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ABSTRACT   
 

Effective reduction and control of noise have continued to attract attention globally due to the adverse effects noise poses to 

human health, effective knowledge dissemination and desirable environmental tranquility. The use of natural and synthetic 

reinforced composites in noise pollution control is an emerging area of research. In this study, coal fly-ash in nanoparticles 

varied at 5 – 25 wt. % was employed as reinforcement in the fabrication of epoxy resin composites. The composites were 

characterized both for noise reduction capability and mechanical properties necessary for a damage-free handling during 

installation. Results showed that samples of the composites at 15 wt. % exhibited the highest noise reduction coefficient (NRC) 

of 0.8072. This translates to 81% noise reduction capability if deployed in a facility and compares very well with that of 

conventional acoustical materials that are used in buildings and other facilities. The mechanical properties exhibited by the 

composite samples in terms of flexural strength (20.3 – 43.7 MPa), impact energy (4.4 – 4.8 J), and hardness (13.3 – 15.3 HV) 

are sufficient for the intended area of application. Thus, the composite developed at 15 wt. % fly-ash addition is recommended 

for deployment in auditorium (lecture theatre), public library, hospital ward and hotels. These facilities have maximum 

recommended noise levels in the range of 35 – 45 db. The composites are adjudged suitable for application as noise muffling 

materials in buildings and other facilities that are usually subjected to low mechanical system noise sources.   
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1. INTRODUCTION 
 

Noise being an unwanted sound is a serious social malaise that plague every segment of societies 

worldwide. It is established that normal sound frequency range for human hearing is 20 Hz – 20 kHz 

[1]. However, on daily basis people are subjected to noise frequency range between 50 Hz and 50 kHz 

corresponding to a rather uncomfortable noise level greater than 80 decibels. This underscores the 

continuous quality attention being placed on how best to reduce significantly the generation and 

transmission of unwanted sound [2]. Effective noise reduction and control lie in understanding the 

mechanism by which noise is transmitted. According to [3], the science of hearing sound in spaces can 

be broadly divided into three stages namely; sound production, sound reproduction and noise control.  
 

Noise control has become an important part of architectural design due to its high probability to harm 

human well-being causing disruption of normal sleep pattern, hearing impairment, loss of concentration 

and other debilitating effects. Recent discoveries established that constant exposure to noises can cause 

both auditory and non-auditory health problems such as cardio-vascular diseases, sleep disturbance and 

annoyance [4, 5]. Thus, the main goal of most architectural design modification of buildings and structures 

is to reduce or eliminate the noise power, either outdoors or indoors [6]. Furthermore, the understanding 

of the nature of sound as a wave which propagates through physical mediums such as air is imperative for 

effective curtailment [7]. Eventual propagation of sound involves three contiguous processes namely; 

transmission, absorption and reflection. However, the amount of energy going into transmission, 

absorption or reflection depends on the surface’s acoustic properties. Thus, the sound that is heard is 

usually a combination of direct sound straight from the source and indirect reflections from surfaces and 

other objects in the environments. Hence, sound can be controlled either from the source (active control) 

or from the surroundings (passive control). In real life situations both passive and active sound control 

is essential in order to perceive the right sound.  
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Currently, the common in-door sound muffling materials in use are polymers and ceramics. However, 

polymers such as vinyl ester, epoxy, and polyurethane in which pores have been induced during processing 

are most preferred [8, 9]. Epoxy resins are thermosets often used in polymer matrix composites due to their 

good resistance to chemical attack, lightweight and excellent insulating properties [10].  In order to prevent 

polymer matrix composites from mechanical damage, they are usually reinforced by either organic or 

inorganic fillers such as certain industrial wastes including coal fly-ash, carbon black, or processed 

agricultural waste such as rice husk-ash [11, 12]. Fly-ash is a coal combustion byproduct constituting a 

major environment problem. It consists of silt-sized spherical particles oxides of silicon, aluminum, 

calcium, magnesium and other metallic oxides in trace amounts [13]. The unique spherical shape and 

particle distribution of fly-ash makes it a good filler material in polymer matrix composites. According to 

[14], the average coal fly-ash annual production worldwide is put at 700 million tons. 
 

In view of the foregoing, the development and deployment of sound absorber materials appear to be the 

panacea to the pervasive noise pollution in our environments [15, 16]. The aim of this study is to develop 

and characterize fly-ash nanoparticles reinforced polymer composites suitable for noise reduction purposes. 
 

2. MATERIALS AND METHODS 
 

2.1. Materials and Equipment 

The major materials used in this study include epoxy resin/hardener sourced commercially and coal fly-

ash obtained from Lafarge Cement Manufacturing Company, Ewekoro, Ogun state, Nigeria. The 

equipment used for both the composites synthesis and characterization include a ball-mill, mechanical 

stirrer, FTIR and XRF analyzers to validate the type of epoxy resin used and the fly-ash composition 

respectively. An impedance tube was used to generate noise parameters data from which the Noise 

Reduction Coefficients (NRC) of the composites were computed. The mechanical characterization of 

the composites was carried out using Instron mechanical tester, Avery impact tester and Vickers 

hardness tester while an optical microscope was used for the microstructural examination.  
 

2.2. Composites Production 
  

Powder metallurgy technique was employed in the production of the composites. The coal fly-ash was 

milled using a steel ball mill (model A50 43, Mashine, France) and sieved to nanoparticle size using 

British standardized sieves (BSS). This procedure agrees with the method adopted by [17, 18] 

concerning ball milling of carbonised organic particles. Sustainability of the procedure is ensured by 

producing the nanosized fly-ash particles in bulk prior to the commencement of the composite 

production. Thereafter, fly-ash nano particles production continues simultaneously with the composite 

production. Then mechanical mixing of the reinforcement with the epoxy resin was carried out according 

to calculated materials formulation shown in Table 1. Each formulation of the composite weighs 60g and 

the mixture was stirred vigorously to achieve homogeneous blend and as well exclude air bubbles. The 

mixture was then poured into prepared wooden molds coated with paper tape which served as the mold 

releasing agent. This was followed by casting of the composites which were allowed to cure at room 

temperature for 24 hours and then stripped for characterizations. 
 

Table 1. Materials formulation 

 

Sample  Matrix Reinforcement 

Epoxy resin 

(g) 

Epoxy resin, 

wt. % 

Hardener            

(g) 

Hardener wt. 

% 

Fly-ash 

nanoparticles (g) 

Fly-ash 

nanoparticles, wt. 

% 

A 40 67 20 33 0 0 

B 38 63 19 32 3 5 

C 36 60 18 30 6 10 

D 34 57 17 28 12 15 

E 32 53 16 27 15 20 

F 30 50 15 25 18 25 
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2.3. Sound Absorption Test 

The sound absorption tests were carried out in department of Physics laboratory, University of Jos, 

Nigeria using the Transfer Function Method (TFM). This test method makes use of an Impedance tube 

configured with a digital frequency analyzer for the determination of sound absorption coefficient as 

shown in Figures 1 and 2. 

 

 
                         Figure 1. Impedance tube                                         Figure 2. Frequency analyser 

 

The experimental procedure involves five (5) successive steps namely: (i) test sample was fitted to the 

sample holder and into the impedance while the signal generator was adjusted to give a frequency of 

1000 Hz sound wave. Furthermore, the Cathode Ray Oscilloscope (CRO) was adjusted to show the 

function generator output; (ii) the signal generator output was moved to leave the CRO screen to clear 

the way for the microphone signal; (iii) the microphone was moved along the axis of the impedance tube 

until the amplitude of the trace on the CRO is at a minimum while the peak to peak height of the trace 

was recorded as V2; (iv) the microphone was further moved until the amplitude of the trace was at a 

maximum and the peak to peak values recorded as V1 and (v) the frequency was changed to 2 KHz, 3 

KHz, 4 KHz, 5 KHz and 6 KHz respectively while procedures i-iv were repeated for each frequency. 

 

2.4. Mechanical Test 
 

Three-point flexural test was conducted on the composite samples of dimension 12 x 5 x 0.5 cm at room 

temperature using an Instron electromechanical testing machine according to ASTM D7264 standard. 

The experiment was conducted under a crosshead speed of 30 mm/min maintained at a span of 100 mm. 

An Avery impact testing machine was used to evaluate the impact toughness of the samples dimensioned 

to 5 x 1.5 x 0.5 cm in accordance with ASTM E23 standard. The Vickers hardness values of the 

composite samples of dimension 4.4 x 4.4 x 0.5 cm were obtained using a micro-hardness tester. 

 

3. RESULTS AND DISCUSSION 

 

3.1. Chemical Composition 

The XRF analysis results carried out on the fly-ash nanoparticles (FLANP) is presented in Table 2. 

 

Table 2. Composition of fly-ash 

 

Composition SiO2 Al2O3 Fe2O3 K2O CaO MgO P2O5 TiO2 Na2O SO3 *L.O.I 

Wt. % 50.23 25.85 6.31 3.84 3.22 2.00 1.39 1.17 1.20 0.09 4.70 

*Loss on Ignition 

The result in Table 2 shows that fly-ash consist of relatively high silicate glass known as cenospheres 

followed by Al2O3, Fe2O3, K2O, CaO, MgO, P2O5, TiO2, Na2O, SO3. According to [13], cenospheres 

consist of silicate glass in which the silica content is higher than the calcium content. The main 

application of cenospheres is as inert fillers, in which they often provide up to four times the bulk filler 
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capacity. Furthermore, being inert, they are resistant to most acids and high temperature conditions. 

Thus, cenospheres can be used in plastics, glass-reinforced plastics, light-weight panels, refractory tiles 

and almost anywhere that traditional fillers can be used [19]. 

3.2. Fourier Transform Infrared (FTIR) Spectroscopy  

The FTIR result presentes in Figure 3 shows that the epoxy rein used is Diglycidyl ether of bisphenol-

A (DGEBA). Although, the spectra look similar to its hydrogenated derivative (HDGEBA), but the 

differences become obvious from the difference in peak values coupled with the absence of aromatic 

rings in HDGEBA. These features usually influence epoxy resin functional properties such as the glass 

transition temperature, viscosity and reaction rate [20]. The  highest  peak  of  the  epoxy  resin observed  

at  1510.31cm-1 is  within  the  carbonyl  region (1500-1700cm-1). This is common for epoxy resin as 

they show prominent C=O peaks in this region. These days the use of epoxy resin in natural fiber based 

composites is gaining prominence owing to its low weight, ease of synthesis and competitive cost. 

Furthermore, epoxy in natural fiber based composites have been found to confer excellent sound 

attenuation characteristics coupled with environmental friendliness and minimal impact on human 

health [21]. Hence, researchers [22, 23] are proposing its usage as a viable replacement for glass-fiber 

composites especially in applications where sound absorption is important. 

 
 

Figure 3. FTIR of the as-received epoxy resin 

3.3. Microstructure 

The optical micrographs of the composites at varied FLANP addition are shown in Figure 4b – 4f. 

Addition of FLANP influenced the microstructural features to the extent of fractions of pores dispersed 

homogeneously within the epoxy resin matrix. However, the control sample’s micrograph without filler 

is devoid of pores (Figure 4a). At 5 – 15 wt. % FLANP addition, varied fractions and sizes of pores are 

seen dispersed evenly within the matrices (Figure 4b – 4f). The pores in Figure 4b appear isolated while 

the pores in Figure 4c and Figure 4d developed into a network in a peculiar textural pattern as FLANP 

addition increased from 10 wt. % to 15 wt. %. Further increase in FLANP addition at 20 – 25 wt. %, the 

matrices (Figures 4e and 4f) appear saturated and the fillers completely subsumed in the epoxy resin. 

Formation of pores may have stemmed from the combination of vacuum created during cross-linking 

and condensed moisture due to the hydrophobic nature of epoxy resin. The dynamics of sound impact 

on a material can be liken to the process of wave generation and propagation. The mechanism by which 

such wave is absolved and reflected depends on the material structure such that continuity in structure 

ensures thorough passage of the wave through the material  [3, 6]. However, the presence of vacuum 
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within the material favors a situation where significant portion of the wave is absorbed. In this study, 

the presence of pores developed in the material as shown in the micrographs serve as sound waves sink. 

The preponderance of inter connected pores in the composites further enhances the attenuation 

capability of the composites. In particular, Figure 4d shows significant presence of inter connected pores 

that may enhance its sound absorption ability. 

 

 
 

Figure 4. Optical micrographs at varied fly-ash addition (a) 0 wt.% FLANP, (b) 5 wt.%, FLANP, (c) 10 wt.% FLANP, 

(d) 15 wt.% FLANP, (e) 25 wt.% FLANP, (f) 25 wt.% FLANP  x200 
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3.4. Sound Absorption Response  
 

The sound absorption response of the fly-ash nanoparticles reinforced epoxy resin at varied sound 

frequencies from 1 – 6 kHz is presented in Table 3. 

 
Table 3. Sound absorption coefficient (SAC) 

 

Frequency (kHz) SOUND ABSORPTION COEFFICIENT (α) 

A B C D E F 

1 0.8889 0.8889 0.5925 0.8594 0.1519 0.1814 

2 0.4898 0.2602 0.6567 0.6980 0.1249 0.7601 

3 0.8889 0.8741 0.9902 0.5017 0.9722 0.5707 

4 0.7500 0.8889 0.8405 0.9711 0.2215 0.4375 

5 0.6036 0.8568 0.8741 0.8889 0.3803 0.5556 

6 0.6400 0.9467 0.8889 0.8889 0.9902 0.1814 

 

The SAC values in Table 3 indicate the sound absorbing properties of fly-ash reinforced epoxy resin at 

different frequency. Computation of SAC data for application is rather cumbersome and not easily 

comprehensible. Hence, for application purposes, Noise Reduction Coefficient (NRC) is usually 

adopted as expressed in using equation (1) [24].  

 

                                                         NRC =
(α1 + α2 + α3 + α4 + α5 + α6) kHz

6
                                             (1) 

Where: αn = Sound absorption coefficients at 1kHz, 2kHz, 3kHz, 4kHz, 5kHz, and 6kHz. 

Substituting SAC values in equation (1) for each sample formulation yields the NRC values of 0.7102, 

0.7859, 0.8072, 0.4735 and 0.4478 respectively for samples A, B, C, D, E and F.  

The sound muffling capacity of the composites as illustrated in Figure 5 correlates the microstructural 

features in terms of the nature and dispersion of pores formed. NRC measures how well materials stop 

sound from reflecting (how much sound they can absorb). The NRC is the percentage of sound that a 

surface absorbs (in other words, hits a surface and does not reflect back again into the room). A material 

is usually considered to be a sound absorber if it has an NRC value greater than 0.35 [25]. To be an 

effective sound absorber, a material must have interconnecting air pockets or pores [25]. 

Hence, pores in this case serve as sound sink where sound in the form of vibration incident on the 

composites is significantly absorbed releasing just a fraction at low decibels between 35 db and 45 db. 

The effectiveness of the pores sound muffling capacity is dependent on their interconnectivity [3]. This 

accounts for the peak performance of samples C and D (10 and 15 wt. % FLANP) which exhibited the 

highest NRC value of 0.8072. Materials sound absorption capability depends on acoustic impedance of 

the media which is a function of the frequency [11]. In this case, frequency approximates different 

sources of sound including mechanical vibration such as from air-conditioner, washing machine, electric 

generator all accommodated in a building. From Table 3, it is observed that at a relatively 

highfrequencies; 4-6 kHz the SACs are in the range of 0.89-0.97. This means that efficiency of the 

composites is ensured when the sound source synchronizes with the acoustic panel capacity. Sustained 

elevated sound absorption above 80 decibels is known to be injurious to human health sometimes 

resulting in hearing damage. However, from the results in Table 3, the optimum mixture containg 15 

wt. % fly-ash exhibited such NRC (0.807) that appears sufficient for desirable sound muffling need in 

facilities such as hospital wards, conference halls, public library, etc. Generally, noise levels in these 

facilities which are in the range of 70-120 db can be muffled down to as low as 35-45 db by deploying 

the optimum mixture composite panel. Other acoustic materials that exhibit comparable performances 

include acoustic tile (0.9), carpet over concrete (0.72), 25 mm fiberglass board (0.98), etc. 
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The NRC value (0.8072) of sampes C and D compared very well with that of conventional acoustical  

materials that are used in buildings and other facilities presented in Table 4. Samples C and D must have 

possessed a relatively high volume fraction of inter connected pores compared to sample A with 

predominantly isolated pores. The sound muffling ability of the composites at 20 – 25 wt. % fly-ash 

nanoparticles addition was impaired due to the absence of functional pores as the matrices were 

completely saturated with the filler. 

 
 

Figure 5. Noise reduction coefficient (NRC) of epoxy resin at varied fly-ash addition 

 

 

Table 4. Noise reduction coefficient of conventional acoustical materials [25] 

 

 

 

 

 

 

 

 

 

 

 

 

3.5. Flexural Strength 

The flexural property of the composites at varied filler addition is depicted in Figure 6. This is the 

measure of the composites ability to withstand unrecoverable warpage or fracture under bending load. 

The control sample (unreinforced epoxy resin) exhibited the highest flexural strength of 56.1 MPa which 

decreased monotonously as fly-ash nanoparticles increased from 5 – 25 wt. % corresponding to 43.7 – 

20.3 MPa. This behavior agrees with [26, 27] which is attributted to bending stiffness often resulting in 

limited plastic deformation with a tendency for brittle fracture. The pattern of flexural strength 

performance by the reinforced samples is attributed to the quasi discontinuity in structure occasioned by 

Materials NRC 

Brick (unglazed) 0.05 

Concrete block (unpainted) 0.05 

Carpet (combined pile and foam) 0.35 

Fabric (heavy velour) 0.60 

Fabric (medium velour) 0.55 

Floors (concrete) 0.05 

Floors (wood) 0.10 

Glass 0.05 

Gypsum board 0.05 

Marble or glazed tile 0.00 

Plaster (gypsum or lime) 0.05 

Plywood paneling 0.10 

Wood roof decking 0.15 

Commercial board (CB) unfaced 150 0.80 – 1.00 

Commercial board (CB) unfaced 225 0.70 – 1.05 

Commercial board (CB) unfaced 300 0.70 – 1.05 

Commercial board (CB) unfaced 600 0.75 – 1.00 

Black acousta board (TYPE 225) 0.65 – 0.95 

Black acousta board (TYPE 300) 0.70 – 0.95 
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pore formation. This gave rise to a rather poor load transfer between the reinforcing phase and matrix 

thereby causing concomitant decrease in flexural strength commensurate to the increase in fly-ash wt. 

% addition. Considering the report by [28, 29], the range of flexural strength (43.1 – 33.9 MPa) 

demonstrated by the composite samples at 5 – 15 wt. % fly-ash addition is adjudged sufficient for both 

damage-free installation and durability in service of the panels.  

 
 

Figure 6. Flexural strength of epoxy resin at varied fly-ash addition 

 

3.6. Impact Energy 

The impact energy of the unreinforced epoxy resin is relatively high, 3.6 J but failed to measure up to 

dynamic stability at varied fly-ash addition as shown in Figure 7. However, the highest impact energy 

of 4.8 J was exhibited at 5 wt. % fly ash addition. This may be attributted to moisture induced within 

the matrix during synthesis, epoxy resin being hydrophobic in nature. According to [30], moisture 

absorption has a deleterious effect on Charpy impact toughness of polymer matrix composites. At 5 – 

15 wt. % fly-ash addition, impact energy range from 4.8 – 4.4 J which is adjudged sufficient for the 

intended area of application. However, the relatively low impact performance of the composites may be 

attributed to impaired strength of cross-linked chains arising from pores induced discontinuity in the 

structure.   

 
 

Figure 7. Impact energy of epoxy resin at varied fly-ash addition 
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3.7. Hardness 

 

The surface resistance to damage demonstrated by the composites was evaluated through Vickers 

hardness technique and the result is illustrated in Figure 8. Due to the microstructural features induced 

in the composites on fly-ash nanoparticles addition (Figure 4b – 4f), a modest level of hardness, 25.4 – 

19.5 HV was exhibited at 5 – 15 wt. %. However, a highest hardness value of 25.4 HV was exhibited at 

5 wt. % fly ash addition. Decrease in hardness in the range of 15.3 – 13.3 HV at 20 – 25 wt. % addition 

could be due to de-bonding phenomenon between the matrix and the reinforcing phase sequel to the 

impairment of epoxy resin cross-linking cohesion [31]. The relatively high hardness value (25.4 HV) 

demonstrated by the 15 wt. % fly-ash nanoparticles mixture was enabled by the intrinsic high hardness 

of nano particles which provided resistance to the movement of epoxy resin chain on application of load 

on it. This agrees with [32] as reported in the case of polymer matrix composite reinforced wit nano 

silica particles and glass fibers.  

 
 

Figure 8. Hardness of epoxy resin at varied fly-ash addition 

 

4. CONCLUSION  

 

Assessment of the noise level abatement capacity of synthesized fly-ash nanoparticles reinforced epoxy 

resin composites has been successfully carried out. Relevant mechanical properties necessary for 

damage-free installation were also investigated. The inducement of inter-connected pores in the 

composites at 10 and 15 wt. % fly-ash addition gave rise to desirable Noise Reduction Coefficient (NRC) 

value of 0.8072. The NRC value (0.8072) of sampes C and D compared very well with that of 

conventional acoustical materials that are used in buildings and other facilities presented in Table 4 

which may be vulnerable to noise pollution. Samples C and D must have possessed a relatively higher 

volume fraction of inter connected pores compared to other samples which facılıtated enhanced NRC. 

The mechanical properties exhibited by the composite samples in terms of flexural strength (20.3 – 43.7 

MPa), impact energy (4.4 – 4.8 J), and hardness (13.3 – 15.3 HV) are appreciable and considered to be 

sufficient for safe handling and durable for the intended areas of application. 
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