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ABSTRACT 

Fine structure of synaptonemal complexes (SCs) was investigated in primary spermatocytes of Galleria 
mellonella testes. In longitudinal sections, the SCs were discriminated as linear or curved rods in the prophase 
nuclei of the first meiotic division. These rods were attached to the inner surface of the nuclear envelope by their 
one end. Two electron dense axial or lateral elements were clearly distinguished in fine structure of the SCs. A 
central element was formed by parallel bands with a lesser electron density than the lateral elements. The 
diameters of the central and the lateral elements were 37 nm and 48.7 nm, respectively. The central element is 
embedded within the electron lucent central region. Fine transverse filaments crossing the central region 
between the lateral and central elements were seen. The width of this area was measured 40.4 nm. Taken 
together, total diameter of the SCs in the testes of G.mellonella reaches to 218 nm. 
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1. INTRODUCTION 

The first data about synaptonemal complexes (SCs) 
were obtained from the studies of Moses and Fawcett, 
in 1956 separately [1]. They described SCs as the 
special structures supporting the homologous 
chromosomes in pachytene stage of the prophase. The 
structure and composition of SCs were reviewed 
recently [2, 3]. 

SCs are meiosis-specific protein structures that located 
in nuclei [4, 5] and appear between homologous 
chromosome pairs longitudinally during first meiotic 
prophase [4, 6, 8]. SCs play a crucial role in 
chromosome pairing [5, 9-14], crossover [1], 
recombination [5], and prevention of sister-chromatid 
pairing [15-16] and are affected by diseases [9] and 
mutations [17]. SCs are particularly critical structures 
for determination of the reason of infertility or semi-
reproductivity in human and economically important 
farm animals [18-20]. 

In this study, ultrastructural morphology of SCs in the 
testis of Galleria mellonella larvae was described. Since  

 

some of the meiotic abnormalities can only be detected 
by investigation of their morphological changes, 
determination of fine structures of SCs has a great 
importance. 

2. EXPERIMENTAL 

Galleria mellonella L. (Lepidoptera: Pyralidae) was 
grown up at 30±1°C and 40-60% humidity in dark 
condition. G.mellonella was fed with synthetic food in 
petri dish [21, 22]. The testes from three days old larvae 
were used for investigation.  

For electron microscopic investigation, dissected testes 
were fixed in Karnovsky [23] fixative and then 
postfixed with 1% OsO4 [24]. The materials were 
embedded in Epon 812. The thin sections were stained 
with uranyl acetate and lead citrate [25] and then 
examined in Jeol 100C transmission electron 
microscope (TEM). 

The measurements were performed on the best ten 
chosen micrographs of the SCs using a special counting 
lens. 
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3. RESULTS 

Young germ cells including primary-secondary 
spermatogonia and primary spermatocytes are found in 
the testes of three days old larvae of G.mellonella. 
Primary spermatocytes were clearly discriminated by 
their characteristic big nuclei, plenty of free polysomes 

and a few number of short rough endoplasmic reticulum 
channels during the TEM investigation. SCs were 
distinguished as linear or curved fibrous structures 
(Figures 1, 2). They were attached to the inner surface 
of the nuclear envelope by their one end in the nuclei of 
the middle prophase I cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Synaptonemal complexes ( ⇒) in primary spermatocyte nuclei at prophase stage of meiosis. ►, nuclear 
envelope; P, free polyribosomes (scale bar: 0.5 µm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Central (→) and lateral ( ) elements of synaptonemal complexes. K, chromosome; ►, nuclear envelope P, free 
polysomes; G, rough endoplasmic reticulum; M, mitochondrium (scale bar: 0.5 µm). 

SCs consist of an electron lucent central region (CR) 
and two electron dense lateral or axial elements (LEs) 
on both sides the CR. There is an electron dense central 
element (CE) at the middle part of the CR. CE consists 
of the bonds which are lower than lateral elements in 
electron density. Its diameter was measured as 37 nm 
(Figures 2, 3). The electron lucent area between the CE 

and LEs is crossed by very thin transverse filaments 
(TFs). Its diameter was measured as 40.4 nm. These 
structures form the central region of the SCs with 118 
nm in width (Figure 3). Two different layers according 
to their electron density were distinguished in the lateral 
elements. The inner layer with low electron density and 
the outer layer with high electron density were 
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measured as 25.2 nm and 23.5 nm in diameter, 
respectively. Hence, total width of the LEs and whole 
SCs became as 48.7 nm and 215.2 nm, respectively 
(Figure 3). Characteristically electron dense chromatic 
fibers very close to the outer layer of the SCs were 

distinguised. The abundance of the SCs was plenty in 
the middle of the prophase. Their numbers reduce at the 
end of the prophase and completely disappear in the 
metaphase stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic demonstration of synaptonemal complexes and average diameters of the synaptonemal complex 
elements 

4. DISCUSSION 

The SCs are specific structures of meiosis [4, 5] and 
therefore can only be observed in oocytes and 
spermatocytes. The differences in their morphology, 
length and diameter of the SCs were distinguished 
depending on to the species and the sexes [26]. The 
most conspicuous difference appears in the central 
region between male and female sexes. For example, 
the width of the CR in Bombyx mori was 70-80 nm [1, 
27] and 100-120 nm in oocytes and spermatocytes, 
respectively [28]. The radial elements of SCs found in 
the ovaries of G.mellonella [29] couldn’t be detected in 
spermatocytes of the same insect in the present study. 
On the other hand, the morphology of the TEs of SCs in 
G.mellonella was very similar to those found in two 
insect species, Drosophila melanogaster and Blaps 
cribrosa [30]. When compared the diameters of the 

several parts of the SCs among the investigated insect 
species [1, 31] it appears that the diameters were found 
slightly higher in G.mellonella. 

The significance of SCs is related with chromose-
pairing (synapsis) [5, 9-14]. In leptonema stage of 
prophase I, each chromosome forms one lateral element 
and starts to close contact with nuclear envelope by one 
end of the chromosome [1, 32]. It is still unclear that 
why the chromosome ends attach to the nuclear 
envelope and what is the significance this process [33]. 
Probably, at the starting-point for the formation of 
specific pairing between homologous, the chromosomes 
are stabilized on nuclear envelope and then SCs support 
pairing of the correct chromosome partners. 
Demonstration of a large amount nuclear protein lamin 
C2 in the nuclear envelope explained by their particular 
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role in the formation of the linkage between the nuclear 
envelope and the SCs. 

The formation of the SCs before occurance of 
homologous recombination is indispensable fort he 
normal crossover [1]. The recombination between 
homologous chromosomes doesn’t occur in Drosophila 
males, and also SCs don’t appear in C(3) G17 mutated 
females [34]. On the other hand, it was shown that the 
trigger of recombination is functionally dependent on 
the formation of the homologous chromosome pairings 
(SC formation) in yeasts [15]. All these studies 
implicate the importance of the SCs in proper and 
correct crossover and recombination. However, the 
formations of SCs don’t mean that the crossover is 
going to occur. For example, Bombyx mori females 
don’t perform crossover although the formation of SCs 
during meiosis [27]. It was demonstrated that SCs 
formed in case of null mutants (mei-W68 and mei-P22) 
of Drosophila with meiotic crossover and recombinant 
disfunction [35]. Therefore, it is thought that the SC 
doesn’t trigger crossover but prepares pre-conditions for 
crossover and is indispensable [1, 4, 10]. Another role 
of SCs is to prevent the sister-chromatide pairing. Thus, 
the formation of homologous chromosome pairs is 
supported [15, 16] and abnormal pairings are prevented.  

SCs are affected from diseases [9] and mutations [8, 
17]. Any abnormality in SCs such as disfunction or 
existence of SCP1 (a SC protein) leads to an increase in 
male infertility [9]. In the existence of SCP3, one of the 
lateral element proteins, infertility occurs by depending 
on the increase of apoptotic cells in meiotic prophase 
stage [8]. Thus, SC abnormalities are observed in most 
of the infertile or less reproductive males. These 
abnormalities include irregular [36], fragmented [37, 
38] or damaged [39] SCs and its related abnormal 
chromosome pairings or distributions such as trivalent, 
hexavalent [19, 40], asinapsis [17, 38, 41] or desinapsis 
[42], non-homologous pairings [41, 43, 44] or lacks in 
pairings [39, 45]. The abnormalities generally appear at 
pachytene stage when SCs become the clearest [41, 44, 
46]. From all those reasons, determination of the SC 
abnormalities makes easy the detection of infertility or 
semi-reproductivity [18, 20]. Analysis of SC 
abnormalities give more reliable results compare with 
analysis on testis size and shape and semen structure 
[47].  

As a result, SCs are meiosis specific fibrous structures. 
SCs appear in meiotic prophase and disappear at the end 
of the same stage. Investigation of SCs is a particularly 
critical to determine the reason of infertility or semi-
reproductivity in human and economically important 
farm animals. To reveal the fertility or sterility of 
hybrid farm animals and also useful and harmful insects 
[45, 48], the effect of the several genotoxic substances 
[49, 50] and translocations [20, 51] on fertility 
investigations of SCs structures reliable studies because, 
they are affected from diseases and mutations. So, 
electron microscopic analyses of structural defects of 
SCs [52] are very high importance in connection with 
this purpose. 
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