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ABSTRACT 

A simple algorithm for the derivation of load-deformation relationships of a beam-column element is 
developed.  Nonlinear beam-column element is modeled considering inelastic flexural deformations, geometric 
nonlinearities and elastic shear and axial deformations.  In a frame structure, one element is used for one 
member that may be loaded by distributed loads.  The distribution of inelasticity along the member is taken into 
consideration.  The algorithm can be used not only in nonlinear static analysis but also calculation of the elastic 
stiffness characteristics of non-prismatic members such as haunches and tapered beams.  Correlation studies 
with the existing literature have been conducted with the objective to establish the validity of the proposed 
algorithm. 
 
Key Words: Beam-column element; inelastic deformations; spread plasticity; stiffness characteristics; 
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1. INTRODUCTION 

Definition of the load-deformation relationships of a 
beam-column element is an important step in nonlinear 
static analysis. Simplicity, reliability and computational 
effectiveness are the most important features of beam-
column elements. A simplified calculation approach for 
the derivation of load-deformation relationships of a 
beam-column element is presented in this study. 
Although the proposed algorithm is very simple 
compared with the existing formulation in the literature, 
it is able to produce satisfactory results. The proposed 
algorithm has been implemented in a computer program 
named DOC2B, [1], which is an analytical tool used for 
the performance analyses of frame type structures. The 
proposed algorithm can also be used to calculate the 
elastic stiffness matrix of non-prismatic members such 
as haunches and tapered beams. The efficiency of the 
developed algorithm is demonstrated by giving 
numerical examples. 

Since inelastic deformations are distributed along the 
members rather than being concentrated at critical 
sections, a more accurate description of the inelastic 
behavior is possible with the distributed nonlinearity 
models, [2]. Earlier beam-column models consist of two 
cantilever elements that are connected at the fixed point 
of contra-flexure of the member, [3], [4]. Umemura et 
al. [4] used continuous function to represent the 

variation of rigidity along the member length.  
Takayanagi et al. [5] proposed to divide the element 
into a finite number of short longitudinal elements, each 
represented by a nonlinear rotational spring. The static 
condensation is used to reduce this multi-spring model 
to a single beam-column element. Filippou et al. [6] 
identified the lengths over which the moment M 
exceeds the corresponding yield value, with length 

iz and jz . Assuming an average rigidity of all sections 

within iz and jz , flexibility matrix of the member is 

formulated. Valles et al. [7] produced a beam-column 
element which is a basic three-dimensional space frame 
element considering flexural, shear and axial 
deformations, and it has been implemented in various 
versions of IDARC. Izzuddin et al. [8] proposed a new 
beam-column formulation modeling of three 
dimensional RC frames. The formulation is intended for 
modeling the nonlinear elastic behavior of a whole RC 
beam-column with only one element. It presents the 
element formulation in a local Eulerian system where 
the cross section response over the element length is 
transformed into local element forces and tangent 
stiffness. Taylor et al. [9] developed some solutions for 
Euler-Bernoulli and Timoshenko theories of beams in 
which material behavior may be elastic and inelastic. 
The local constitutive equations are integrated over the 
beam cross section to obtain the relations for beam 
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resultants. The approach leads to a shear deformable 
formulation that is free of locking effects. Nanokorn 
[10] proposed a new two-dimensional, two nodded 
beam-column element for the inelastic analysis of plane 
frames. It is capable of having multiple internal hinges 
whose positions are not limited to the ends of the beam-
column element. It is possible to use one element for 
one member of a frame structure even when distributed 
loads are present. 

2.2. Primary Element 

The simplified calculation approach is aimed at 
representing a whole inelastic member with one 
element. A member is divided into finite number of 
segments along its length so the spread of inelasticity 

can be modeled more accurately. The primary element 

is chosen as a cantilever beam that is to be of length L . 
Rigid end offsets may be available at both ends. The 

primary element consists of segN  segments for which 

the flexural characteristics are assumed to be constant.  

It is divided into maxk  small segments of length kL∆  

to apply the proposed recurrence equations, Eq. (1) and 
Figure 1. 
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Figure 1. Definition of the small segments. 

1 2 3, ,P P P  are independent end forces and q  is 

uniformly distributed span loading of the primary 
element.  The bending moments obtained from the unit 
independent end forces and distributed span loading are 

named as 1 2 0, ,M M M , respectively, Figure 2. The 

end displacements arise from the unit end forces and 

distributed span loading are depicted as 11f , 12f , 

21f , 22f , 10f , 20f . 

M j  ( j=0,1,2)
P1

P3

P2

q

  

Figure 2. Independent end forces and uniformly distributed span loading. 

Two recurrence equations which are suitable for quick 
calculation have been produced to obtain the deflected 
shapes of the primary element. 

2.3. Rotation Difference between Successive Points 

As shown in Figure 3, a pair of unit moments M  is 
moved from the fix support to the free end of the 
primary element.  The equation written by virtual work 
theory to calculate the rotation difference between 

successive points is called as rotation difference 

equation and given in Eq. (2). In this equation, jM  

shows the moments obtained from the unique values of 

independent end forces, kEI  is average flexural 

stiffness of k th segment of the primary element, Eq. (3). 
L
kM  and 

R
kM  correspond moments at the end 

sections of the k th segment, Figure 4. 
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Figure 3. A pair of unit moments. 
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Figure 4. k th segment of the primary element. 
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Using the boundary condition 01 =θ  at the fix 

support and Eq. (4), the absolute rotation at each point 
of the primary element can be calculated, successively. 

θ θ θk k k+ = +1 ∆       ; max1,..., 1k k= +  

                ….    (4) 

2.4. Transversal Displacement 

The bending moment at any section of the cantilever 

beam,
L
kM , is calculated from the equilibrium. It is 

expressed for k th segment of the cantilever, in the form 
given in Eq. (5). After using the boundary condition 

0=kδ  at the fix support, the unique unknown in Eq. 

(5) is the transverse displacement 1+kδ . 
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   ; max1,....., 1k k= +                                (5) 

For uniformly distributed load, q , fixed-end moment is calculated using Eq. (6) as: 
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The transverse displacement at each points of the primary element can be calculated, using Eq. (7) which is called as 
Transverse Displacement Equation. 
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The forces at the ends of the segments due to unit rotation and translation are calculated using Eq. (8). 
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2.5. Shear Deformations 

Shear deformations are to be considered elastically. The forces due to the unit rotation and translation are calculated using 
Eq. (9). 
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                   (10) 

G  is shear modulus of elasticity, 
'F  is effective shear area of cross section in Eq. (10). 

 

2.6. Second Order Effect of Axial Force 

For k th segment of the primary element, additional 
shear forces due to the second order effect of axial force 
are calculated. Relative transverse displacement and 

axial force of the segment are multiplied and the result 
is divided to the segment length as shown in Figure 5 
and given in Eq. (11). 

 

 

          

         

         

         

         

         

         

         

         

         

         

Figure 5. Calculation of the second order shear forces on a segment of the primary element. 
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The calculated second order shear forces are added to 
the applied loading for both of the rotation difference 
and transverse displacement equations. An iterative 
process is applied until the results of successive steps 
converge. 

 

2.7. Stiffness Matrix of Primary Element 

The end displacements of the primary 

element 11f , 12f , 21f , 22f , 10f , 20f  are calculated 

using developed recurrence equations. The 
corresponding flexural stiffness matrix is calculated by 
a simple inversion of the flexibility matrix using Eq. 

(12). The end forces of 01P  and 02P  are calculated 

using Eq. (12). 
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2.8. Definition of Sectional Flexural Stiffness 

The gradient of the moment-curvature relation 
corresponds to the flexural stiffness which includes all 
the sectional properties in a typical loading condition. 
Given the distribution of flexural stiffness along the 
span of a beam-column element, element flexibility 
matrix can be calculated easily using the proposed 
algorithm for the elastic as well as inelastic stage of its 

response. Initial secant stiffness is used for the 
definition of sectional stiffness as shown in Figure 6. 
Ms

c is the flexural moment obtained for the section by 
using the previous step’s sectional stiffness of EIs

o. Ms
d 

is the moment corresponding to the curvature of 
χs=Ms

c/EIs
o. EIs

n is sectional stiffness to be used in the 
next step of the analysis and it is calculated as 
EIs

n=Ms
d/χs. 
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c
 / EIs

o

M
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Figure 6. Linearization on axial force dependent moment-curvature diagram. 

The algorithm performs successive linear solutions to 
satisfy the sectional moment-curvature relationships. If 
a convergence criterion is not satisfied, the stiffness and 
loading matrices are updated, and a new solution is to 
be attempted. This iterative procedure continues until 
the problem converges. Although the convergence 
speed of initial secant stiffness method is relatively 
slow, it guaranties not to have any singularity or 
convergence problems. 

3. COMPARISON STUDIES 

3.1. Example 1 

Banerjee [11] used Bernoulli-Euler theory and Bessel 
functions to obtain explicit expressions for the exact 
static stiffness for axial, torsion and flexural 
deformation of an axially loaded tapered beam-column 
element. The calculated stiffness coefficients of the 
tapered beam-column element that carries a 

compressive axial load of 0.80 crP  where crP  is the 

lowest critical buckling load with both ends clamped 
are compared with the results of the developed 
algorithm. Eq. (13) shows the definition of sectional 
properties. 
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where c  is a constant such that 1c > − , L  is the 
length of the beam-column element, x  is the distance 

from one end of the beam, l  can have any value and n  
is 1, 2 or –1. The geometrical and mechanical properties 
of the beam-column element are as follows: Length of 

the element is L =  5 m., axial and flexural rigidity of 

the g section is gEA  = 2.8*10
6 N, gEI = 1759.29 

Nm2, respectively. An axial compression force of 

0.8 crP is used where crP = 8077.8 N, and c, l and n 

parameters are all equal to 1.0. 

For solution of the problem with the developed 
algorithm, beam-column element is divided into 10 sub-

elements and different values for segN  and maxk  have 

been tried to evaluate sensitivity of the results. The 
“exact solution” proposed by Banerjee is given in 

Column 1 of Table 1.  For the case where 4segN =  

and max 20k = , the biggest relative difference 

between calculated and “exact values” is 0.611%. 

Relative differences in the case of 40segN =  and 

max 200k =  are given in Column 4 of Table 1 and 

the biggest relative difference decreases to 0.014%.  
Lastly, it is checked the effect of large values like 

400segN =  and max 800k =  and it is obtained that 

the biggest relative difference is about 0.008%. The 
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numerical solutions for the different values of segN  

and maxk  parameters approach the “exact solution” 

given by Banerjee. It is obvious that the proposed 
algorithm converges to a unique solution. 

3.2. Example 2 

A RC portal frame is chosen to make comparison 
between the results of developed algorithm and 
OpenSees [12] which is an object oriented framework 
for finite element analysis. Although only material type 
nonlinearity is used in the first analysis, material and 
geometric type nonlinearities are considered together in 
the second analysis. The geometry and cross sectional 

properties of the system are given in Figure 7. The 
constant vertical loads acting on columns are 600 kN. 

All of beam and column elements of the system have 
the same cross section and reinforcing details. The total 
area of longitudinal reinforcement in the typical cross 
section is equal to 25.806 cm2 and it is uniformly 
distributed in the cross section. Constitutive models for 
well confined concrete and steel reinforcement are 
shown in Figure 8. For the sake of simplicity, a unique 
concrete model is defined for whole section. Moment 
curvature relationships are depicted in Figure 9 for two 
different axial force levels. 

 

 

Table 1. Comparing the results of alternative solutions. 

Stiffness Coefficients 
“Exact 

Solution” 
segN  = 4 

maxk = 20 

segN = 40 

maxk = 200 

Relative 
Difference 
( x 10-5 ) 

segN = 400 

maxk = 800 

 (1) (2) (3) (4) (5) 

K66 = K44 = K64 1231.588 1231.157 1231.576 0.97 1231.581 

K61 = K14 951.565 949.764 951.534 3.26 951.552 

K62 = K42 647.259 643.302 647.168 14.06 647.210 

K11 4374.018 4367.367 4373.806 4.85 4373.878 

K12 9131.843 9116.189 9131.476 4.02 9131.640 

K22 12368.139 12332.698 12367.319 6.63 12367.687 

 

NN
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H
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a  

a 

Section  a-a 

 

Figure 7. Geometry and typical cross section of the system. 

The nonlinear beam-column element which considers 
the spread of plasticity along the element has been used 
in OpenSees in which RC cross sections are divided 
into a mesh 30 by 30. Total number of the integration 
points along the frame elements is set to 10. Linear 
elastic axial stiffness is defined for all the frame 

elements. The lateral top displacement versus base 
shear relationships obtained by DOC2B and OpenSees 
are given together, in Figure 10. Comparisons of the 
results show that the proposed algorithm is in a good 
agreement with OpenSees. 



 G.U. J. Sci., 22(4):341-350 (2009)/ Ercan YÜKSEL1♠, Faruk KARADOĞAN1 347 
 

 

 

0.005 0.02

24.6

35.0

σ [Mpa]

ε
0.002

0.02Es
420.0

ε

Es

σ [Mpa]

       Concrete                                                     Steel 
 

Figure 8. Confined concrete and steel constitutive models. 
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Figure 9. Moment-curvature relationships. 
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Figure 10. Base shear top displacement relationships. 

The lateral top displacement and bending moment at the 
bottom section of right column of the frame 

corresponding to 360 kN base shear are compared in 
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Table 2, for different values of segN  and maxk  parameters in the developed algorithm. 

 

Table 2. Some comparisons for Example 2. 

 
Some Quantities   

segN  = 10 

maxk = 20 

segN = 40 

maxk = 200 

segN = 100 

maxk = 200 

segN = 400 

maxk = 800 

Lateral Top Disp. [m] 0.06175  0.06944  0.07120  0.07131  

Bending Moment  [kNm] 333.55  333.36  333.34 333.29 

 

3.3. Example 3 

A portal frame with an inclined member shown in 
Figure 11 is chosen as a third example, [10]. An 
uniformly distributed load,q , is applied to element #2 

of the  

 

portal frame. The problem is solved by using three 
beam-column elements. Perfectly plastic behavior is 
assumed for all of the elements. The required properties 
such as initial flexural stiffness EI and the plastic 
moment capacity Mp are assumed to be same for each 
element. 
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Figure 11. Geometry of the portal frame and moment-curvature relationship. 

Horizontal displacement at point #2 versus uniformly 
distributed load intensity q  relationship obtained from 

DOC2B is drawn in Figure 12. Critical values of this 
graph are exactly same with the values given in [10]. 

Figure 13 demonstrates graphically the distribution of 

secant stiffness,EI , along the portal frame for the last 
step of the analysis. Lower stiffness values are reached 
at the near vicinity of point #2 and the section that is 

3.75 m away from the left end of element #2. These are 
exactly same locations with the plastic hinges defined in 
[10]. Plastic zone lengths can be extracted from the 
developed algorithm. One of the important advantages 
of the developed algorithm is to use one element for one 
member even loaded with distributed load. 
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Figure 12. Distributed Load vs. Lateral Displacement of the Frame. 
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Figure 13. Load-response curve and distribution of flexural stiffness. 

4. SUMMARY AND CONCLUSIONS 

This research work presents a simple alternative 
algorithm for the derivation of load-deformation 
relationships of a beam-column element. The proposed 
algorithm which is very simple, reliable and 
computationally effective, can be used for analysis of 
non-prismatic members and nonlinear static analysis of 
frame type structures subjected to monotonic loads. 
Several applications illustrating the use of the nonlinear 
element were given. 

The main features of the algorithm are those (i) one 
element is used for one member, (ii) the solution satisfies 
all equilibrium equations, (iii) the spread of inelasticity is 
considered along member length. 

The comparative examples show that optimal values for 

segN  and maxk  parameters in the developed algorithm 

can be set as 40 and 200, respectively. The 
implementation of the developed algorithm in the 
computer program DOC2B for the nonlinear static 
analysis of large structures is presently completed and 
Example 2 is prepared using this program. The examples 
of computations made have proved effectiveness and 
correctness of the proposed algorithm. 
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