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ABSTRACT 

Projective geometry is used to decode and represent codes easily. Cameron [1] generated a binary linear code 
from PG(2,2). In this paper we construct a binary linear code from PG(3,2). Also we give a decoding rule for 
this code. A simulation study is given to compare this decoding algorithm with maximum likelihood decoding 
algorithm. 
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1. INTRODUCTION 

In coding theory, there are several methods decoding of 
linear codes. Maximum likelihood(ML) decoding, 
syndrome decoding are the most important of these 
decoding technique. One of the most important ways is 
to use projective geometry(PG). This method is very 
useful and easy. The most immediate way in which a 
linear code can be associated with a design or, indeed, 
with any incidence structure. Assmus and Key [2] give 
a coding theoretic approach to Hadamard matrices and 
their designs. Assmus[3] gives a relation between affine 
plane and codes. Assmus [4] investigates minimum 
weight vectors in code generated by the incidence 
matrix of a finite affine plane. Codes are used in many 
practical situations. Few of these are as following. 

Error-correction code is used for getting pictures and 
data about the Solar System back to earth. Codes also 
are used combinatorial search problem, and human 
genome project. 

In second part of this paper, basic definitions of coding 
theory and projective geometry were given. In third 
part, we gave construction and decoding rules of codes 
from PG(3,2). Also we gave relation between 
parameters of projective geometry and binary linear 
codes. In forth section, decoding algorithm using 
projective geometry is compared with maximum 
likelihood decoding algorithm using different error rate.  

 

 

 

2. BASIC DEFINITIONS OF CODING THEORY 
AND PROJECTIVE GEOMETRY 

The object of coding theory is the transmission of 
messages over noisy channels. In here, the basic 
definitions of coding theory are given. 

Definition 2.1: [5] Let A be a finite set of v elements 
(the alphabet). A v-ary code C of length n is a family of 
n-tuples with entries in A as follows 

 

C⊆An. 

 

Definition 2.2: [6] Let x=(x1,x2,…,xn), 
y=(y1,y2,…,yn)∈An. The (Hamming) distance between x 
and y is 

d(x,y)=number of i such that xi≠yi. 

 

The minimum distance d(C) of code C ⊆An is the 
minimum of the Hamming distances d(x,y), where 
x,y∈C, x≠y. 

 

It is easy to see that the Hamming distance is a metric. 
Its meaning in our setting is obvious: if x∈An is sent 
and y∈An is received, then at least d(x,y) errors must 
have occurred, and the most probable explanation is that 
precisely d(x,y) errors have occurred. Here is how 
codes are used for information transmission: T 
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(Transmitter) and R (Receiver) agree on a code C⊆An 
of minimum distance d. The tuples of C are called code 
words. Naturally there must be at least as many code 
words as source states. Consider the case d=3. Let 
y=(y1,y2,…,yn) be the received vector. Observe that R 
knows a codeword x was sent. If y∈C, then R will 
decode y→x=y. Moreover this will be correct unless at 
least 3 errors have occurred.  Assume y∉C. Then R will 
search for a code word x at distance 1 from y. There can 
be at most one such word (if x′  was a second such 
code word, then d(x, x′ )≤2 contradiction). If such a 
word exists, then R will decode y→x. The important 
observation is that x is the word having been sent unless 
more than one error occurred under transmission. So a 
code with minimum distance 3 corrects one error. By 
the same reasoning, if d>2e then a code with minimum 
distance d corrects e errors. The injective mapping of 
source states into codewords is called the encoding. 

 

Definition 2.3 (linear codes): [7] Let Fq be the field with 
q elements. A q-ary linear code of length n and 

dimension k is a linear subspace C⊆ n
qF  of vector 

space dimension k. If its minimum distance is d, then 
we record the parameters of C as; 

 

[n,k,d]q. 

 

Observe that a q-ary linear code of dimension k has qk 
code words. It contains the all 0-word 0=(0,0…0).  

 

For fixed q we wish to construct codes [n,k,d] with 
large d, large k and small n. Recall that a code with 
minimum distance d allows the correction of e 
transmission errors, when 2e<d. 

 

d(x, y)=d(x-z, y –z) from the definition of Hamming 
distance. If x, y are code words of a linear code, we get 
d(x,y)=d(0, y-x) and y-x is a code word, because of 
linearity. Define the weight wt(x) as the number of 
coordinates with a nonzero entry, in other words 
wt(x)=d(x,0). Then the minimum distance of a linear 
code equals the minimum weight of its nonzero code 
words. 

 

Projective geometry can be defined as following 
definition. 

 

Definition 2.5.(projective geometry) [8] Let V be an 
(n+1)-dimensional vectorspace over Fq. Call the (i+1)-
dimensional subspaces of V the i-flats of geometry. 
Here i=1,2,...n . Incidence is defined by inclusion. That 
is to say flats a and b are called incident if either a⊂b or 

b⊂a. These flats and their incidence relation define the 
n-dimensional projective geometry PG(n,q) of order q: 

0-flats are points (1-dimensional subspaces), 1-flats are 
lines (2-dimensional subspaces)…and (n-1)-flats are 
hyperplanes (n-dimensional subspaces). 

 

Definition 2.6. (Gauss polynomial) [8] The number of i-
flats of PG(n,q) is 
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In particular the number of points and the number of 
hyperplanes is ( ) ( )111 −−+ qqn . 

 

3. DECODING OF BINARY LINEAR CODES 
USING PROJECTIVE GEOMETRY 
Using PG(n,2), we can obtain binary linear codes and 
its parameters as follows: 

 

First we write all points in base 2, coordinates of points 
on any hyperplanes up to 0(where addition is binary). 

 

Now we can construct a binary linear code. As known 
before, there is 2n+1-1 points and hyperplane, every 
hyperplane  of PG(n,2 )has 2n-1 points, every point of 
PG(n,2) pass 2n-1 hyperplanes, every pair of points 
occur in 2n-1-1 distinct hyperplanes and every pair of 
hyperplanes meet 2n-1-1 distinct points. 

 

There are 2n+2 codewords in binary linear codes which 
obtained from PG(n,2). Length of this code is 2n+1-1. 
This code’s minimum distance d is 2n-1 so this code can 
correct maximum 2n-1-1 errors. 

 

From these informations and definition 2.2 and 
definition 2.3, codes can be obtained as follows. Binary 
linear code must include 2n+1-1 codeword which 
weights’ 2n-1 and 2n+1-1 codeword which weights’ 2n in 
other word these 2n+1-1 codeword has 2n-1 0s. One of 
the other 2 codewords is all 0s and the other one is all 
1s. In 2n-1 weighted codewords, 1s’ place is determined 
by points of hyperplane. In 2n-weighted codewords, 0s’ 
place is determined by points of hyperplane. 

 

Cameron[1] generated a binary linear code from 
PG(2,2). For PG(2,2), parameters of this plane and 
generating code from this plane are as follows. 
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This plane has 7 points and 7 lines and it is shown at 
figure 1. The code has 16 codeword, lengt of codewords 
is 7. Distance is 3 and error correcting number e=1. 

a) PG(2,2) with all points in base 2 

 

 

b) points of PG(2,2) which corresponding to (a) 
 

Figure 1. Point and lines of PG(2,2). 
 

 

The code has 16 words. One is all-zeros, and one is all-
ones. Of the others, seven have three zeros and four 
ones, and the lines of the plane give the positions of the 
three zeros. The other seven have three ones and four 
zeros, and the lines of the plane give the positions of the 
three ones. So Cameron[1] gives decoding rules as 
follows: 

Look at the received word. If they are all 0s, then no 
error was occurred. If there was just one 1, then it was 
the error. If there were two 1s in positions i and j, find 
the third point k on the line through i and j; this is the 
position of the error. If there are three 1s which form a 
line of the plane, no error has occur. If there are three 1s 
which do not form a line, then the positions of the zeros 
contain just one line; the odd point out is the error. If 
there are more 1s than 0s, just reverse zeros and ones. 

 

Table 1: Code which is generated from PG(2,2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We generate a binary linear code from PG(3,2). PG(3,2) 
has 15 planes and 15 points. Binary linear code 
generated from PG(3,2) has 32 codeword, minimum 
distance d=7, error correcting number e=3, and length 
of codeword of this code is 15. Planes of PG(3,2) which 
satisfy addition rule(coordinates of points on any plane 
up to 0) is at Table 2 [9]. 

 

Table 2: Planes of PG(3,2). 

Planes Points 

1 1,2,3,4,5,6,7 

2 1,2,3,8,9,10,11 

3 1,2,3,12,13,14,15 

4 1,4,5,8,9,14,15 

5 1,4,5,10,11,12,13 

6 1,6,7,8,9,12,13 

7 1,6,7,10,11,14,15 

8 2,4,6,8,10,13,15 

9 2,4,6,9,11,12,14 

10 2,5,7,8,10,12,14 

11 2,5,7,9,11,13,15 

12 3,4,7,8,11,13,14 

13 3,4,7,9,10,12,15 

14 3,5,6,8,11,12,15 

15 3,5,6,9,10,13,14 

 

So, codewords of code which satisfy conditions that 
give above, are at Table 3.

1 0 0 0 0 0 0 0 

2 0 0 0 1 1 1 1 

3 0 0 1 0 1 1 0 

4 0 0 1 1 0 0 1 

5 0 1 0 0 1 0 1 

6 0 1 0 1 0 1 0 

7 0 1 1 0 0 1 1 

8 0 1 1 1 1 0 0 

9 1 0 0 0 0 1 1 

10 1 0 0 1 1 0 0 

11 1 0 1 0 1 0 1 

12 1 0 1 1 0 1 0 

13 1 1 0 0 1 1 0 

14 1 1 0 1 0 0 1 

15 1 1 1 0 0 0 0 

16 1 1 1 1 1 1 1 
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Table 3: Code which is generated from PG(3,2). 
 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 

3 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 

4 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 

5 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 

6 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 

7 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 

8 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

9 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 

10 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 

11 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 

12 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 

13 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 

14 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 

15 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

16 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 

17 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 

18 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 

19 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 

20 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 

21 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 

22 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 

23 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

24 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 

25 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 

26 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 

27 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 

28 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 

29 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 

30 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

31 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 

32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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Decoding rule of this code is as follows: 

Look at the received word. If they are all 0s, then no 
error was occurred. If there were one, two or three 1, 
then there were the errors. 

 

If there were four 1s and they are on a plane then find 
the other points on the plane. These are the errors. But 
if there aren’t on a plane then there are more than three 
errors so we can’t correct this codeword then we want 
new transmission.  

If there were five 1s and they are on a plane then find 
the other points on the plane. These are the errors. If 
there aren’t on a plane then look at the place of 0s; if 
they include a plane then the other 0s are the errors. On 
the other cases, we want new transmission.  

If there are six 1s and they are on a plane then find the 
other point on the plane. This is the error. If five of 
them are on a plane then the other one and other two 
digits of plane are the errors. But If these six 1s aren’t 
on a plane then look at the place of 0s; if 0s include a 
plane then the other 0s are the errors. On the other 
cases, we want new transmission.  

If there are seven 1s and they are on a plane then this is 
a true transmission. But if six of them are on a plane 
then the other one and other digit of plane are the errors.  
If there aren’t on a plane then look at the place of 0s; if 
they include a plane then the other 0 is the error. But if 
six of them are on a plane then the other one and other 
one digit of plane are the errors.  On the other cases, we 
want new transmission.  

If there are more 1s then 0s then just reverse zeros and 
ones and apply the rules that were given above. 

 

4. SIMULATION STUDY 
In this section, to compare ML decoding and PG 
decoding, we generated different size of numbers from 
1-32. All numbers are matched with a codeword. This 
number and corresponding codewords are given at table 
3. For example we use codeword 00..0 for 1 and 11…1 
codeword for 32, and the other numbers between 2 and 
31. First we encode the numbers to the corresponding 
codewords and send these codewords then under 
different error rate we encode the codewords. From 
section 3, code has parameters (15,5,7)2 so it can 
corrects up to 3 errors. 1000(1000)100000 codewords 
are generated under 0.05, 0.10, 0.15 error rates and 
Figures 4.1-4.3 are given. 

 

 
 
Figure 4.1. Decoding times for error rate 0.05. 
 

 
 
Figure 4.2. Decoding times for error rate 0.10. 
 

 
Figure 4.3. Decoding times for error rate 0.05. 
 

 
Also for this code encoding and sending time are give at 
Figures 4.4 and 4.5 respectively. 
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Figure 4.4. Encoding times for the code from PG(3,2). 
 

 
 
Figure 4.5. Encoding times the code from PG(3,2). 
 

From these results, ML and PG decoding techniques are 
not slow but PG is much faster than ML. The difference 
between these techniques is about %20 for all error 
rates. In greater number of sending words, this 
difference is getting much more. Also constructing of 
linear codes from is easier than the other constructing 
techniques. For 0.05 error rate, total true decoding ratio 
is 0.995, for 0.10 error rate, total true decoding ratio is 
0.95 and for 0.15 error rate, total true decoding ratio is 
0.85. So this code can be used up to 0.10 error rate. 
Sending and encoding times are same for ML and PG 
decoding. 

4. CONCLUSION 

Using projective geometry, constructing of binary 
linear codes is simple. Also decoding this kind of 
codes is faster than the most of the other decoding 
methods. Also codes from Projective Geometry 
can be generalized for greater dimension. 
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