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ABSTRACT 

Multiple linear regression models are widely used applied statistical techniques and they are most useful 
devices for extracting and understanding the essential features of datasets. However, in multiple linear 
regression models problems arise when a serious outlier observation or multicollinearity present in the data. In 
regression however, the situation is somewhat more complex in the sense that some outlying points will have 
more influence on the regression than others. An important problem with outliers is that they can strongly 
influence the estimated model, especially when using least squares method. Nevertheless, outlier data are often 
the special points of interests in many practical situations. Another problem is multicollinearity in multiple 
linear regression (MLR) models, defined as linear dependencies among the independent variables. The purpose 
of this study is to define multicollinearity and outlier detection method using a Genetic Algorithm (GA) and 
Bayesian Information Criterion (BIC) in multiple regression models. Also, GA with BIC is to illustrate the 
algorithm with real and simulation data for outlier detection in MLR models having multicollinearity problems. 
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1. INTRODUCTION 

Regression is one of the most commonly used statistical 
techniques for understanding the essential features of 
datasets. However, there are a number of common 
difficulties associated with real datasets. The first 
involves detection and elimination of outliers in the 
original data. An outlier is one that appears to deviate so 
much from other observations of the sample [1, 4]. A 
problem with outliers in regression analysis is that they 
can strongly influence the regression model, especially 
when using least squares estimation criterion, so a multi 
step procedure is required, first to identify whether there 
are any samples that are atypical of the dataset, then to 
remove them, and finally to reformulate the model. 
Also, if there is a known distribution for the data, then 
using that distribution can aid in finding outliers [2, 8]. 

Influential outliers can bias parameter estimates and 
make the resulting analysis less useful. It is important to 
detect outliers since the outliers can provide misleading 
results. The classical identification method based on the 
sample mean or sample covariance matrix cannot 
always find them, because the classical mean and 
covariance matrix are themselves affected by outliers 
due to masking effects [1]. Several statistical estimates 
such as studentized residual, hat diagonal elements, 
Dffits, Cooks distance are available to identify both 
outliers and influential observations [7, 17, 20]. 

Statistical parametric methods for outlier detection 
either assume a known underlying distribution of the 
observations [4, 22] or, at least, they are based on 
statistical estimates of unknown distribution parameters. 
These methods flag as outliers those observations that 
deviate from the model assumptions. They are often 
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unsuitable for high dimensional data sets and for 
arbitrary data sets without prior knowledge of the 
underlying data distribution [21]. 

A second problem is that of correlations of between 
parameters in the model. The predictor variables in a 
regression model are considered orthogonal when they 
are not linearly related. But, when the regressors are 
nearly perfectly related, the regression coefficients tend 
to be unstable and the inferences based on the 
regression model can be misleading and erroneous, 
although the data may be predicted well. This condition 
is known as multicollinearity [19]. It is known that 
given strong multicollinearity the parameter estimates 
and hypotheses tests are affected more by the linear 
links between independent variables than by the 
regression model itself. The classical t-test of 
significance is highly inflated owing to the large 
variances of regression parameter estimates and the 
results of statistical analysis are often unacceptable [9]. 

In this study, we are interested with the problem of 
identifying outliers and detection of outliers in the 
dependent variable of MLR having multicollinearity 
problems using GA. GA has been used for outlier 
detection and model selection of linear regression 
models or times series. Also the use of GA for outlier 
detection and variable selection can be found in [24]. 
Ishibuchi and et al., (2001) proposed a genetic 
algorithm based approach for selecting a small number 
of instances from a given data set in a pattern 
classification problem. A robust simultaneous 
procedure is investigated for identification of outliers 
using Bayesian information criterion [16]. The 
scalability of information criterion is considered with a 
real data and also by generating simulation data. We 
have shown the behavior of our approach for constant 
sample sizes, two levels of correlations between 
independent variables and constant percentages of 
contaminated outliers by simulation. That is, the outliers 
were produced by adding a given amount to each 
dependent variable. We also studied on the affects of 
kappa coefficient which is the extra penalty value for 
Bayesian information criterion and we are obtained 
results for different values of it. 

2. GA-BASED OUTLIER DETECTION IN 

MULTIPLE REGRESSION HAVING 

MULTICOLLINEARITY PROBLEMS 

It is described detection of outliers in MLR models 
having multicollinearity problems based on GA and 
Bayesian information criterion in this section. These are 
as follows. 

2.1. Outlier Detection in Multiple Regression 

Regression analysis is to identify an appropriate 
transformation from sample to relate a response variable 
to a set of independent variables [10]: 

εX...XXY kk22110 +β++β+β+β=         (1) 

kk22110 Xˆ...XˆXˆˆŶ β++β+β+β=          (2) 

where nY ℜ∈  is a response variable, Ŷ  is the 
predicted value of the dependent variable, 

 X,,X n
k1 ℜ∈… are independent variables, 0β  is the 

intercept on the Y axis, and k1 ,...,ββ  are the 

regression coefficients for each of the independent 

variables. The usual estimator of β  coefficient 

)YX)XX(ˆ( T1T −=β  comes from the method of 

Ordinary Least Squares (OLS) which is minimizes the 

difference between Y and Ŷ values 
22 )ŶY(e ∑ −=∑ . The major disadvantage of OLS is 

performance when the error does not completely satisfy 
the classical assumptions. One of the most common 
violations of a normal distribution for the error terms is 
the presence of one or more outliers in the sample. 

If outliers occur in the data, the errors can be thought to 
have a different distribution from normal. There are 
several possibilities, but perhaps the most intuitive one 

is the mixture model. We assume that the s'ε  in 
distinct cases are independent where, 
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Here π  is the probability of an outlier and 
2K  is the 

variance inflation parameter. In practical works the data 
sets may have outliers. One outlying observation can 
destroy least squares estimation, resulting in parameter 
estimates that do not provide useful information for the 
majority of the data. 

In this study, potential outliers can be incorporated into 
MLR model of equation (1) by the use of dummy 
variables. A dummy variable is N x 1 vector (N is the 
number of observations) that has a value of one for the 
outlier observation, and zero for all other observations. 
A dummy variable in this experimental study is 
equivalent to a detected outlier. The problem for outlier 
detection in MLR is to select of the best model. For this 
reason, the candidate MLR models have different 
combination of all possible dummy variables. 

Bayesian information criterion (BIC) based on Bayesian 
method proposed by Schwarz [23]. The BIC will be 
used here for outlier detection. For MLR model with 
dummy variables the criterion can be calculated as, 

N/)Nlog(m)ˆlog(BIC 2 +σ=          (3) 

where )1kN/()ee(ˆ 2 −−′=σ  is the estimated variance 

of regression model, and dmk1m ++= , the total 

number of parameters in the estimated model, consists 
of parameters for the constant, the k independent 

variables and the number of outlier dummies dm . 

Generally a good model has small residuals, and few 
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parameters, then it is chosen with the smallest value of 
BIC is preferred [24]. 

A problem in using the BIC for outlier detection is 
that by itself it tends to include unnecessary outlier 
dummies. To circumvent this problem, a correction to 
the criterion is used. This takes the form of an extra 

penalty )1( >κ  for the dummies. The corrected BIC 

is denoted CBI ′  which is given by [24], 

,N/)Nlog(mN/)Nlog()k1()ˆlog(CBI d
2 κ+++σ=′

     (4) 

where the kappa )1( >κ  is the extra penalty given to 

outlier dummies. Simulation experiments are conducted 
to determine relevant different values of κ  and true 
outlier detection. 

2.2. Multicollinearity in Multiple Regression 

In the applications of regression analysis, 
multicollinearity is a problem that always occurs when 
two or more predictor variables are correlated with each 
other. This problem can cause the value of the least 
squares estimated regression coefficients to be 
conditional upon the correlated predictor variables in 
the model. 

The existence of co linearity in the linear regression 
model can lead to a very sensitive least squares 
estimate. This implies that different samples taken at the 
same X levels could lead widely different coefficients 
and variances of the predicted values will be highly 

inflated. Least squares estimates of iβ are usually too 

large in absolute values with wrong signs. Interpretation 
of the partial regression coefficient is difficult when the 
regressor variables are highly correlated. 
Multicollinearity in multiple linear regression can be 
detected by examining variance inflation factors (VIF) 
and condition indices (CI). 

Several methods have been developed to overcome the 
defficiencies of multicollinearity. These are Partial least 
squares regression (PLSR), Principal component 
regression (PCR), and Ridge regression (RR) as 
methods to handle multicollinearity [7]. PLSR is a 
method of modeling relationships between a response 
variable and other explanatory variables [11]. This 
method was developed by Wold (1966) [25]. According 
to Barker (1997) [6], the PCR performs the Principal 
Component Analysis on the explanatory variables and 
then runs a regression using the principal component 
scores as the explanatory variables with the response 
variable of interest. Hoerl and Kennard (1970)[13] 
developed ridge regression which is the modifications 
of the least squares method that allow biased estimators 
of the regression coefficients. However, as many author 
noted, the influence of the observations on ridge 
regression is different from the corresponding least 
squares estimate, and collinearity can even disguise 
anomalous data investigated the leverage in ridge 
regression [5]. 

 

2.3. A Genetic Algorithm for Outlier Detection 

Genetic algorithms are search technique used in 
computing to find true or approximate solutions to 
optimization and search problems which are a particular 
class of evolutionary algorithms that use techniques 
inspired by evolutionary biology such as inheritance, 
mutation, selection, and crossover [12]. 

GAs has been implemented as a computer simulation in 
which a population of abstract representations to an 
optimization problem evolves toward better solutions. 
Traditionally, solutions are represented in binary as 
strings of 0s and 1s, but other encodings are also 
possible. The evolution usually starts from a population 
of randomly generated individuals (chromosomes) and 
happens in generations. In each generation, the fitness 
of every individual in the population is evaluated, 
multiple individuals are stochastically selected from the 
current population based on their fitness, and modified 
to form a new population. The new population is then 
used in the next iteration of the algorithm. In summary, 
the outline of the steps of GA is shown in Figure 1. 

In this experimental study, GA was used to detect the 
outliers. A random population of chromosomes was 
created representing the solution space. Each member 
of this random population represents a different possible 
solution for the GA. The GA contains the following 
components. 

• Parameter Encoding: The coding of the 
candidate models for outlier detection is 
straightforward. Each model also called a chromosome, 
is fully described by a binary vector “d”, 

)d,...,d(d N1= , where 0d i =  indicates no 

outlier dummy and 1d i =  indicates an outlier dummy 

for observation i , for each N,...,1i = . These 

dummy variables for outlier observations must be 
created before the GA is run on the data set. 

In this study, the structure of a chromosome is shown in 
Figure2. Each chromosome consists of p genes, where p 

is the number of outliers (  N)1,...,(p  ,op = ) given 

in a model. For instance p=3; the first, second and N-1st 
observations are outliers in Figure 2. 

• Fitness Function: The measure of fitness of a 
chromosome is evaluated by the fitness function, which 
has as its argument the string representation of the 
chromosome and returns a value indicating its fitness. 
The genes, which represent the serial number of 
outliers, are updated with each new population created 
and the fitness of a chromosome is computed by the 

CBI ′  (4) for MLR model with the corresponding 
dummy variables. 
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Figure 1. The Outline of GA. 

 

 

Figure 2. The Structure of a Chromosome.

 

• The Population and Generations: The population 
size in each generation is 40 chromosomes. MLR 
models corresponding to these chromosomes are then 

estimated using the observed data, and CBI ′  values 
for them computed. The chromoosmes with smallest 
values of the fitness function are more likely to pass 
their genes onto the next generation. 

• Selection Operator: During selection operator, 
fitter individuals have a higher chance to be selected 
than less fit ones for next generation. Stochastic 
uniform selection function is used in GA. This function 
lays out a line in which each parent corresponds to a 
section of the line of length proportional to its scaled 
value.  

• Crossover Operator: Crossover, the process 
whereby a new chromosome solution is created from 
the information contained within two parent solutions. 
The next generation of chromosomes from the previous 

one, is based on the CBI ′  values of the chromoosmes. 
The best chromosome has the smallest value of the 

fitness function CBI ′ , are more likely to pass their 
genes onto the next generation. A crossover probability 

is selected as 1  p c =  and it is indicates that crossover 

always occurs between any two parent models chosen 
from the mating pool; thus the next generation will 
consist only of offspring models, not of any model from 
the previous generation. 

• Mutation Operator: Mutation is applied to 
one candidate and results to build a new candidate 
chromosome Mating of the chromosomes from the 
previous one generation will not be enough for diversity 
of population. To this end, the chromosomes of each 
generation are also mutated before model estimation. 
Each gene of each individual is flipped, from zero to 

one or vice versa, with probability 01.0pm = . 

Executing crossover and mutation leads to a set of new 
candidates that compete based on their fitness value 

CBI ′  with the old ones for a place in the next 
generation. This process can be iterated until a 
candidate with sufficient a solution is found or a 
previously set computational limit is reached. 

3. EXPERIMENTS AND DESIGN OF 

SIMULATION STUDY 

In this study, the performance of CBI ′  information 
criterion to outlier detection is evaluated and 
performance of GA is demonstrated through real data 
and simulation experiments. These data sets 
demonstrated the effectiveness of our method. Data is 
generated for N=40 observations and number of outliers 
are inserted data set by taking into account of 
percentage of outliers in the dependent variable. Then 
this algorithm is applied for outlier detection in MLR 
having multicollinearity problems using synthetic data 
sets. 

 

 

[Begin] 

 

[Initialise] Generate random population of Nc chromosomes. These are candidate solutions for the detection of outliers 
in Y. 

[Evaluate] Evaluate the fitness of each chromosome in the population using BIC'. 
[Repeat Until Termination Condition is Satisfied Do 
 

1. Select two parents chromosomes from a population according to their fitness value BIC'. 
2. Crossover with a crossover probability crossover the parents to form a new offspring.  
3. Mutation with a mutation probability mutate new offspring at each locus. 
4. Evaluate new candidate solutions. 
5. Select chromosomes for the next generation. 

 

[Replace] Use new generated population for a further run of algorithm and look for minimum of the BIC'. 
[Test]      If the final condition is satisfied based on BIC' stop, and return te best solution in current population. 
[Loop] Go to evaluate. 
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3.1. Experiments: Simultaneous Outlier Detection 

In this study, two experimental data sets have been used 
to illustrate outlier detection in MLR modeling. 
References to these, and other information, including 
where to obtain the data can be found in [14]1. In this 
section, it is investigated that detect outliers from these 
data sets with GA. 

i . Scottish Hill Racing: The first example involves 
data supplied by Scottish Hill Runners Association. The 
purpose of the study is to investigate the relationship 
between record time of 35 hill races and two 
explanatory variables: distance is the total length of the 
race, measured in feet. One would expect that longer 
races and larger climbs would be associated with longer 
record times [3]. 

In this data set; races 7th and 18th observations are 
outliers. After removed observations 7 and 18, 
observation 33 is also an outlier. Thus observations 7 
and 18 mask observation 33. After race numbers 7, 18, 
and 33 are removed from the data, standard diagnostic 
checking does not reveal any gross violations of the 
assumptions underlying MLR models [10]. 

The GA described earlier was run many times with this 
data; all runs result in the same outliers being detected, 
at observations 7, 18, and 33. The solution was always 
found quickly by the GA overcomes masking effects. 
The estimated model with the three outlier dummies has 

a CBI ′  value of 4.136 and the results of GA on the 
Matlab program as seen in Figure 3. 

 

Figure 3. The Results of Scottish Hill Data by GA. 

 ii. The Stack Loss Data: The stack loss data 
consist of 21 days of operation form a plant for the 
oxidation of ammonia as a stage in the production of 
nitric acid. The response is called stack loss which is 
the percent of unconverted ammonia that escapes from 
the plant. There are three explanatory variables. The air 
flow is first independent variable which measures the 
rate of operation of the plant. The second independent 
variable measures the inlet temperature of cooling water 
circulating through coils in this tower and the last 

                                                           
These data sets are available from one of the author’s website; 
http://www.stat.colostate.edu/~jah/index.html 

independent variable is proportional to the 
concentration of acid in the tower. Small values of the 
respond correspond to efficient absorption of the nitric 
oxides. In earlier research [3, 14] been identified as 
outliers four observations. These are 1, 3, 4, and 21 
observations. This data set provides an interesting 
extreme example of masking [3]. The detection of any 
of these outliers is very difficult if only one observation 
at a time is examined. But the simultaneous methods 
such as GAs are able to detect all of four outliers at a 
time. 

The GA was run a lot of times with this data. The entire 
run gives to result in the same outliers being detected, at 
observations 1, 3, 4, and 21. The best outlier 
combination was always found quickly by the GA. The 
estimated model with the four outlier dummies has a 

CBI ′  value 2.30 and the results of GA on the Matlab 
program as seen in Figure 4. 

 

Figure 4. The Results of Stack Loss Data by GA. 

 

3.1. Data Generation and Outlier Detection in MLR 
Having Multicollinearity Problems 

In order to study the performance of the CBI ′  
criterion and the role of κ  values for in MLR having 
multicollinearity problems, it is conducted a simulation 
study. Following McDonald and Galarneau (1975) [18], 
it is explained how to generate a suitable design: firstly, 

it is generated the values for Y and 321 X,X,X  

using the following simulation protocol. 

• the first three predictors are generated from; 

11 2X ε+= ,  

212 3.02X αε+ε+=  

)1 ,3( Normal~X3  

where 21,εε  are independent and identically 

distributed (i.i.d.) according to )1,0(N 2 =σ . The 

parameter α  controls the degree of collinearity 
between predictors X1 and X2 and it is determined 
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α value for degree of correlations between predictors. 
Thus, two levels are selected for α  values, these are 
0.60 and 0.80. Then, it is generated the response 
variable Yi from; 

• ii32i1ii εX3.0X5.0X2.0Y ++++= ,      

)1,0(N~ 2
i =σε       

        for i=1,…,40 observations. 

• Percentage of outliers in the dependent 
variable is selected as %5. The outliers are 
generated from the uniform distribution 

which lies at least σ3  from the mean of iY  

and, the kappa values are selected as 

...,10. 3, 2,=κ  

Under these conditions, firstly it is simulated the 
explanatory variables and the error terms for (i= 1,…,N) 
observations and N=40. Then, it is generated the 

response variable. After iY  are generated from normal 

distribution, outlier observations are generated from 
uniform distribution take into account of percentage of 
outliers. For example, for the sample size N=40 and 
percentage of outlier for the %5, it can be generated 2 
outliers observation. 

Outliers are then added to the dependent variables. The 
iteration number for each combination of experiments is 
100. The following table shows that the parameters of 

GA with CBI ′  as the fitness function for the 
simulated models. The best models chosen most of the 
generations of GA can detect the outliers. 

 

Table 1. The Parameters of the GA for the Simulated 
Model. 

 

Sample Size of Simulation Data, N=40 

Number of Generations 250 

Population Size 40 

Fitness Value CBI ′  
Crossover Probability  1 

Mutation Probability 0.01 

Elitism For two parents 

 

4. RESULTS 

GA mimics evolution is also a useful optimization tool 
for statistical modeling. In this study, it is demonstrated 
that Bayesian information criterion and a GA outline for 
outlier detection in MLR having multicollinearity 

problems. The value of information based selection 
criterion is calculated for observation as a measure of 
the fitness of dependent variable in MLR models using 
different values of κ . GA can simultaneously search in 
the solution space and find the outliers also for 
multicollinearity problems. The simulation results are 
shown in Table 2, where the values in cells are defined 
as extra total numbers of finding outliers in all iterations 
in dependent variable with GA. 

As seen in Table 2 the true results for experiments are 

obtained for values of 4,...,10 3,κ =   for sample 

size is N= 40 and percentage of outliers %5. A 
simulation study is carried out to support the good 

behavior of the CBI ′ . It is clear that from simulation 
results for high values of kappa coefficient ( κ >3) 
gives true information about how many observations 
are found as outlier. Therefore, we concluded that the 

best performing for outlier detection using CBI ′  in 
MLR models is taken by the kappa coefficient is bigger 

than three. The important issue is that the CBI ′  
criterion can not be affected masking or swamping 
effects finding outliers so we also said that this criterion 
is robust than other outlier detection methods. 

In Figure 5 it is seen that the kappa coefficient gives 
good results when the dependent variable Y containing 
of %5 outlier observation and MLR model having 
multicollinearity problems for degree of correlations 
0.60 and 0.80 between two predictors. 

Experiments with real and synthetic data sets show that 
the information criterion based on outlier detection 
method using GA in MLR models having 
multicollinearity problems find the outlier 
automatically. 

The purpose of this experimental study was to test the 
scalability of the GA based on fitness function as 

CBI ′  criterion when MLR models having 
multicollinearity problems handling constant sample 
size and contaminated data with outliers. 

We tested two types of scalability of the GA for outlier 
detection on data sets. The first one is the scalability of 
the GA against the given number of outliers in MLR 
models having multicollinearity problems and the 
second is the scalability against the power of different 
kappa coefficients for a given sample size and number 
of outliers. Figure 5 shows the results of using GA to 
find diversity number of outliers on data set. One 
important observation from this figure was that the GA 
based on information criterion can be found accurately 
outliers especially the kappa coefficient bigger than six 
for MLR models having multicollinearity problems 
handling. 

Hence, we are confident to claim that the GA based on 

CBI ′  criterion is suitable for MLR models having 
multicollinearity problems. 
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Table 2. Total Number of Outliers Finding with GA. 

 Kappa Values 
Correlations 

Between 21 X and X  

Total # of 
Outliers in 

Data 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
10 

0.60 200 193 22 5 1 0 0 0 0 0 
0.80 200 168 13 3 1 0 0 0 0 0 

 

 

 

Figure 5. Results for Percentage of Outliers = 5% and Correlations 0.60, 0.80 Between X1 and X2. 
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