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ABSTRACT 

In this study, free vibration of shear deformable beams was investigated. Discrete singular convolution (DSC) 
method is used for free vibration problem of numerical solution of shear deformable beams. Numerical results 
are presented and compared with that available in the literature. It is shown that reasonable accurate results are 
obtained.  
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1. INTRODUCTION

Beams are widely used as structural component in 
various engineering applications. Therefore, free 
vibration analysis of such structures is a most important 
task for engineer in the design stage of civil, mechanical, 
aerospace and railroad applications.  The shear 
deformation theory was first demonstrated by 
Timoshenko [1] for elastic beams. After this, various 
shear deformation theory were proposed for elastic 
beams. There are many studies in the literature on theory 
and analysis of shear deformable beams. The analysis of 
shear deformable beams and plates have been of interest 
to researchers for many years since they are found in 
wide application of various problems in mechanical, 
aeronautical and structural engineering [2-5]. The 
majority of the available publications are based on the 
analytical and numerical solution of shear deformable 
beams [6-25]. In the past years, discrete singular 
convolution (DSC) method has become increasingly 
popular in the numerical solution of initial and boundary 
value problems [26-30]. These methods can yield 
accurate solutions with relatively much fewer grid points. 
It has been also successfully employed for different solid, 
fluid mechanic and heat transfer problems [31-42]. The 

main objective of this study is to give a numerical 
solution of free vibration analysis of Timoshenko beams.  

2. DISCRETE SINGULAR CONVOLUTION (DSC) 

Discrete singular convolution (DSC) method is a 
relatively new numerical technique in applied mechanics. 
The method of discrete singular convolution (DSC) was 
proposed to solve linear and nonlinear differential 
equations by Wei [26], and later it was introduced to 
solid and fluid mechanics by Wei [27,29,30,11] Wei et al. 
[18, 32], Zhao et al.[33, 34, 36], and Civalek [37-41]. For 
more details of the mathematical background and 
application of the DSC method in solving problems in 
engineering, the readers may refer to some recently 
published reference [26-35]. In the context of distribution 
theory, a singular convolution can be defined by [35] 
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Where T is a kind of singular kernel such as Hilbert, Abel 

and delta type, and )(tη is an element of the space of the 

given test functions. In the present approach, only 
singular kernels of delta type are chosen. This type of 
kernel is defined by [33] 

)()( )( xδxT r= ; (r =0,1,2,...,)         (2) 

where subscript r denotes the rth-order derivative of 
distribution with respect to parameter x. In order to 
illustrate the DSC approximation, consider a function 
F(x). In the method of DSC, numerical approximations of 
a function and its derivatives can be treated as 
convolutions with some kernels. According to DSC 
method, the rth derivative of a function F(x) can be 
approximated as [36] 
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where ∆ is the grid spacing, σ is the DSC parameter, xk 
are the set of discrete grid points which are centered 
around x, and 2M+1 is the effective kernel, or 
computational bandwidth. It is also known, the 
regularized Shannon kernel (RSK) delivers very small 
truncation errors when it use the above convolution 
algorithm. The regularized Shannon kernel (RSK) is 
given by [29] 
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The researchers have generally used the regularized delta 
Shannon kernel by this time. The required derivatives of 
the DSC kernels can be easily obtained using the 
formulation below 
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3. SOLUTION OF GOVERNING EQUATIONS 

The governing equations for free vibration of 
Timoshenko beam can be written as 
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where k shear coefficient, θ is the angular 
displacement, G is the shear modulus,  W is the 
vertical displacement, and ω is the angular 
frequency. By using DSC discretization the Eqs. (6-
7) take the form 
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Two-types of boundary conditions are considered. These 
are: 

Clamped (C) 

0=θ  and 0=W                             (10) 

 

Simply supported (S) 

 

0=M  and 0=W    
            (11) 

In these equations V and M are the shear and moment 
resultants and given by 
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After implementation of the given boundary conditions, 
Eqs. (8) and (9) can be expressed by 

[ ]{ } { },2 UUR ω=          (14) 

where U is the displacements vector, R  is the stiffness 
matrix. The frequency values for Timoshenko beam are 
given by the following non-dimensional form 

EI

ρA
ωL22 =Ω                        (15) 

where ρ is the mass density, A the cross-sectional area, I  
the second moment of area of cross-section, E the 
Young’s modulus, L is the length of the beam, ω is the 
circular frequency. 

4. RESULTS 

The results given in this section are aimed at illustrating 
the numerical accuracy of the proposed DSC method. 
The obtained results are listed in Table 1-3.  First three 
frequency parameters of simply supported beam are 
given in Table 1 for h/L=0.02. Where h/L is the 
thickness-to-length ratio of beam. It is observed that a 
good agreement between the present calculated results 
and the results of literature [8] has been obtained. The 
results obtained classical beam theory (CBT) has also 
been presented. Comparison of fundamental frequency of 
C-C (both end clamped) Timoshenko beam for different 
h/L ratio is listed in Table 2. For a validation, the present 
results are compared with other published results by 
using pseudo spectral method [11], the analytical solution 
using third-order shear deformation theory (TSDT) and 
the classical beam theory (CBT) by Şimşek and Kocatürk 
[16].  Table 1 and Table 2 show that good convergence 
and accuracy of the solutions are obtained by increasing 
the grid numbers for all cases. It is seen that good results 
are obtained for beam by using N=15 and M=16. Non-
dimensional frequencies of S-S (both end simply 
supported) Timoshenko beam for different geometric 
parameter are given in Table 3. In general, the 
frequencies decrease with the increasing of h/L ratios.  

 

Table 1. Comparison of frequency parameters of S-S Timoshenko beam for  h/L=0.02 (k=5/6; 3.0=υ  as Poisson’s ratio). 

Mode  
CBT Ref. 8 

(N=35) 

Ref. 14 

(N=35) 

DSC 

N=11 

 DSC 

N=15 

DSC 

N=18 

1 3.1415 3.14053 3.1405 3.1405 3.1405 3.1405 

2 6.2831 6.27471 6.2747 6.2747 6.2747 6.2747 

3 9.4247 9.39632 9.3963 9.3965 9.3963 9.3963 
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Table 2. Comparison of fundamental frequency of C-C Timoshenko beam (k=5/6; 3.0=υ  as Poisson’s ratio). 

 

h/L 

Ref. 8 

(N=35) 

Ref. 14 

(N=35) 
Ref. 16 

DSC 

N=13 

 DSC 

N=15 

DSC 

N=21 

0.002 4.7299 4.7308 4.7299 4.7302 4.7302 4.7302 

0.01 4.7284 4.7287 4.7284 4.7286 4.7286 4.7286 

0.02 4.7235 4.7236 4.7235 4.7238 4.7236 4.7236 

0.05 4.6899 4.6899 4.6902 4.6902 4.6899 4.6899 

 

Table 3. Frequency parameters of S-S Timoshenko beam (k=5/6; 3.0=υ ; N=15). 

 

Mode  
h/L=0.002 h/L=0.01 h/L=0.02 h/L=0.1 h/L=0.2 

1 3.1415 3.1413 3.1405 3.1156 3.0453 

2 6.2831 6.2811 6.2747 6.2313 5.6715 

3 9.4245 9.4176 9.3963 9.2553 7.8395 

 

5. CONCLUSIONS 

In this study, using the DSC method, a numerical 
approach for the free vibration analysis of shear 
deformable beam is presented. Several examples were 
worked to demonstrate the convergence of the method. 
Excellent convergence behavior and accuracy in 
comparison with exact results or results obtained by other 
numerical methods were obtained.  Although not 
provided here, the method is also useful in providing 
vibration solutions of Euler beam. The present study is 
being further developed to overcome the convergence 
problems encountered in the nonlinear vibration analysis 
of beams. 
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