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ABSTRACT 

An artificial neural network solution (in closed form expression) is established for the total lateral thrust and its 
point of application on rigid retaining walls due to finite surface strip loads. The model accounts for soil 
nonlinearity and dilatancy. Data necessary for the model is produced through finite element analyses. The 
solution relates the total lateral thrust and its point of application to six parameters, including the strength 
parameters of the soil, wall height and the position as well as the extent of the surface load. The effects of each 
input parameter on the response are summarized and the results are compared with the linear elastic solution. 
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1. INTRODUCTION 

In many applications of soil engineering, lateral 
pressures acting on non-yielding retaining walls due to 
surface strip loads are required. Retaining structures 
supporting continuous wall footings, highways, 
railroads and crane loads are typical examples of this 
loading condition. Linear elastic solution derived from 
Boussinesq’s equations [1, 2] is frequently used for the 
determination of the lateral thrust in such cases. 
However, soil behaviour deviates considerably from 
that predicted by the linear theory of elasticity and the 
consequences of nonlinear and plastic deformation 
effects on stress distribution within or on the boundaries 
of soil masses is still of concern to civil engineers. A 
solution in closed form, accounting for nonlinear soil 
behaviour, would be a useful tool in geotechnical 
engineering practice. 

The objective of this study is to obtain a closed form 
expression relating the total lateral thrust due to surface 
strip loading and its point of application on a rigid wall 
to six parameters; namely, cohesion and angle of 
internal friction of soil, magnitude and width of the 
load, height of the wall and distance of the strip load 
from the wall. 

 

The solution is proposed to be obtained by using 
artificial neural networks based on the data produced by 
nonlinear finite element analyses. MATLAB [3] 
together with the Neural Network Toolbox [4] is used 
to establish and train the neural network in this study. 

2. ARTIFICIAL NEURAL NETWORKS (ANN) 

Artificial neural networks are computational devices 
inspired by the biological system of the brain. A neural 
network is a parallel processing system composed of 
many interconnected processors (called neurons). A 
neuron in turn is a simple computational device that has 
a single or multiple inputs and a single output. Each 
neuron is connected to the neighboring neurons by 
weights on which the function of the network mainly 
depends. 

Figure 1 shows a single-input neuron. The input p is 
multiplied by the weight “w” and a bias “b” is added to 
form the net input “n” which is used by the transfer 
function to compute the output “a” of the neuron. 
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Figure 1. Neuron with single input (from MATLAB® 
User’s Guide). 

A layer of network is formed by multiple neurons 
combined in parallel. A single layer network is 
insufficient for solving most of the problems and 
generally two or more layers participate in a typical 
neural network. The layer whose output is the output of 
the whole network is called the output layer and the 
other layers are named as hidden layers. 

ANN’s are trained to perform a particular function by 
modifying the weights according to a learning rule that 
defines how the network is modified in response to 
experience. In supervised learning techniques, the 
learning rule is provided with an input-output database 
and the weights are so optimized as to minimize the 
error between the target and output values. 

A back-propagation type neural network, which is 
widely used in function approximation and pattern 
mapping, is adopted in this study. Back-propagation is a 
training algorithm that uses the generalized delta rule 
for multiple layer networks with non-linear 
differentiable transfer functions [5, 6, 7, 8, 9]. 

Backpropagation learning rules are based on the simple 
concept: the error between the actual output and the 
desired output is lessened by modifying the weights and 
as a result future responses are more likely to be 
correct. When the network is given an input, the output 
units are obtained by simulation of the network. The 
output layers then provide the network’s response. 
When the network corrects its internal parameters, the 
correction mechanism starts with the output layers and 
back-propagates backward through each internal 
(hidden) layer. Hence the term backpropagation is used 
for this kind of networks [7]. 

2. LATERAL EARTH PRESSURE DUE TO 
SURFACE STRIP LOAD: CONVENTIONAL 
METHODS 

There are several solutions in closed form for the 
problem of lateral earth pressure due to surface strip 
loads published in the literature. First, we have the 
famous elastic solution due to Boussinesq [10, 2]. 
Second, there is the limit equilibrium solution [11] and 
next there are some proposed approximate solutions, 
namely the Beton Kalender [12] and 45-degree 
distribution [12, 13] approaches. An extensive survey 
reveals no solution developed by using theory of 
plasticity or nonlinear material models. 

The limit equilibrium and approximate solutions 
assume an active state. Considerable wall deformations 
or movements have to occur in order for an active state 
to develop. On the other hand, many retaining structures 
like anchored walls supporting excavation cuts next to 
existing structures, has to be designed for K0 conditions 
in order to reduce foundation movements. Hence the 
limit equilibrium and approximate solutions are not 
appropriate for non yielding walls under K0 loading 
conditions. Therefore, the geotechnical engineer is left 
with the linear elastic solution as the only appropriate 
solution for rigid wall case. 

The lateral earth pressure caused by a strip surface load 
[2] can be obtained by integrating Boussinesq solution: 
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3. THE PROPOSED METHOD 

We claim that a closed form expression for total lateral 
earth pressure and its point of application can be 
derived from an ANN model, provided adequate data to 
train the network is available. The required data is 
produced by nonlinear finite element analysis of a rigid 
retaining wall model supporting a cohesive back-fill 
subject to a surface strip load of finite extent. This data 
is then used to train the ANN model which yields the 
closed form solution. 

The following assumptions are made: 

- Plane strain condition prevails in the soil mass 

- The ground surface is horizontal   

- The wall is vertical 

- The wall is non-displacing and rigid 

- The backfill rests on a rigid subgrade 

- The wall is perfectly smooth (frictionless) 

- The load is perfectly flexible 

Figure 3 shows a sketch of the problem geometry. In 
the figure; h is the wall height, a is the distance of the 
strip load to the wall, w is the width of the strip load, q 
is the magnitude of the load, σh is the lateral earth 
pressure due to strip load, p is the total lateral thrust on 
the wall due only to strip load and d is the distance to 
the point of application of p as measured from the 
ground surface. 

The hardening soil model [14] is used to represent the 
backfill. Being basically a hyperbolic material model 
[15, 16] with plastic yielding, the hardening soil model 
uses the isotropic hardening rule in the calculation of 
both shear and volumetric strains. Shear hardening is 
used to model plastic strains due to primary deviatoric 
loading and compression hardening is used to model 
plastic strains due to primary compression under 
oedometer and isotropic loading conditions. 
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Figure 2. Linear elastic solution for lateral pressure due to surface strip load. 

 

 
Figure 3. Problem geometry. 

 
Figure 4. Hyperbolic stress-strain curve for deviatoric loading.
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The hyperbolic relationship between the axial strain and 
deviatoric stress is shown in Figure 4, where qf is the 
ultimate deviatoric stress according to Mohr-Coulomb 
failure criterion with strength parameters c and φ. The 
asymptotic stress qa is obtained by dividing qf by a 
failure ratio Rf which is often used as 0.9. The stress 
dependent stiffness modulus E50 is 

m

ref
ref

pc

c
EE

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

′−
=

)cot(.

)cot(. 3
5050

φ

σφ
 (8) 

where 3σ′  is the confining stress, ref
50E  is the reference 

modulus (for the mobilization of 50% of the ultimate 
shear strength qf) measured in a test at reference 
confining pressure pref, m is the stress dependency 
parameter. 

Soil dilatancy and a cap yield surface are included in 
the model. The problem is modelled in the computer 
program PLAXIS [17]. 

 
Figure 5. The finite element mesh. 

Figure 5 shows a typical finite element model of the 
problem used in this study. Because the wall is assumed 
to be rigid and perfectly smooth, it is sufficient to set 
horizontal fixities on the wall boundary. The lower 
boundary is vertically restrained to simulate the rigid 
subgrade. The finite element mesh in Figure 5 is used in 
all of the analyses. The lateral pressures are computed 
according to the following procedure: 

1- The initial stresses are calculated according to Jaky’s 
formula (K0 = 1-sinφ). 

2- The total stresses are calculated after the surface strip 
load is applied. 

3- The lateral pressures due to surface strip load are 
obtained by subtracting the initial stresses (obtained at 
step 1) from the total stresses (obtained at step 2). 

4. FINITE ELEMENT ANALYSES 

In order to keep the input parameters at a minimum, 
preliminary analyses were conducted to determine the 
effective problem parameters on lateral earth pressure. 
These analyses revealed that cohesion and internal 
angle of friction of soil are the most significant material 
parameters [18]. Naturally, load magnitude, height of 
wall, distance of the strip load to the wall and the strip 
load width are the other effective parameters that should 
be considered. Finally, the following six parameters are 
chosen to be considered in the model: 

 * Height of the wall, h 

 * Distance of the strip load to the wall, a 

 * Width of the strip load, w 

 * Magnitude of the strip load, q 

 * Internal angle of friction for the soil, φ 

* Cohesion of the soil, c 

The other parameters required for the analyses using 
Hardening Soil model are given typical values: 

 -  ref
50E   : 30000 kN/m2 (for pref = 100) 

 -  ref
oedE  : 30000 kN/m2 (for pref = 100) 

 -    m: 0.5 

 -  Rf : 0.9 

 -  ψ: 0 

 -  γ : 20 kN/m3 

To obtain a solution by neural networks, an input-
output pattern is given to the network and the network 
is trained to find the relation between the input and 
output data. 

The input data is prepared to cover sufficient cases of 
different material and geometrical parameters. The 
selected ranges for these parameters are 

 - Height of the wall (h): 2m – 10m 

 - Distance of the strip load (a): 0m – 5m 

 - Width of the strip load (w): 0.5m – 3m 

 - Magnitude of the strip load (q): 2.5 kN/m2 – 
50 kN/m2 

 - Cohesion of the soil (c): 0 kN/m2 – 20 
kN/m2 

 - Angle of friction (φ): 25˚ – 40˚ 

Analyses are made for various values of these 
parameters for the preparation of data for the ANN 
model. Seventy different cases are considered in this 
study. 

5. ARTIFICIAL NEURAL NETWORK MODEL 

The computer program MATLAB together with the 
Neural Network Toolbox is employed for the 
modelling. It is proposed to find a relationship between 
the six input data (h, a, w, q, c, φ) and two output 
variables (total lateral thrust “p” and point of 
application “d”). A two-layered feed-forward back-
propagation type neural network is used. The basic 
characteristics of the neural network model used in this 
study can be summarized as follows: 

* Network type: Feed-forward back-
propagation 
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* Training algorithm: Levenberg-Marquardt 
algorithm 

* Adaption learning function: Gradient 
descent with momentum 

* Performance function: Mean square error 

* Number of Layers: 2 

* Transfer function (1st layer): Sigmoid 
(Figure 7) 

* Transfer function (2nd layer): Linear or 
sigmoid 

The two sigmoid functions of log-sigmoid and tan-
sigmoid shown in Figure 6 are commonly used as 
transfer functions in in neural networks that 
backpropogation algoritm is used, because they are 
differentiable. The log-sigmoid function takes the input 
and squashes the output into the range of 0 – 1. 
Similarly the tan-sigmoid function takes the input and 
squashes the output into the range of -1 – 1. The 
expressions of these functions are given in equations 9 
and 10. 
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Figure 6. The sigmoid transfer functions (from 
MATLAB® User’s Guide). 

Figure 7 shows the neural network model used in this 
study for a K element input pattern and M element 
output pattern. In the figure, the dimensions of the 
vectors and matrices are shown below the symbols. 
Superscripts are used to indicate the layers which the 
corresponding vector or matrix is associated with. 

The input vector p1 is represented by the solid dark 
vertical bar at the left. The input vector is multiplied by 
the input weight matrix (IW1,1). A constant 1 is 
multiplied by the scalar bias vector b1. The net input to 
the transfer function, n1, is the sum of the bias b1 and 
the product IW1,1p1. This sum is passed to the transfer 
function to get the first layer’s output vector a1. Note 
that, to obtain an Sx1 output vector, the dimensions of 
IW1,1 and b1 should be SxK and Sx1 where the input 
consists of K elements. The output of the first layer, a1, 
can be accepted as an input vector for the second layer. 
Similar to the first layer, a1 is multiplied by the layer 
weight (LW2,1) and the bias vector b2 is added and the 
net input to the transfer function (which is pure linear 
function for the second layer ), n2, is obtained. The 
output of the second layer and the network is obtained 
by passing the n2 to the transfer function. It is also noted 
that, in order to obtain an output vector of M elements, 
the dimensions of LW2,1 and b2 must be MxS and Mx1 
respectively. 

6. TRAINING THE ANN 

The parameters a (distance of the strip load to the wall), 
w (width of the strip load) and d (distance between the 
point of application of the total thrust and surface) are 
normalized by the height of the wall (h). The total 
lateral thrust “p” is divided by the strip load magnitude 
q. Therefore the six input and the two output parameters 
take the form 

Input   :  h ,  a/h ,  q ,  c ,  φ,  w/h 

Output : p/q ,  d/h 

Several networks with different properties are trained to 
find the relationship between the selected input-output 
patterns. For this purpose, networks with different 
transfer functions are set up and trained. Another 
important property of a network that affects the 
accuracy of the network is the number of neurons in the 
hidden layer (the dimensions of the weight and bias 
matrices in the hidden layer). Thus, networks with 
various numbers of neurons in the hidden layer are also 
trained. An accurate solution is obtained with 15 
neurons in the hidden layer. 

In the final artificial neural network model (solution 
network), the maximum errors in p/q and d/h values do 
not exceed 0.25% and 1% respectively, thus the neural 
network model successfully covers the 70 cases 
considered in the training. Table 1 summarizes the 
errors involved in ANN model. 
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Figure 7. Typical feed-forward back-propagation type neural network (from MATLAB® User’s Guide). 

 

Table 1. Error levels associated with the solution network. 

 p/q (m2) d/h (dimensionless) 
Maximum error ( % ) 0.22 0.95 
Average error ( % ) 0.02 0.14 

 

7. RESULTS 

The solution obtained by ANN can be expressed in 
closed form as 

( ) 21tan BBKIWsigLWT ++⋅⋅=   (11) 

The input vector K and the output vector T are: 
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Here,       h : Height of the wall (m) 

a : Distance of the strip load to the wall (m) 

w : Strip load width (m) 

q : Strip load magnitude (kPa) 

c : (Effective) cohesion of the soil (kPa) 

φ: (Effective) angle of friction of the soil (o ) 

p : Total lateral force on the wall due to only 
strip load (kN) 

d : Distance between the point of application 
of P and the ground surface (m) 

The weight and bias matrices (LW, IW, B1 and B2) are 
given in appendix A. Given the six inputs, vector K, the 
outputs, vector T, containing p/q and d/h can be 
computed by using equation 11. 

It should be noted that equation 11 is valid under the 
assumptions stated before; that is, to obtain accurate 
and reasonable results from this neural network 

solution, the input parameters must lie in the range used 
in training of the network. It is not recommended, for 
instance, to use this solution for a strip load width of 5 
m, because in the solution width parameter changes 
between 0.5 m and 3 m. 

8. APPLICATION OF ANN MODEL 

It has been shown that the ANN solution is successfully 
fits the 70 training cases. However, the response of the 
network in other cases excluding those considered in 
the training process must also be investigated to check 
the validity of the solution. For this purpose, four new 
cases are considered. The parameters of these are given 
in Table 2. These four cases are investigated both by the 
ANN solution and PLAXIS. The results of p, d and the 
base moment (moment = p x (h-d)) by both solution 
methods are shown in Table 3. 

It can be seen from Table 3 that the neural network 
results are very similar to the results obtained from 
PLAXIS analyses. Hence, it can be concluded that the 
neural network solution given by equation 11 is 
reasonably accurate in other cases also. 

9. THE EFFECT OF INPUT PARAMETERS ON 
THE SOLUTION 

Individual effects of input parameters a, w, q, c and φ 
are investigated by using the neural network solution. 
The linear elastic solution is also plotted on the same 
graphs. 

To investigate the effect of the distance of the strip load 
(a), the parameters are held constant at h = 6 m, w = 1 
m, q = 25 kPa, c = 10 kPa, φ = 30˚ and the results are 
obtained for different a values. The results are shown in 
Figures 8 and 9. 
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Table 2. Input parameters for the considered 4 cases. 

case h(m) a(m) q(kPa) c(kPa) � � w(m) 

1 3 1.5 15 5 30 1.5 

2 5 2.5 25 15 35 2.5 

3 7 3 40 10 25 1 

4 9 1 30 0 30 2 
 

Table 3. Results of two solution methods. 

  neural network results plaxis results 

case p(kN) d(m) Moment(kN.m) p  d Moment(kN.m) 

1 7.0 2.0 14.0 7.1 1.9 13.5 

2 15.3 3.5 53.6 18.1 3.3 59.7 

3 20.6 3.2 65.9 18.7 3.1 58.0 

4 41.2 2.0 82.4 38.1 2.3 87.6 
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Figure 8. The effect of strip load distance (a) on p/q (m2). 
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Figure 9. The effect of strip load distance (a) on d/h. 
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It can be seen from the figures that p/q decreases and 
d/h increases with increasing a as expected. The linear 
elastic solution and the neural network solution start to 
deviate significantly for a > 2 m; in this range the linear 
elastic solution gives higher total thrust values than 
those by the neural network solution. 
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p/q-neural network solution

p/q-linear elastic solution

 
Figure 10. The effect of strip load width (w) on p/q 
(m2). 

Figures 10 and 11 show the effect of strip load width 
(w) on p/q and d/h for the case when h=4 m, a=2 m, 
q=25 kPa, c=10 kPa, φ =30˚. It is seen that the linear 
elastic solution gives larger p/q values, especially for 
larger values of w. In contrast, ANN expression predicts 
greater d/h values. The effect of q on p/q and d/h is 
investigated for the case when h=6 m, a=2 m, w=2 m, 
c=10 kPa and φ=30˚. The results are shown in Figure 
12. It is clear from the figure that the neural network 
results are very similar to linear elastic solution and 
nearly constant for d/h. However, due to extensive 
plastic yielding in the soil mass a significant decrease in 
p/q values is observed in the neural network solution 
beyond a critical load level. 
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Figure 11. The effect of strip load width (w) on d/h. 

The effect of cohesion (c), while the other input 
parameters are held constant as h=4 m, a=2 m, w=2 m, 
q=25 kPa, φ=30˚, is shown in Figure 13. It can be seen 
that d/h keeps nearly constant for varying cohesion, but 
the value of d/h obtained by ANN’s is significantly 
greater than those obtained from linear elasticity. It is 
also clear that the p/q significantly decreases for 
increasing cohesion and the linear elastic solution gives 
much higher values for larger values of cohesion. 

The effect of angle of friction is very similar to that of 
cohesion, as shown in Figure 14. To investigate the 
effect of angle of friction, the case: h=5 m, a=1.5 m, 
w=2 m, q=25 kPa, c=5 kPa is considered. Similar to 
cohesion results, the d/h values are nearly constant and 
larger than those obtained by linear elastic solution, and 
there is a significant decrease in p/q for increasing angle 
of friction resulting in a big difference between the 
neural network and elastic solutions. 

Therefore it can be concluded that the cohesion and 
angle of friction have negligible effect on the shape of 
the lateral pressure distribution, while the pressure 
amplitudes decrease with increasing soil strength 
(cohesion or angle of friction). 
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Figure 12. The effect of strip load magnitude (q) on 
p/q(m2) and d/h. 
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Figure 13. The effect of cohesion (c) on p/q(m2) and 
d/h. 
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Figure 14. The effect of angle of friction on p/q(m2) and 
d/h. 
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10. CONCLUSIONS 

In this study, an investigation of the lateral pressures 
acting on rigid retaining walls due to surface strip 
loading has been made. Artificial neural networks 
(ANN) are used to find a closed from solution. The 
ANN is trained by the data obtained from non-linear 
finite element analyses of 70 different cases. A closed 
form solution, equation 11, with 1% accuracy is 
reached. The closed form solution computes the total 
lateral thrust and its point of application as a function of 
the following six parameters: 

 - Height of the wall (h) 

 - Distance of the strip load (a) 

 - Width of the strip load (w) 

 - Magnitude of the strip load (q) 

 - Cohesion of the soil (c) 

 - Angle of internal friction (φ) 

The following conclusions have been drawn: 

-  Within the proper ranges of input parameters, the 
closed from expression successfully estimates total 
lateral thrust and its point of application. 

-  The shear strength of the soil has a considerable 
effect on the total lateral thrust. An increase in the shear 
strength parameters (cohesion or angle of friction) 
result in a decrease in the total lateral thrust. 

-  Although the shear strength parameters affect the 
total lateral thrust, they have negligible effect on the 
point of application of this force. This shows that the 
shear strength of the soil does not change the profile of 
the lateral pressure distribution but affects the lateral 
pressure magnitude. 

-  The linear elastic solution generally gives larger total 
thrust values than those predicted by the ANN solution 
based on non-linear plastic analyses. The difference 
increases as strip load width, cohesion and friction 
angle increase. 

-  The point of application predicted by the neural 
network solution is generally lower than that given by 
the linear elastic solution. 

-The neural network solution presented is valid within 
the assumptions adopted here. ANN models based on 
different assumptions, with different parameter ranges 
can be investigated separately; among others, for 
instance, flexible walls instead of rigid walls can be 
considered. 
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