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ABSTRACT 

In today’s business, travelling times are affected by many factors such as traffic, weather, road etc. so 
deterministic approaches can not find any solution for problems where such an ambiguity happens. This paper 
deals with the Travelling Salesman Problem (TSP) in which travelling times are inaccurate. We use discrete 
fuzzy numbers to represent the uncertainty. Discrete fuzzy numbers are then converted to the triangular fuzzy 
numbers (TFNs). TFNs enforce the TSP model to have a non-linear objective function. Then we make an 
approximation and obtain linear model (LM) by inserting lower, medium, and lower values of the TFNs into 
one since non-linear model (NLM) can trap local optima. Finally, we develop Iterated Local Search (ILS) 
technique to get good solutions in a shorter time in the case that objective function is non-linear. NLM, LM and 
ILS are compared on a wide range of test problems that randomly generated. Results show that ILS technique is 
very promising and finds much better solutions in a very shorter computational time. Hence, it can be 
substituted in the place of NLM. 
 

Key Words: Travelling Salesman Problem (TSP), Discrete Fuzzy Numbers, Heuristic. 

1. INTRODUCTION 

TSP is one of the oldest and most widely studied 
optimization problems in the fields of operations 
research and combinatorial optimization. In a TSP, a 
salesman who starts from his point of origin must visit 
each of n cities exactly once and return to the point of 
origin to complete the tour. If we denote the starting 
point as 1 and the n cities as integers 2,….,n. and a 
complete tour can be written as τ =(1, i1,….., in,1). 

The basic problem is to find the tour which has the 
minimum time (min T (τ )). 

Up to now, huge variants of TSP have been widely 
studied in the literature such as TSP with time windows, 

the multi-TSP, stochastic TSP or vehicle routing 
problems which are the extensions of TSP [1-5]. 

However, in many real world applications, we can 
consider the travel times among cities as fuzzy 
numbers. This problem arises the issue of fuzzy TSP 
(FTSP). Although the TSP has received a great deal of 
attention, number of researches on the FTSP is limited. 
With regards to fuzzy environment, Voxman [6] first 
introduced the concept of discrete fuzzy numbers which 
is useful for some applications. For instance, Wang et 
al. [7] successfully used the conception to find the pixel 
value of the center point of a window. Then Kung and 
Chuang [8] solved the shortest path problem with DFNs 
arc length. 
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Aforementioned challenging applications of DFNs on 
different kind of problems inspired us to apply the 
concept on TSP. To our knowledge, TSP problem with 
discrete fuzzy travel times is not studied yet. As 
Voxman [6] indicated, we translated discrete fuzzy 
numbers into TFNs. Travel times with TFNs make the 
objective function of TSP non-linear. But since non-
linear models can not guarantee the optimal solution, 
we relax the NLP by converting the model to LP. It is 
proved that LP finds solutions with a little deterioration. 

Many researchers has recently paid closer attention to 
metaheuristic approaches such as Iterated Local Search 
(ILS), Genetic Algorithm (GA), Tabu Serach (TS), 
Particle Swarm Optimization (PSO) etc. for 
combinatorial optimization problems since they can 
find good solutions in a quite shorter computational 
time. For this purpose, we develop an ILS algorithm to 
the TSP, which belongs to the combinatorial 
optimization problems. 

Remainder of the paper is organized as follows: In 
subsequent section, we present the notations and basic 
definitions for DFNs and conversion of DFNs into 
TFNs. Section 3 demonstrates the NLP and LP model 
for TSP. Section 4 is devoted to ILS technique. Section 
5 shows the comparative results. Paper finalizes with 
concluding remarks and future directions in Section 6. 

2. NOTATIONS AND BASIC DEFINITIONS 

A fuzzy set on a set X is a function IX →:µ , 

where I is the unit interval. If µ , v are fuzzy sets on X, 

then the fuzzy sets v∨µ  and v∧µ are defined by 

{ })(),( max xvxv µµ =∨ and 

{ })(),( xvxmixv µµ =∧ . 

If µ is a fuzzy number on X, then the complement, 

Cµ , of µ is defined by 

)(1)( xxC µµ −=  for each Xx∈  

The support of µ , supp µ  is defined by 

supp µ ={ }0)(| ≠∈ xXx µ  

In this paper we will generally assume  
1RX =  and 

supp X is finite. If µ  has a finite support 

nxxx <<< ...21  then µ Count  is defined by 

∑
=

=
n

i

ixCount

1

)( µµ    (1) 

Definition: A fuzzy set IR →1:µ is a DFN if 

µ  has a finite support nxxx <<< ...21 and there 

are indices s, t, nts ≤≤≤1  such that 

• 1)( =ixµ  whenever tis ≤≤ , 

• If sji ≤≤ , then 1)()( <≤ ji xx µµ , 

• If qpt ≤≤ , then )()(1 qp xx µµ ≥> , 

Next we define the concepts of value, ambiguity, and 
fuzziness for DFNs. 

 

Definition: Let µ  be a DFN with support 

nxxx <<< ...21 . Then the value v, of µ  is 
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Definition: Let µ  be a DFN with support 

nxxx <<< ...21  and the value v. the ambiguity a, 

ofµ  is defined by 
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Definition: Let µ  be a DFN with support 

nxxx <<< ...21 . Then the fuzziness, f, ofµ  is 

defined by 
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Since fuzzy numbers need not be symmetric, it is 
sensible to regard left-hand and right-hand ambiguity 
and fuzziness. 

Definition: Let µ  be a DFN with support 

nxxx <<< ...21 . Let v be the value of µ . Then 

the right-hand ambiguity, Ra , of µ is defined by 

∑
=

−=
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iiR xvxa
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)(|| µ  where the indices i run over 

all i such vxi ≥  

The right-hand fuzziness, Rf , of µ is defined by 
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such vxi ≥  
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The left-hand ambiguity La , and left-hand fuzziness, Lf , of µ  are defined in the same manner. 

TFNs are characterized by three parameters a, b and c as is seen in Figure 1. 

 

By using the right-hand ambiguity and right-hand fuzziness obtained by DFNs, we calculate the parameter c. Parameter a 
is calculated in the same fashion. Parameter b is equal to value of DFN. 

If 
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Voxman [6] indicates that parameter k should be selected bigger than and equal 2 and we chose k as 3 for all test 
problems. 

( ) ( )RL dvvdvcba +−= ,,,,  

When we calculate Ld , we use the above formulation but La , and Lf are used instead of Ra and Rf  

respectively. In the next section, conversion of DFNs into TFNs is shown numerically. 

3. NON-LINEAR AND LINEAR FORM OF TSP WITH TFNs 

In the case where travel times between cities are characterized by TFNs, a length of any tour will also be TFNs as shown 
below. 

Let’s suppose that we have three cities i, j, and k. 

Also suppose our tour is ikji →→→=τ  

Travel times between cities are as follows: 

( )
( )
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So, tour time is shown below. 

( ) ( )kijkijkijkijkijkij cccbbbaaaT ++++++= ,,τ  

To get the crisp value of tour time ( )( )crispT τ , we should know how far tour time is to the origin (0, 0, 0) and calculation 

is denoted in Eq. 7: 

a b c 

µ(x) 

x 

Figure 1. Generic illustration of TFNs with three parameters. 
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After tour times are obtained as crisp values, we can search for the tour with minimum length among all feasible tours. 
Non-linear form of TSP problem with TFN travel times can be modeled as follows: 

The following symbols are used in the model; 

i,j = city (i,j =1,2,….,n) , 

ji
LD , = the travel time between city i and city j. (left-hand of the triangular fuzzy number) 

ji
MD , = the travel time between city i and city j. (middle of the triangular fuzzy number) 

ji
RD , = the travel time between city i and city j. (right-hand of the triangular fuzzy number) 
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All jiX ,  = 0 or 1 and all 0)( ≥iU  and is a set of integers. 

Constraint sets (9) and (10) are degree constraints and ensure that city i connects to one city only and that city is reached 
from exactly one city. Constraint set (11) is required for sub-tour elimination. 

Since the objective function of the model is non-linear, it can not guarantee to find the optimal solution but can trap local 
optimum. Besides, solution time increases when the problem size gets bigger. To overcome this difficulty and find 
relatively better solution to the problem, the objective function of the problem can be made linear by using the approach 
shown in Eq. 12: The problem is subject to the same constraints. 
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The reason why we develop such an approach is to use it as a control mechanism. We prove that the optimal solution of 
the non-linear model is always less than that of linear model (See Appendix). When linear model finds better solution than 
does non linear-model, it is clear that the solution non-linear model gets is not optimal. Even if the solution non-linear 
model finds is less than that of linear model, we can not ensure that the solution non-linear model finds is optimal but that 
solution is amongst pretty better ones. In the next section, we further investigate the problem and offer an ILS algorithm 
whether we can obtain better solution than that of non-linear and linear model. By comparing these three approaches, we 
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have a chance to evaluate their performances concurrently. To illustrate the solution phase of the NLM and LM, consider 
the following example with five cities. Data set of the sample problem is shown in Table 1. 

Table 1. Travel times with DFNs for the illustrative example. 

Cities Travel times (Discrete Fuzzy Numbers) 

1-2 0.1/26 0.1/54 0.5/60 0.9/71 1/75 0.9/76 0.6/85 0.3/87 0.1/99 

1-3 0.3/43 0.4/45 0.5/54 0.7/77 0.7/80 0.4/94 0.4/98 

1-4 0.1/33 0.3/39 0.6/47 0.9/67 0.9/73 0.9/74 0.3/77 0.3/94 

1-5 0.1/18 0.1/19 0.6/24 0.7/31 0.6/47 0.3/55 0.1/68 

2-3 0.1/16 0.3/19 0.9/21 0.6/40 0.2/83 

2-4 0.2/13 0.4/32 0.4/57 1/58 1/68 1/82 0.7/85 0.4/94 0.4/98 

2-5 0.3/14 0.4/23 0.9/66 1/71 1/83 0.6/90 0.3/100 

3-4 0.2/16 0.3/46 0.4/49 0.6/68 0.3/75 0.3/87 

3-5 0.1/16 0.3/24 0.4/62 0.7/64 0.8/72 1/77 0.8/80 0.4/87 0.3/93 0.2/98 

4-5 0.1/14 0.2/24 0.2/51 0.6/55 0.8/58 0.9/72 0.8/75 0.5/84 0.2/89 0.1/93 

 

We show the transformation of DFN to TFN for travel times between city 1 and city 2. Other DFNs are transformed by 
the similar way. Calculations for the other travel times are given in Tables 2, 3, and 4. 
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So DFN = {0.1/26 0.1/54 0.5/60 0.9/71 1/75 0.9/76 0.6/85 0.3/87 0.1/99}is equal to  

TFN = )928.90,844.73,895.57(  
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If left hand of the TFN is less than 0, we assume it is equal to 0. In Tables 2, 3, and 4 all conversions are given. 

 

Table 2. Left-hand of the TFN (DL). 

 1 2 3 4 5 

1 0 57.895 54.760 47.627 22.810 

2 57.895 0 15.011 25.934 38.442 

3 54.760 15.011 0 47.289 48.675 

4 47.627 25.934 47.289 0 38.685 

5 22.810 38.442 48.675 38.685 0 

 

Table 3. Middle of the TFN (DM). 

 1 2 3 4 5 

1 0 73.844 71.941 66.767 36.520 

2 73.844 0 31.810 69.545 69.067 

3 71.941 31.810 0 60.000 71.860 

4 66.767 69.545 60.000 0 65.841 

5 36.520 69.067 71.860 65.841 0 

 

Table 4: Right-hand of the TFN (DR). 

 1 2 3 4 5 

1 0 90.928 90.455 91.542 48.686 

2 90.928 0 42.879 104.600 109.471 

3 90.455 42.879 0 71.714 99.343 

4 91.542 104.600 71.714 0 92.997 

5 48.686 109.471 99.343 92.997 0 

 

All the experiments for NLM and LM are conducted by 
using LINGO 8.0 optimization software package. For 
the example, optimal tour is 1→2→3→4→5→1 and 
optimal tour time (T(τ)) is 274.101. When the problem 
is solved with linear objective function, optimal tour 
time (T(τ)) is 274.953 with the same city order. Note 
that LM solution is a little worse than that of NLM. 

4. ITERATED LOCAL SEARCH (ILS) 

ILS which is developed among meta-heuristics for 
difficult problems is not only an algorithm producing 
effective solutions but it is also a random search method 
which can easily be implemented in practice. It can be 
referred to as the first ILS study conducted by Martin et 
al. [9] for TSP. Lourenço et al. [10] gained some 
information about the structure of ILS algorithm in their 
studies. The success of the ILS is not limited to TSP. 
Many previous studies suggest that this method was 
also successful in scheduling problems. Examples are 
Single-Machine Total Weighted Tardiness Scheduling 
Problem [11], flow-shop scheduling problems [12,13], 

and job-shop scheduling problems [14], quadratic 
assignment problem [15]. For a detailed review of other 
applications, readers are referred to [16]. 

4.1. The General Structure of ILS Algorithm 

The ILS algorithm, as previously mentioned, is a 
random search method developed for NP-hard 
problems. The most important characteristic of the ILS 
algorithm is its ability to jump to other points of the 
solution space (S) by masking the good characteristics 
of a solution which is stuck to the local optimum. This 
jumping action is achieved by a process called 
perturbation. There are four components that should be 
taken into consideration while applying an ILS 
algorithm. These are initial solution, local search, 
perturbation and acceptance criterion. 
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4.2. Local Search 

Performance of ILS is remarkably sensitive to choice of 
embedded heuristic. In practice, there may be many 
different algorithms that can be used for the embedded 
heuristic. Two different local search heuristics were 
used in this study in order to increase the effectiveness 
of the solution of the ILS algorithm. These are: 

Two-Node-Exchange 

Given a tour, any two nodes in the current tour are 
changed. If this results in a better feasible tour the 
change is accepted. Procedure is repeated until no 
improvement is achieved. 

2-p-Opt 

Given a tour, its 2-p-opt neighborhood is the set of tours 
obtained by reversing a section of s (a set of 
consecutive nodes) and adjusting the arcs adjacent to 
the reversed section [17]. 

4.3. Perturbation 

The objective here is to escape from being trapped local 
optimum by applying perturbations to the current local 
minimum. In Figure 2 [10], perturbation is applied the 
current tour (s*) and this leads to an intermediate state 
s’ and Local Search is applied to s’ and after local 
search a new solution s*’ is reached. If s*’passes an 
acceptance test, we accept the s*’ as a current tour, 
otherwise perturbation repeated on the s*. Until the 
termination condition is met, algorithm steps are 
repeated. Figure 3 shows the general working principles 
of ILS. 

The effect of the perturbation depends on how strong 
the perturbation is. If the perturbation is too small, it is 
possible to reach the same local optimum. If the 
perturbation is too large, then the ILS algorithm will 
behave like random restart type algorithm. 

The present study selected a perturbation mechanism 
which is effective for TSP and called double bridge 
move [10]. Double bridge move cuts the current tour at 
three random positions and uses a particular way of 
reconnecting the four remaining tour segments. Figure 4 
shows the double bridge move as a perturbation 
mechanism. 

In this study, the termination condition was established 
as a maximum number of iterations and the algorithm 
was limited to different number of iterations for test 
problems depending on problem size. The iteration 
number was taken to be the solution number applied 
perturbation. In the following section, test problems and 
their results are discussed. 

5. COMPUTATIONAL RESULTS 

Fifteen test problems are randomly generated, ranging 5 
to 100 cities. Membership values are chosen 
corresponding to uniform distribution with a lower 
bound of 0.1 and upper bound of 1. Travel times also is 
also assumed to be uniformly distributed with a lower 

bound 10 and upper bound of 100. DFNs have the 
number of parameters between 5 and 10, corresponding 
to uniform distribution. ILS algorithm is coded with 
Microsoft Visual C# language and run on a PC with 
1.80 GHz CPU and 2.0 GB RAM. At Table 5, NLM, 
LM, and ILS results were compared in terms of solution 
quality and CPU times to evaluate the performance of 
the ILS algorithm. Due to the stochastic nature of the 
ILS algorithm, each problem was run five times and the 

best solution (
*
ILSS

) and average of the five run 
(AV(SILS)) is given. Since NLM can also trap local 
optimum and give the different solutions for any 
problem, it is run five times and the best solution 

(
*
NLMS

) and average of the five run (AV(SNLM)) is 
given. The solutions that LM finds (SLM) are also 
given in Table 5. 

Dashed lines in Table 5 mean that any solution is not 
sought because NLM is most unlikely to find any 
solution in a reasonable time. For the first seven 
problems, NLM finds local optimum. As is seen in 
Table 5, linear model gives us an insight about how 
efficient solutions that ILS finds are. As mentioned 
earlier in the text, LM deviates little from the NLM 
solution. ILS catches better solutions than those of LM. 
With regards to computational time, ILS works nearly 
perfect even if problem size much bigger. 

6. CONCLUDING REMARKS AND FUTURE 

DIRECTIONS 

In this paper, we examine the Travelling Salesman 
Problem with discrete fuzzy travel times. Although it is 
one the most prominent and studied problem in 
combinatorial optimization problems, no study is 
available in literature about the problem with discrete 
fuzzy travel times. We convert the discrete fuzzy 
numbers into triangular fuzzy numbers by using the 
approach introduced in Voxman [6]. Non-linear 
objective function is constructed for the problem. To 
have an insight, we also make an approximation by 
linearizing the objective function and we prove that LM 
model always has worse results than those of NLM in 
the case the optimality is guaranteed. We further 
investigate our research and develop an ILS algorithm 
to get good results in a very shorter computational time 
since NLM’s solution time deteriorates when problem 
size gets bigger. We compare NLM, LM, and ILS 
solutions on a broad range of test instances and we see 
that ILS catches quite good results in very shorter 
computational time and can be substituted in the place 
of NLM. 

This study can be extended in some points. Other 
metaheuristic approaches like Genetic Algorithm, 
Simulated Annealing, Tabu Search, Ant Colony 
Optimization etc. can be applied to the problem and 
comparative results may be given. On the other hand, 
other combinatorial optimization problems such as 
Vehicle Routing Problem, Scheduling etc. with fuzzy 
environment can be studied in detail. 
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Figure 2. Perturbation phase. 
 
 
 
Procedure Iterated Local Search 
        s0 = Initial Solution 
        s* = Local Search (s0) 
        repeat 

  s’= Perturbation(s*) 
  s*’= Local Search (s’) 
  s* = Acceptance Criterion (s*, s*’)  

       until termination condition met 
end procedure 

 
 

Figure 3. General working principles of ILS. 
 
 
 
 

 
 

 
Figure 4. Double bridge move. 
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Table 5: Comparative results of NLM, LM, and ILS on test problems. 
 
Prob. Parameters Non-Linear Model Linear Model Iterated Local Search 

Prob 

# 
Prob. 
Size 

*
NLMS  AV(SNLM) CPU 

(Secs) 
SLM CPU 

(Secs) 
ITER 

*
ILSS  AV(SILS) CPU 

(Secs) 

1 5 274.10 274.10 <1 274.95 <1 50 274.10 247.10 <1 

2 7 356.72 356.72 <1 357.76 <1 50 356.72 356.72 <1 

3 10 484.19 501.81 3 488.37 2 70 484.19 484.19 <1 

4 12 540.04 540.04 2 543.56 <1 70 540.04 540.04 <1 

5 15 717.33 735.62 29 696.85 18 100 688.35 688.35 <1 

6 18 791.02 800.59 64 802.01 4 150 791.02 791.02 <1 

7 20 858.72 881.76 130 870.58 7 150 858.72 858.72 <1 

8 30 -- -- -- 1243.27 8 200 1229.13 1230.83 <1 

9 40 -- -- -- 1590.12 10173 250 1576.39 1578.22 <1 

10 50 -- -- -- 1942.22 220 300 1921.70 1929.10 2 

11 60 -- -- -- -- -- 600 2296.26 2299.55 2 

12 70 -- -- -- -- -- 700 2604.46 2611.48 6 

13 80 -- -- -- -- -- 700 2895.41 2899.92 8 

14 90 -- -- -- -- -- 800 3219.27 3222.16 12 

15 100 -- -- -- -- -- 1000 3514.55 3522.34 18 

 

Appendix: The linear model solution is always worse (bigger) than that of the non-linear model solution 

if we suppose that non-linear model finds the global optimum. 

Consider any tour i→j→k. 

Suppose that travel times between city i and j is (a1, b1, c1), and travel times between city j and k is (a2, b2, c2). 
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Since all the terms are grater than 0 and we prove that objective function value of linear model is always 
worse (bigger) than that of non-linear model. 
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