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ABSTRACT

Let A be a Banach algebra with a bounded approximate identity. Let 7 5 and 7 , berespectively, the topological

centers of the algebras A** and (AA*)* with respect to the second Arens multiplication. In this paper, we show that

]\22 is isometrically isomorphic to LM (A), where ]\22 is a closed subalgebra of Zz and LM(A) is the set of

left multipliers operators of the Banach algebra A.
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1. INTRODUCTION,
PRELIMINARIES

NOTATIONS AND

Let A be a Banach
approximate identity. By A * we denote its normed dual.

algebra with a bounded

We always regard A as naturally embedded into its
second dual A** For @ in A and f in A% by

(f,a) or {a, f) we denote the natural duality between

A and A* . The first Arens multiplication is defined in
three steps as follows. For ab€& A s f € A* and

m,n € A** | the elements f-a,m~f of A* and
m-n of A** are defined as follows:

(f-a,by=(f,ab),
(m~f,a>:<m,f‘a>,
(m-n,f>=<m,n~f).

The second Arens multiplication is defined as follows.
Forabe A,f € A* and m,n e A** | the element

aAf,fAm of A* and mAn of A** are defined
by the equalities

(alf,b)y =(f,ba),
(fAm,a) = (m,aAf),
(mAn, )y ={(n, fAm).

: Corresponding authour, e-mail: danyal@gazi.edu.tr

We define the subspaces A* A and AA* of A* as
A*A={f-a: f e A*ac A},
Ad*={aNfac A, € A* }.

It is well-known that these subspaces are norm-closed
linear subspaces of A* Hewitt &Ross (2). On the other

hand, the second dual 4 ** of A is a Banach algebra
with respect to both the first and the second Arens

multiplication (1). In the case where 4 = Ll (G)and Gis
a locally compact Abelian group, we denote the spaces

A*A and AA¥*, respectively, by LUC(G) and
RUC(G) as in (3). In the case where 4 = A(G) , the
space A* A4 , which is the same as 44 * , is denoted by
UCB(G) as in (4). In (5), Lau and Ulger showed that

Z, =RM (A). Terminologies and notations not

explained in this section will be explained or referenced in
the next section.

2. ARENS MULTIPLICATIONS
TOPOLOGICAL CENTERS

AND

Definition 2.1. Let 4 be a Banach algebra. A left [right]
approximate identity for A is a net {ea ael },

where Ais some directed system, such that for all
ae A,
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lim(e,a) =a [lim(ae,) = a] in the norm topology.
[24 a

The approximate identity is said to be bounded if

||e | <1 for all. An approximate identity is said to be

o

two-sided if it is both a right and a left one. An algebra A4
with a bounded two-sided approximate identity is called
‘with a bounded approximate identity’. Every unital
Banach algebra has an approximate identity. However, the
converse is not true in general.

Definition 2.2. Let 4 be a Banach algebra and consider
the natural duality between A4 and A *  We denote the
weak topology on A by O(A4,4% and the weak*

topology on A * by o(A*, A).

As is mentioned in the previous section, we will explain

the basic properties of “-” and “A” Arens

multiplications:

For an element n fixed in A**, the mapping
m — m-n is weak*-weak* continuous with respect to

the topology O'(A *k A*) on A** _ However, for an
element m fixed in A** | the mapping 1 —> M.N s

in general not weak*-weak* continuous unless nz is in A .
Hence ,by making use of these explanations, the

topological center of A4 ** with respect to the first Arens
multiplication is defined as follows:

Z, :{meA**: The mapping © —> M.N is weak*-

weak* continuous on A ** }

={me A**:mn=mAn, forall neA** }

For m fixed in A ** the mapping 1 —> MAR s
weak*-weak* continuous on A4 ** . But, for n fixed in
A** | the mapping M —> mAn
weak*-weak* continuous unless # is in A4 . Whence the

is in general not

topological center of 4** with respect to the second
Arens multiplication is defined as follows:

ZZZ{}’IGA**I The mapping m —> mMAn is

weak*-weak* continuous on A4 ** }

Recall that the equalities a.m=aAm and
m.a = mAa hold forain A and min A** . Since
the mapping @ —> a (A — A < A**) is an algebraic
isometrical isomorphism we can write 4 instead of A if
necessary. It is clear that A c Zl M 22 and that Zl.

(i=1,2) is a closed subalgebra of A** For detailed
information see (5).

Let M and M 5 be two subspaces of A** such that
M, ={ meA**: Amc A }
M,={med**: mAcA}.
Like preceding subspaces, We define the following sets:
M, ={ pe(A*A)*: Auc A}
M,={ pe(A4%)*: pAcA)

Let A be a Banach algebra with a bounded
appoximate identity then A7[ | is a closed subalgebra of
(A* A)* and ]\71 - Zl (5, Proposition 4.1). An
algebra A is a subalgebra of all A** (A% A)* and
(A44*)*
HE (AA*)*, the multiplication element fL.dis an

algebras. Note that for a€4 and

element of (AA* )* Morever, if ﬁ is any Hahn-Banach
extension of A to A* then for f e 4 *, a€A,
L e (AA*)* and ﬁ € A** the equalities

< fa, f >=<a, fAf>=< fAji,a >
=< fl,aMf >=< p,aAf >
=< fAu,a >=<a, fAu >
=< pAa, [ >=< phAa, f >
=< ua,f>

hold and hence we have the equalities (.0 = ﬁ.a and
HAa = ﬁAa. Whence we can consider 4.4 as an

element of 4 ** .

Let the mapping f.m:A**— C be defined by

< fm,n >=< f,nAm > . The functional

A
f.m belongs to A*** = A*®A" but it does not

have to be an element of A . Similarly, let the mapping
(,uf5 (44%)* > C be defined by
<(u.f 1 A >=< f,AAu>. Although the functional
(.f)  belongs to (AA*)** it may not be an
element of A * | see (5) for detail.
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Now, the following lemma which plays an important
role in our study will be given.

Lemma 2.3: Let A be a Banach algebra with a bounded
appoximate identity. Let 72 be an element in A4 ** and
M be an element in (AA*) * Then the following
assertions hold:

a) M isin 22 if and only if, for each fin A4 *,

N
the functional f am is in A*. If this happens,

ffmzm.f and m. [ isin AA*.

b) 4 is in ZZ if and only if, for each g in
AA*, the functional (,u.gj isin AA*.

c) M isin Zz if and only if, for each a in A,
Haisin Z,.
Proof: a) Assume M isin Z2 , and let f'be an element of
A*.Then,forallnin A**,

A
< fmn>=< f,nAm >
=< f,n.m>
=<m.f,n>

A A
sothat f.m=m.f ,and f.m isin A™* since m.f
isin 4%

Conversely, assume that, for each f'in A* , the functional

A
fm isin A* and let {na }aEA be a convergent net in

A** that converges to some n in the o( A**, A*)
topology . Then

< f,n,Am >=<

A AN
fm,n, >—>< fim,n>=<f,nAm >

. . . wx .
so that 71 is in 22 since, for n € A , the mapping
n—nAm is o( A**, A* )-continuous on 4 ** .

Now suppose M is in 22 and fis in A¥*. Let
{Cl o }ae A be a convergent net in A that converges to

some m in the G( A** A *) topology. Then, since

AN

fm isin A* and foreachnin 4**,

<a,Af,n>=<

A
fiona, >—> < f,nm>=< f,nAm >=< f.m,n >

we see that the net {a o Af } converges weakly to the

ael
N

element f m in A% . Since AA* is a closed subspace

N
of A* , we conclude that fm isin A4*.

b) Suppose that £/ is in VA 5, and let g be in
AA* . Let {/1“} be a net in (AA*)* that
converges to some A in (AA*)* in the
O'( (AA*) * AA¥*) topology . Then by the definition
of Z By

ael

<(Ug) Ay >=< &, Ayt > —> < g, AN >=< (11.8), 1 >

This shows that the functional (,u.g ) is weak*

continuous on (AA*)*
(AA*)* o ( (AA¥)*, AA*)* = A4* (u.g) i
sin AA*.

. Since we have the duality

Conversely, assume that g and ( y754 ) are in AA*

and let {ﬁa }ae A be a weak* convergent net in
(AA*)* converging to some A in (AA™)* . Then,

< g A, Apu>=< (,u.gj,/la >—< (,u.gj,/l >=< g, AAu >

holds which means £ isin Z -

c)Let /£ isin Z2 . Then, for each @ = aAf
in AA*, (,u.g) belongs to AA * from assertion b).

Given an element n of A4 ** , let 1 be its restriction
AA* . Then the equality erA,ua = nA,ua holds and

~ A
we have (14g) = f.ua by the following equalities
<(ug),n>=<(ug),n >
=< f,nAua >

=< f.ua,n>.

N
Since f Ja is in AA *, we conclude, by assertion

a), that f.a is in Z,. The converse implication also
follows by the same operations.



18 G.U. J. Sci., 19(1) 15-19 (2006)/ Hayri AKAY*, Danyal SOYBAS

Proposition 2.4: Let A be a Banach algebra with a

bounded appoximate identity. Then M , is a closed
subalgebra of (AA™*)* and M,cZ,.

Proof: From the definition of M , we have the inclusion

~

M2 c (AA*)*. Let (/,ln) be a sequence in M ,.
Then for all n we have (,.AC A. Let i be an

element in (AA™*)* such that lim”,un - ,u” =0. For
n

an element a in A4, (,un .a) is a sequence in A . Since

A is closed and the multiplication is norm-continuous, we

have ”/,ln .a— ,u.a” — 0, that is, f£.a isin A . Hence

]\12 is a closed subalgebra of (AA™)*.

On the other hand, let £/ be an element in M 5 - Then,
for an element a in A, M.a is in Ac Zz- By the

~

assertion ¢) of Lemma 23, 4 is in Z, and hence

i, 7,

Definition 2.5: Let A be a Banach algebra with a
bounded appoximate identity. A bounded linear operator

T:-A—> A4 is to be a
T(ab) =T (a)b nolds for all a,b in A . The set of all

left multiplier of A is denoted by LM(A).

said left multiplier if

Theorem 2.6: Let A be a Banach algebra with a bounded

~

appoximate identity. Then the closed algebra M 5 s
isometrically isomorphic to LM(A).
Proof: For each element £/ in M2> let Ty t4A—> A

be the linear operator defined by the rule 7 u (@) = ua,
forallain A.As, fora,bin A,

T,(ab) = u(ab) = (ua)b =T, (a)b,

T'U is a left multiplier on A . Since ",ua” < ||,u||||a|| , it
is obvious that HT/‘H < H,uH . Actually "T#” = ||,u|| To

, let (ea)aeA be a

identity. As we can suppose

show the inequality HTHH > H/j

bounded appoximate
||ea|| <1 forall & in A,

7,12 supl, (e, )| =suplise. | =sup sup e, (a9

.Since, for fin A* ain A ,and

HaAf.ea —aAfH = HaA(f.ea —f)H < HaH.Hf.ea —fH -0,
suplue, ()| > lim|u(e, (arf )| =|u.(arf )}

Hence sup sup ",u.ea (aAf)" 2 sup |,U(aAf)| = ",u”
a Jaa]< laay]<1

so that HT#HZH'UH Since we have the -equality

s it follows that  the  mapping

7. = e
SIMZ — LM (A) defined by S(,U)ZTﬂ is an

isometry.  To show that S is a Banach algebra

homomorphism, let (4, 44, be in ]\12 and g in A.
Indeed,

Sy a) =T, , (@) =(py-ty)a = p,(,.0) = 1, (T, (@)
=1,(T, ()=T,T,(a)=S(u)-S(u,)a).
To complete the proof, it is enough to show that S is onto.

Let T be any element in LM(A). Since we can consider A4
as a subalgebra of (AA*)*, the net (T(ea ))ae/\ is in

(AA*)* and, for each fain (AA*)*, it follows

<aAf,T(e,)>=< f,T(e,).a>=< f,T(e,.a)>>< f,T(a)>
This shows that the net (7'(e ” ) aen 18 @ weak*-Cauchy

in (AA*)* . Hence it converges to some element £ of
(AA*)* in the weak™ topology of this space. The above

equalities

<alAf,p) >=< f,T(a)>

Then
which

for all f in A * and a in A.
<abf,p) >=<f,p.a) >=< f,T(a) >,
means f.a =1(a) sothat T = T# . Since, for each T

~

in LM(A), there is an element [/ in M 5 such that
S(,u) = T/u =T, the mapping S is onto.

Corollary 2.6: Let A be a Banach algebra with a
bounded appoximate identity. If ZZA C A then,

M,=Z7,=LM(A).
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