha}-f\|\to 0,\\ &\sup_{\alpha}\left|\mu e_{\alpha}\left(a\Delta f\right)\right|\geq\lim_{\alpha}\left|\mu(e_{\alpha}.(a\Delta f))\right|=\left|\mu.(a\Delta f)\right|.\\ &\text{Hence }\sup_{\alpha}\sup_{\|a\Delta f\|\leq 1}\left\|\mu.e_{\alpha}\left(a\Delta f\right)\right\|\geq\sup_{\|a\Delta f\|\leq 1}\left|\mu(a\Delta f)\right|=\left\|\mu\right\|. \end{aligned}$$

so that $\|T_{\mu}\| \geq \|\mu\|$. Since we have the equality $\|T_{\mu}\| = \|\mu\|$, it follows that the mapping $S:\widetilde{M}_2 \to LM(A)$ defined by $S(\mu) = T_{\mu}$ is an isometry. To show that S is a Banach algebra homomorphism, let μ_1,μ_2 be in \widetilde{M}_2 and a in A. Indeed,

$$\begin{split} S(\mu_1.\mu_2)(a) &= T_{\mu_1.\mu_2}(a) = (\mu_1.\mu_2)a = \mu_1(\mu_2.a) = \mu_1(T_{\mu_2}(a)) \\ &= T_{\mu_1}(T_{\mu_2}(a)) = T_{\mu_1}T_{\mu_2}(a) = S(\mu_1).S(\mu_2)(a). \end{split}$$
 To complete the proof, it is enough to show that S is onto. Let T be any element in LM(A). Since we can consider A as a subalgebra of $(AA^*)^*$, the net $(T(e_\alpha))_{\alpha\in\Lambda}$ is in $(AA^*)^*$ and, for each $f.a$ in $(AA^*)^*$, it follows

 $< a\Delta f, T(e_{\alpha}) > = < f, T(e_{\alpha}).a > = < f, T(e_{\alpha}.a) > \to < f, T(a) >$ This shows that the net $(T(e_{\alpha}))_{\alpha \in \Lambda}$ is a weak*-Cauchy in $(AA^*)^*$. Hence it converges to some element μ of $(AA^*)^*$ in the weak* topology of this space. The above equalities

$$\langle a\Delta f, \mu \rangle > = \langle f, T(a) \rangle$$

for all f in A* and a in A. Then $< a\Delta f, \mu > = < f, \mu.a > = < f, T(a) >$, which means $\mu.a = T(a)$ so that $T = T_{\mu}$. Since, for each T in LM(A), there is an element μ in \widetilde{M}_2 such that $S(\mu) = T_{\mu} = T$, the mapping S is onto.

Corollary 2.6: Let A be a Banach algebra with a bounded appoximate identity. If $Z_2A\subseteq A$ then, $\tilde{M}_2=\tilde{Z}_2\cong LM(A)$.

REFERENCES

- 1) Arens, R., "The adjoint of a bilinear operation", **Proc. Amer. Math. Soc.**, 2, 839-848, (1951).
- 2) Hewitt, E. and Ross, K., "Abstract Harmonic Analysis", Volumes I and II, Newyork, (1970).
- 3) Lau, A.T., "Continuity of Arens multiplication on the dual space of bounded uniformly continuous functions on locally compact groups and topological semigroups", Math. Proc. Camb. Philos. Soc., 99, 273-283, (1986).
- 4) Lau, A.T. and Losert, V., "The C* algebra generated by operators with compact support on a locally compact group", J. Functinal Analysis, 112, 1-30, (1993).
- 5) Lau, A.T. and Ülger, A., "Topological centers of certain dual algebras", **Trans. Amer. Math. Soc.,** 348 (3), 1191-1212, (1996).