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1. INTRODUCTION AND PRELIMINARIES 

In 1980, Bogdan Rzepecki [15], introduced a generalized 
metric Ed  on a set  X  in a way that 

:  Ed X X S× →  where E   is Banach space and 

S  is a normal cone with partial order . In that paper, 
the author generalized the fixed point theorems of Maia 
type. Seven years later, Shy-Der Lin [11] considered the 
notion K  -metric spaces by replacing real numbers with 
cone K  in the metric function, that is,  

:  d X X K× → . In that manuscript, some results of 
Khan and Imdad [10] on fixed point theorems were 
considered for  K  -metric spaces. In 2007, Huang and 
Zhang [7] announced the notion of cone metric spaces 
(CMS) by replacing real numbers with an ordering 
Banach space. In that paper, they also discussed some 
properties of convergence of sequences and proved the 
fixed point theorems of contractive mapping for cone 
metric spaces: Any mapping T  of a complete cone 
metric space  X   into itself that satisfies, for some 
0 1  k≤ < , the inequality 

( ) ( ), ,   d Tx Ty kd x y≤                               (1) 

 

for all  ,  x y X ∈ , has a unique fixed point. In this 
manuscript, some results of Bhaskar, T.G., 
Lakshmikantham, V. [6] are extended to the class of cone 
metric spaces. 
 
Recently, many results on fixed point theorems have been 
extended to cone metric spaces  (see e.g. [7, 13, 16, 17, 1, 
2, 3, 4, 8, 9, 5] ). In [7], the authors extend some well 
known contraction theorems on usual complete metric 
space to complete cone metric spaces over regular cones. 
In this article, main theorem and consequent results will 
be proved in cone metric spaces without assuming any 
additional conditions, such as, regularity and normality. 
Throughout this paper E  stands for real Banach space. 
Let P  EP=  always be closed subset of E   A subset 

P  of E   is called cone if the following conditions are 
satisfied: 
(C1)  P ≠ ∅ , 
(C2)  ax by P+  ∈  for all ,  x y P ∈  and non-

negative real numbers  ,  a b , 

(C3)  ( ) {0}P P∩ − =  and {0}P ≠ .  
 
For a given cone P , one can define a partial ordering 
(denoted by ≤ or ≤P) with respect to P  by x y≤ if and 

only if y x P−  ∈ . The notation  x y<  indicate that 
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x y≤  and x y≠  while x y<<  will show 

y x− ∈ int P , where  denotes the interior of P .  
It can be easily shown that, 
int int intP P P+ ⊂  and (int ) intP Pλ ⊂  

where 0  IR.λ< ∈  
. 
The cone  P is called (N) normal  if there is a number 

  1 K ≥   such that for all  ,      :x y E∈  
 

0      .  x y x K y≤ ≤ ⇒ ≤                      (2) 

 
(R) regular if every increasing sequence which is 
bounded from above is convergent. 
 
That is, if { } 1n n

x
≥

is a sequence such that  

1 2   ...  x x y≤ ≤ ≤  for some     y E∈  then there 

is      x E∈  such that lim || || 0n nx x→∞ − = . 
 
In (N), the least positive integer K  satisfying equation 
(2) is called the normal constant of P . Note that, in [7] 
and [13], normal constant K   is considered a positive 
real number, (K>0) , although it is proved that there is 

no normal cone for K<1 in (Lemma 2.1, [13]). 
 
Lemma 1.  
            
(i)Every regular cone is normal. 
(ii) For each 1,k >  there is a normal cone with normal 

constant .K k>  
(iii) The cone P  is regular if every decreasing sequence 
which is bounded from below is convergent. 
 
Proof of (i) and (ii) are given in [13] and the last one 
follows from the definition. 
 
Definition 2.(See |7|) Let X  be non-empty set. Suppose 
the mapping :d X X E× →   satisfies: 
 
 (M1) 0  ( , ) for all ,    d x y x y X≤ ∈ , 

 (M2) ( ), 0 if and only   ,d x y if x y=  =  

 (M3) 

( ) ( ) ( ), , , ,   , ,   . d x y d x z d z y x y z X≤ + ∀ ∈  

 
Then d  is said to be quasi-cone metric on X , and the 
pair ( , )  X d  is called a quasi-cone metric space 

(QCMS). Additionally, if d  also satisfies (M4) 

( ) ( ), ,d x y d y x= for all  ,   x y X∈ .Then d is 

called cone metric on X , and the pair ( , )  X d  is 
called a cone metric space (CMS).  
 

Example 3. Let 3E IR=  and 

( ){ , ,    :  , ,  0}P x y z E x y z= ∈ ≥  and 

X IR= . Define :d X X E× →  by 
( , ) ( | | | | | |)d x x x x x x x xα β γ= − + − + − , 

where , ,α β γ are positive constants. Then ( , )  X d is 

a CMS. Note that the cone P  is normal with the normal 
constant 1K = . 
 
Definition 4. (See [7]) Let ( , )  X d be a CMS, 

 x X∈  and { } 1n n
x

≥
a sequence in X. Then, 

 
(i) { } 1n n

x
≥

converges to x  whenever for every 

c E∈ with 0 c<<  there is a natural number N  such 

that ( ),nd x x c<<  for all  . n N≥ It is denoted by 

lim  n nx x→∞ =  or  .nx x→  

(ii) { } 1n n
x

≥
is a Cauchy sequence whenever for every 

c E∈  with 0  c<<  there is a natural number N  

such that ( ),  forall ,   .n md x x c n m N<< ≥  

 
(iii) ( , )  X d is a complete cone metric space if every 
Cauchy sequence is convergent. 
 
Lemma 5 (See [7] Let ( , )  X d  be a CMS, P  be a 

normal cone with normal constant K , and { }nx be a 

sequence in X . Then, the sequence { }  nx converges 

to x  if and only if  ( ),  0 nd x x →   

(or equivalently ( ), 0nd x x →  as   n → ∞ . 

(ii) the sequence { }nx Cauchy if and only if 

( ), 0 n md x x →  (or equivalently 

( ), 0 n md x x → as   n → ∞ .) 
 
2. MAIN RESULTS 
 

Let  ( , )  X d  be a CMS and  2   X X X= × . Then 

the mapping  2 2:     X X Eρ × →  such that  

( ) ( )( ) ( ) ( )1 1 2 2 1 2 1 2, , , , ,x y x y d x x d y yρ = +   

forms a cone metric on  2X . 
 
Definition 6. Let ( , )  X d  be a CMS. A function 

:   f X X→  is said be (sequentially) continuous if  

( ), 0 nd x x → implies that  

( ) ( )( ), 0. nd f x f x → Analogously, A function  
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:     F X X X× →  is (sequentially) continuous if  

( ) ( )( ) , , , 0 n nx y x yρ → implies that  

( ) ( )( ), , , 0 n nd F x y F x y → as   n → ∞ . 
 
Definition 7. (See [6]). Let ( ,  ) X be partially 

ordered set and :F X X X× → . A map F  is said 

to have the mixed monotone property if  ( ),   F x y is 

monotone nondecreasing in x  and is monotone 
nonincreasing in y , that is, for any 

( ) ( )1 2 1 2,  ,   , , ,  x y X x x F x y F x y∈ ⇒  

1 2 ,  and for x x X∈  

( ) ( )1 2 2 1  ,    ,  ,y y F x y F x y⇒  

1 2  , .for y y X ∈  Note that this definition coincides 

with the notion of mixed monotone function  2IR  

where represents the usual total order   in 2IR . 

Definition 8 (See [6]) An element ( ),    x y X X∈ ×  

is said to be a couple fixed point of the mapping 
:F X X X× → if  

( ) ( ),  and , . F x y x F y x y= =  

Throughout this paper, let ( , ) X be partially ordered 

set and d  be a cone metric on X  such that 

( ),   X d is a complete CMS. Further, the product 

space X×X has the following ordering: 

( ) ( ), ,   u v x y u x⇔  and y v ; for all 

( ) ( ), , ,x y u v X X∈ × . 
 
Theorem 9. Let :F X X X× →  be a continuous 
mapping having the mixed monotone property on X . 

Assume that there exists a  [ )0,1  k ∈ with 

( ) ( )( ) ( ) ( ), , ,  , ,
2
kd F x y F u v d x u d y v≤ +⎡ ⎤⎣ ⎦  

 
for all ,  .u x y v   
 
If there exist  0 0,    x y X∈  such that  

( )0 0 0  ,  x F x y and ( )0 0 0,  ,  F y x y then, 

there exist ,    x y X∈  such that 

( ),  and ( , ).x F x y y F y x= =  

 
Proof: First step of the proof is the construction of 

Cauchy sequences: Set ( )1 0 0: ,x F x y= and 

( )1 0 0: , .  y F y x= By assumptions of the theorem, 

0 1 1 0and .x x y y  Set ( )2 1 1: ,x F x y= and 

( )2 1 1: , ,y F y x=  and denote 

 
( ) ( ) ( ) ( )2

2 1 1 0 0 0 0 0 0, ( , , , ) ,x F x y F F x y F y x F x y= = =  

and 
 

( ) ( ) ( ) ( )2
2 1 1 0 0 0 0 0 0, ( , , , ) , .y F y x F F y x F x y F y x= = =  

Under this notation, the mixed monotone property of F  
yields that 
 

( ) ( ) ( )2
1 0 0 1 1 0 0 2, , ,  x F x y F x y F x y x= = =  

and 
 

( ) ( ) ( )2
2 0 0 1 1 0 0 1, ,   , .y F y x F y x F y x y= = =  

For  1,2,..., n =  the general term of the sequences are 
defined as follow: 
 

( ) ( ) ( ) ( )1
1 0 0 0 0 0 0, ( , , , ) ,n n n

n n nx F x y F F x y F y x F x y+
+ = = =  

and 
 

( ) ( ) ( )( ) ( )1
1 0 0 0 0 0 0, , , , : , .n n n

n n ny F y x F F y x F x y F y x+
+ = = =  

Observe that 
 

( ) ( ) ( ) ( )2 n 1
0 0 0 1 1 1 0 0 2 0 0, , , ... F x ,y ,x F x y x F x y F x y x += = =

 
and 
 

( ) ( ) ( ) ( )1 2
0 0 0 0 1 1 2 1 0 0 0, ... , , ,nF y x F y x F y x y y F y x y+ = = =

 
Assert that 

( )

1
0 0 0 0

0 0 0 0 0 0

(5) : ( ( , ), ( , ))

( ( , ), ) ( ( , ), )
2

n n

n

d F x y F x y

k d F x y x d F y x y

+

≤ +
 

( )

1
0 0 0 0

0 0 0 0 0 0

(6) : ( ( , ), ( , ))

( ( , ), ) ( ( , ), )
2

n n

n

d F y x F y x

k d F y x y d F x y x

+

≤ +
 

holds for all n IN∈ .This assertion can be proved by 
induction. For 1,n =  the inequalities (5) and (6) follow 
by (3), (4) and 

( )0 0 0 0 0 0,  and ( , )  . x F x y F y x y Indeed

, 

[ ]

2
0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

( ( , ), ( , ))
( ( ( , ), ( , )), ( , ))

( ( , ), ) ( ( , ), )
2

d F x y F x y
d F F x y F y x F x y
k d F x y x d F y x y

=

≤ +

 

and similarly, 
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[ ]

[ ]

2
0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

( ( , ), ( , ))
( ( ( , ), ( , )), ( , ))

( , ), ( ( , ), ( , ))

( ( , ), ) ( ( , ), )
2

d F y x F y x
d F F y x F x y F y x
d F y x F F y x F x y
k d F y x y d F x y x

=

=

≤ +

 

Now, assume that the inequalities (5) and (6) hold. By 
using (3), (4) and  
 

( ) ( )1
0 0 0 0, ,  and n nF x y F x y+  

( ) ( )1
0 0 0 0, , ,n nF y x F y x+  

 
one can obtain 
 

[ ]

2 1
0 0 0 0

1 1
0 0 0 0 0 0 0 0

1 1
0 0 0 0 0 0 0 0

1

0 0 0 0 0 0

( ( , ), ( , ))

( ( ( , ), ( , )), ( ( , ), ( , )))

( ( , ), ( , )) ( ( , ), ( , ))
2

( ( , ), ) ( ( , ), )
2

n n

n n n n

n n n n

n

d F x y F x y

d F F x y F y x F F x y F y x
k d F x y F x y d F y x F y x

k d F x y x d F y x y

+ +

+ +

+ +

+

=

⎡ ⎤≤ +⎣ ⎦

≤ +

Analogously, one can get 

( )

( )( ) ( )( )

n 2 n 1
0 0 0 0

1

0 0 0 0 0 0

( ( , ), ( , )

, , , ,
2

n

d F y x F y x

k d F y x y d F x y x

+ +

+

⎡ ⎤≤ +⎣ ⎦

 

 
Let us show that 

( )0 0 0 0{ , } and { ( , )} n nF x y F y x are Cauchy 

sequences in X . 
 
Suppose . m n> Let 0  c<<  be given. Choose 

 0 δ > such that ( )0   c B Pδ+ ⊂  where 

( )0 { : }. B y E yδ δ= ∈ < Now, choose a natural 

number 0N  such that 

( ) ( )0 0 0 0 0 0[ ( , , ) ( ( , ), )] 0
2(1 )

nk d F x y x d F y x y B
k δ+ ∈

−

for all 0 . n N≥ Then  

[ ]0 0 0 0 0 0( ( , ), ) ( ( , ), )
2(1 )

.

nk d F x y x d F y x y
k

c

+
−

<<

 

Thus, 

[ ]

0 0 0 0
1

0 0 0 0

1
0 0 0 0

1

0 0 0 0 0 0

1
0 0 0

0 0 0

0 0 0

( ( , ), ( , ))

( ( , ), ( , ))

... ( ( , ), ( , ))

( ... ) ( ( , ), ) ( ( , ), )
2

( ( , ), )(1 ... )
( ( , ), )2

( ( , ),
2(1 )

m n

m m

n n

m n

n m n

n m

d F x y F x y

d F x y F x y

d F x y F x y

k k d F x y x d F y x y

d F x y xk k k
d F y x y

k k d F x y x
k

−

+

−

− −

+ +

+ +
+

⎡ ⎤+ + +
⎢ ⎥+⎣ ⎦

−
−

≤

=

≤

=

[ ]

[ ]

0 0 0

0 0 0 0 0 0

) ( ( , ), )

( ( , ), ) ( ( , ), )
2(1 )

n

d F y x y

k d F x y x d F y x y c
k

+

≤ + <<
−

 
For all 0m n N> ≥ . Thus, ( ){ }0 0,  nF x y is a 

Cauchy sequence in X . 
 

Analogously, one can show that { }0 0( , )  nF y x is 

Cauchy sequence in X . Since X  is complete CMS, 
there exist ,x y X∈  such that 

( )0 0,  n nx F x y x= →  and 

( )0 0,n ny F y x y= →  as .n → ∞  

 

To conclude the proof, we show ( ),  F x y x=  and 

( ), . F y x y= Let 0 . c<< Choose a natural 

number 1N  such that 

( ) ( )( )1
1 0 0, , ,

2
n

n
cd x x d F x y x+

+ = << , for all 

1. n N≥ Since F  is continuous, there exists 2N  

such that, for all 2 ,n N> one has 

( ) ( ), ,n nx y x y→  implies that 

( ) ( )( ), , ,  
2n n
cd F x y F x y << , for all 

2.n N≥ By triangle inequality, 

1 1

1 1
0 0 0 0

0 0 0 0
1

0 0

( ( , ), ) ( ( , ), ) ( , )

( ( , ), ( , )) ( ( , ), )

( ( , ), ( ( , ), ( , )))

( ( , ), )

n n

n n

n n

n

d F x y x d F x y x d x x

d F x y F x y d F x y x

d F x y F F x y F y x

d F x y x

+ +

+ +

+

≤ +

= +

=

+
Hence, choose { }0 1 2, ,  N max N N= for all 

0n N> : 
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( )( , , )d F x y x  

( ) ( ) ( ) ( )( )1
0 0 0 0 0 0( , , ( , , , )) , ,n n nd F x y F F x y F y x d F x y x+≤ +  

c<< . 

Thus, ( )( ), , cd F x y x
l

<<  for all 1.l ≥ Thus, 

( )( ), ,c d F x y x P
l

− ∈  for all 1.l ≥  

 

Regarding 0c
l

→ as .l → ∞ One can conclude that  

( )( ), ,d F x y x P− ∈ . 

 
On account of ( )( ), ,d F x y x P∈ , one can obtain 

that ( )( ), , 0d F x y x = . This yields that 

( ),  F x y x= .Analogously, one can show 

( ), .F y x y=  

 
Theorem 10. Let :    F X X X× →  be a mapping 
having the mixed monotone property on X . Suppose 
that X  has the following properties: 
 
(i) if a non-decreasing sequence  

{ }   ,  then   ,n nx x x x→  for all n , 
(ii) if a non-increasing sequence  

{ }  ,  then   ,n ny y y y→  for all n . 
 

Assume that there exists a  [ ) 0,1  k∈ with 

 

( ) ( )( ) ( ) ( ), , ,   , ,
2
kd F x y F u v d x u d y v≤ +⎡ ⎤⎣ ⎦

for all ,  .u x y v  
 

If there exist 0 0,x y X∈  such that 

( )0 0 0,x F x y  and ( )0 0 0, ,F y x y  then 

there exist ,   x y X∈  such that ( ),x F x y=  and 

( ), .y F y x=  
 
Proof: Regarding the proof of Theorem 9, it is sufficient 

to show that ( ),x F x y=  and ( ), .y F y x=  

Let 0 .c<<  Since ( )0 0,  n
nx F x y x= →  and 

( )0 0, ,n
ny F y x y= →  then there exists 0 ,N  such 

that ( )( )0 0, ,
2

n cd F x y x <<  and  

( )( )0 0, ,  
2

m cd F y x y << for all  0,  .n m N>  

Using triangle inequality and regarding   

( )0 0,n
nF x y x x=  and 

( )0 0,n
ny y F x y=  one can get  

1 1
1 1

0 0 0 0

0 0 0 0

1
0 0

0 0 0 0

1
0 0

( ( , ), ) ( ( , ), ) ( , )

( ( , ), ( , )) ( ( , ), )

( ( , ), ( ( , ), ( , )))

( ( , ), )

[ ( , ( , )) ( , ( , ))]
2

( ( , ), )

[ ] (since 0
2 2 2 2

n n
n n

n n

n

n n

n

d F x y x d F x y x d x x

d F x y F x y d F x y x

d F x y F F x y F y x

d F x y x
k d x F x y d y F y x

d F x y x
k c c c c

+ +

+ +

+

+

≤ +

= +

=

+

≤ +

+

<< + + << 1),k≤ <

 for all .n N> This yields that ( ), .F x y x=  

Analogously, one can show ( ), .F y x y= ■ 

 
The couple fixed point is unique if the product space 
X X×  endowed with the partial order mentioned 

earlier has one of the equivalent conditions:  
 
(8): Every pair of elements has either a lower bound or an 
upper bound.  
 

(9): For every ( ) ( ), ,  *, *    x y x y X X∈ × , there 

exists a ( ),    z w X X∈ × which is comparable 

with ( ) ( ), *, *x y and x y .  
Equivalence of these conditions is proved in [12]. Notice 
that Theorem 9 can not guarantee the uniqueness of the 
fixed point. But under the condition (8) or (9), it yield the 
uniqueness of the fixed point. The following theorem will 
clarify and explain this consideration. 
 
Theorem 11: Under the hypothesis of Theorem 9, the 
uniqueness of the couple fixed point of F  is obtained by 
the condition (9). 
 
Proof: By Theorem 9, there exists  

( , ) x y X X∈ × such that  ( )0 0,nF x y x→   and  

( )0 0, .mF y x y→  

 

Let ( )*, *    x y X X∈ × be another couple fixed 

point of F . Consider two cases: 
 

Case (i): Suppose that ( ) ( ), *, *x y and x y are 

comparable with respect to the ordering in X X× . 
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Then for each  0,1,2,...,n =  the pair 

( ) ( )( ) ( ), , , ,   n nF x y F y x x y= is comparable to 

( ) ( ) ( )( *, * , *, * ) *, * . n nF x y F y x x y= Furthe

rmore, by (4), 

( ) ( )( ) ( ) ( )
( )

( )
( ) ( )

( ) ( )( )

, , *, * , * , *  

= ( ( , ), *, * )

( ( , ), *, * )

[ , * , * ] 

  , *, *

n n

n n

n

n

x y x y d x x d y y

d F x y F x y

d F y x F y x

k d x x d y y

k x y x y

ρ

ρ

= +

                        

                          +

                        ≤ +

                        = +

 

which yields that  ( ) ( )( ), , *, * 0.x y x yρ =  That 

is, couple fixed point is unique. 

Case (ii): Suppose that ( ),x y  and ( )*, *x y  are not 

comparable with respect to the ordering in X X× . 
Then, there exists an upper bound or lower bound 

( )1 2,z z X X∈ ×  of ( ),x y  and ( )*, *x y . Thus, 

for each 0,1,2,...,n =  the pair 

( ) ( )( ) ( )1 2 2 1, , , ,  n nF z z F z z x y= is 

comparable with the pair 

( ) ( )( ), , ,  n nF x y F y x and 

( ) ( )( ) ( )*, * , *, * *, * .n nF x y F y x x y=  Hence, 

by (4) and triangle inequality, 

( )( )
( ) ( ) ( )( )( )
( ) ( )( )
( ) ( ) ( )( )( )

( )

1 2 2 1

1 2 2 1

1 2 1 2

( , ), *, *

( , ), ( , ) , *, * , *, *

( , ), ( , ) , ( , ), ( , )

( , ), ( , ) , *, * , *, *

 , + ( , ) ( , *) ( , *)

n n n n

n n n n

n n n n

n

x y x y

F x y F y x F x y F y x

F x y F y x F z z F z z

F z z F z z F x y F y x

k d x z d y z d z x d z y

ρ

ρ

ρ

ρ

≤

≤

  +

≤  + +⎡ ⎤⎣ ⎦
 

whose right hand side tends to zero whenever  n→ ∞. 

That is equivalent to saying that 
 

( ) ( )( ), , *, * 0 x y x yρ = .■ 

 
Theorem 12. Under the hypothesis of Theorem 9, 
suppose that each pair of elements of X  has an upper 
bound or lower bound in X . Then .x y=  
 
Proof: By Theorem 9, there exists couple fixed point 

( ),   x y X X∈ ×  such that 

( ) ( ),  and F ,  .F x y x y x y= =  Consider two 

cases: 
Case (i): Suppose x  is comparable with y . That is, 

( ),x F x y=  is comparable with ( ), .y F y x=  
Thus, by (4), 

( ) ( ) ( )( ) ( ), , , ,   , .d x y d F x y F y x k d x y= ≤

Since 0   1,k≤ <  then ( ), 0.d x y = That is, 

.x y=  
Case (ii): Suppose x  is not comparable with y . Then, 
there exists an upper bound or lower bound of x  and y  

. That is, there exists   z X∈  which is comparable with 

( ),  and ( , )x F x y y F y x= = . 

Suppose that  and   x z y z  holds. Then, it 
follows 

( ) ( ) ( ) ( ),   ,   and ,   ,F x y F z y F x z F x y

( ) ( ) ( ) ( ),   ,  and ,   ,F y x F z x F y z F y x  

By the mixed monotone property of F , one can obtain 

( )
( ) ( ) ( )( )

( ) ( )( ) ( )

2

2

, , , ,

, , , ) ,  

A

F x y F F x y F y x

F F z y F y z F z y

=

=

 

which implies that ( ) ( )2 2,   ,  F x y F z y  

( )
( ) ( ) ( )( )

( ) ( )( ) ( )

2

2

, , , ,

, , , ) ,  

B

F y x F F y x F x y

F F z x F x z F z x

=

=

 

which implies that ( ) ( )2 2,   ,F y x F z x  

( )
( ) ( ) ( )( )

( ) ( )( ) ( )

2

2

, , , , )

, , , ,   

C

F x z F F x z F z x

F F x y F y x F x y

=

=

 

which implies that ( ) ( )2 2, ,   F x z F x y  

( )
( ) ( ) ( )( )

( ) ( )( )

2

2

, , , , )

, , , ( , ) 

D

F y z F F y z F z y

F F y x F x y F y x

=

=

 

which implies that ( ) ( )2 2, ,F y z F y x . 

For 2,n > one can obtain the analogous form of (A), 
(B), (C) and (D). Consider the following: 
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( ) ( )
( ) ( )( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )( )

1 1( , ) ( , , , )

, , , , , , ,

, , , , , , ,

, , , , , , ,

 , , , , , , ,

( , , , , , , , )

, , , , , , , .

n n

n n n n

n n n n

n n n n

n n n n

n n n n

n n n n

d x y d F x y F y x

d F F x y F y x F F y x F x y

d F F x y F y x F F x z F z x

d F F x z F z x F F y x F x y

d F F x y F y x F F x z F z x

d F F x z F z x F F z x F x z

d F F z x F x z F F y x F x y

+ +=

=

≤

   +

≤

+

+

The contractivity condition on F  yields that  

( , ) [ ( ( , ), ( , ))
2

( ( , ), ( , ))
( ( , ), ( , ))
( ( , ), ( , ))
( ( , ), ( , ))
( ( , ), ( , ))]

[ ( ( , ), ( , ))
( ( , ), ( , ))
( ( , ), ( , ))]

n n

n n

n n

n n

n n

n n

n n

n n

n n

kd x y d F x y F x z

d F y x F z x
d F x z F z x
d F z x F x z
d F z x F y x
d F x z F x y

k d F x y F z x
d F x z F z x
d F z x F x y

≤

+

+

+

+

+

=

+

+

 

Simple calculations imply that 
1( , ) [ ( , ) ( , )].nd x y k d x z d z y+= +  The right-hand 

side tends to as n → ∞ . That is, ( , ) 0 d x y = . ■ 
 
Theorem 13: Under the hypothesis of Theorem 9, 
suppose that the normal constant of the cone 1K =  and 

0 0,   x y X∈  are comparable. Then .x y=  
 
Proof: By Theorem 9, 0x X∈  satisfies that 

0 0 0  ( , ).x F x y  Consider the case 

0 0 .x y We assert that  n nx y  for all 

  IN. n ∈ For n=1 , it is followed by the mixed 
property of F , that is, 
 

( ) ( )1 0 0 0 0 1,  , .x F x y F y x y= =  

Suppose that   .  n nx y Consider 
 

( )
( ) ( )( )

( ) ( )

1
1 0 0

0 0 0 0

1

,

, , ,

,  ,

n
n

n n

n n n n n

x F x y

F F x y F y x

F x y F y x y

+
+

+

=

        =

        = =

 

 
which implies that our assertion is true, that is, 

 n nx y  for all  IN. n ∈ . For a given 

0 ,  c<< there exists a 0  N IN∈  such that  
 

( )( )0 0, ,
3

n cd x F x y <<  and 

( )( )0 0, ,
3

n cd F y x y <<  for all 0. n N≥ By (4) 

and triangle inequality, 
1

0 0
1

0 0

1
0 0

1 1
0 0 0 0

1
0 0

1
0 0

0 0 0 0

0 0 0 0

1
0 0

1

( , ) ( , ( , ))

( ( , ), )

( , ( , ))

( ( , ), ( , ))

( ( , ), )

( , ( , ))

( ( , ), ( , )),

( ( , ), ( , ))

( ( , ), )

( , (

n

n

n

n n

n

n

n n

n n

n

n

d x y d x F x y

d F x y y

d x F x y

d F x y F y x

d F y x y

d x F x y

F F x y F y x
d

F F y x F x y

d F y x y

d x F

+

+

+

+ +

+

+

+

+

≤

+

≤

+

+

≤

⎛ ⎞
+ ⎜ ⎟⎜ ⎟

⎝ ⎠
+

≤ 0 0

0 0 0 0

1
0 0

1
0 0

0 0

1
0 0 0 0

, ))

( ( , ), ( , )
2

( ( , ), )

( , ( , ))

( ( ( , ), ) ( , )
2

( , ( , )) ( ( , ), )

n n

n

n

n

n n

x y
k d F y x F x y

d F y x y

d x F x y
k d F y x y d x y

d x F x y d F y x y

+

+

+

+

+

≤

+ +

+ +
 
Thus,  

1
0 0

0 0

0 0
1

0 0

(1 ) ( , ) ( , ( , ))

( ( ( , ), )
2

( , ( , ))

( ( , ), )

( )
3 2 3 3 3

(since 0 1)

n

n

n

n

k d x y d x F x y
k d F y x y

d x F x y

d F y x y
c k c c c

c k

+

+

− ≤

+

+

+

<< + + +

<< ≤ <

 

which turns leads to ( ), 0. d x y = Thus .x y=  

Analogously, the other case 0 0  y x  is obtained that 
conclude the proof. ■ 
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Remark 14: If we assume that  0 0,x y X ∈  are 
comparable in addition to the hypothesis of Theorem 9, 
then .x y=  
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