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ABSTRACT This study investigated Turkish middle school students’ proportional reasoning and provided a 

diagnostic assessment of their strengths and weaknesses on the ratio and proportion concepts. A 

proportional reasoning test with 22 multiple-choice items was developed from the context of the log-

linear cognitive diagnosis model. The test was developed around four core cognitive skills (attributes) 

that required in solving middle school ratio and proportion problems. These skills included 

understanding ratios, directly, inversely, and nonproportional relationships. The test was applied to 282 

seventh grade students, and the collected data were analyzed using the Mplus software. The analysis 

showed that approximately 62% of the students were able to recognize directly proportional 

relationships. Whereas, roughly 48% of them were able to recognize inversely proportional relationships. 

Moreover, while 25% of the students did not master any of the four cognitive skills, 39.1% mastered all 

four of these skills. In addition, many students had difficulty distinguishing proportional relationships 

from nonproportional relationships. Diagnostic feedbacks on the students’ strengths and weaknesses 

were provided based on the findings. 

Keywords: Diagnostic assessment, Diagnostic classification models, Middle school students, Proportional 

reasoning, Ratios and proportions. 

Ortaokul öğrencilerinin orantısal akıl yürütmeleri üzerine tanısal bir 

değerlendirme 

ÖZ Bu çalışmada ortaokul öğrencilerinin orantısal akıl yürütmeleri araştırılmış ve oran ve orantı konuları 

için güçlü ve zayıf yönlerinin bilişsel bir tanısal değerlendirmesi sağlanmıştır. Yirmi iki çoktan seçmeli 

madde içeren bir orantısal akıl yürütme testi log-linear bilişsel tanı modeli perspektifinden faydalanılarak 

geliştirilmiştir. Test, ortaokul öğrencilerinin oran ve orantı problemlerini çözmeleri için gerekli olan dört 

temel bilişsel beceri etrafında tasarlanmıştır. Bu beceriler sırasıyla oran, doğru orantılı ilişki, ters orantılı 

ilişki ve orantısal olmayan ilişki kavramlarını anlamayı içermektedir. Test 282 yedinci sınıf öğrencisine 

uygulanmış ve toplanan veriler Mplus yazılımı kullanılarak analiz edilmiştir. Yapılan analizler 

neticesinde öğrencilerin en çok (yaklaşık 62%) doğru orantılı ilişkileri tanıma becerisine ve en az 

(yaklaşık 48%) ters orantılı ilişkileri tanıma becerisine sahip oldukları görülmüştür. Ayrıca, öğrencilerin 

25%’inin dört temel becerinin hiçbirisine sahip olmadıkları, 39,1%’inin ise bütün becerilere sahip 

oldukları görülmüştür. Bunlara ek olarak, pek çok öğrencinin orantısal ilişkileri orantısal olmayanlardan 

ayırt etmede zorlandıkları görülmüştür. Elde edilen bulgular yorumlanarak öğrencilerin güçlü ve zayıf 

yönleri ile ilgili tanısal geri bildirimler verilmiştir. 
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Sözcükler: 

Bilişsel tanı modelleri, Ortaokul öğrencileri, Oran ve orantı, Orantısal akıl yürütme, Tanısal 

değerlendirme. 
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INTRODUCTION 

 

Ratios, proportions, and proportional reasoning are three important concepts in school mathematics. 

Although understanding these concepts constitutes a key area of school mathematics, teaching these 

concepts might be difficult for teachers (Lobato & Ellis, 2010). These concepts are also essential in 

understanding many situations in science and everyday life (Cramer & Post, 1993). Hence, students 

should understand and use ratios and proportions to represent relationships between quantities in the 

middle grades (National Council of Teachers of Mathematics [NCTM], 2000). Similarly, they should 

be able to determine proportional relationships and use these relationships to solve real-world problems 

(Common Core State Standards Initiative [CCSSI], 2010). New mathematics standards released by 

Turkish Ministry of Education [MEB] (2018) also expect middle school students to “determine 

quantities that are given in a ratio, determine proportional situations by examining real-life examples, 

and solve problems by understanding directly and inversely proportional relationships” (p. 12).  

In mathematics education literature, the term ratio is defined as “multiplicative comparison of two 

quantities, or it is a joining of two quantities in a composed unit” (Lobato & Ellis, p. 12). In a ratio, the 

quantities compared may have the same units as in 
15 𝑏𝑜𝑦𝑠

20 𝑔𝑖𝑟𝑙𝑠
 in which a multiplicative comparison of 

number of boys to girls in a classroom is presented. This multiplicative comparison can be stated as 

“The number of girls is four-thirds of the number of boys” or as “The number of boys is three-fourths 

of the number of girls.” Moreover, in a ratio, the quantities compared may have different units, which 

is also referred as rate, as in 
3 𝑘𝑔 𝑎𝑝𝑝𝑙𝑒

5 𝑇𝐿 
. The multiplicative comparison can be stated as either “three-

fifths kg of apple costs 1 Turkish Lira” or as “Five-thirds Turkish Lira per 1 kg apple.” Furthermore, the 

term proportion is defined as a “statement of the equality of two ratios (i.e., a/b = c/d)” (Fisher, 1988, 

p. 157). Finally, proportional reasoning is defined as “detecting, expressing, analyzing, explaining, and 

providing evidence in support of assertions about proportional relationships” (Lamon, 2007, p. 647). 

Hence, proportional reasoning requires noticing and representing proportional relationships between 

covarying quantities (CCSSI, 2010). Proportional reasoning, which is a specific form of multiplicative 

reasoning (Lesh, Post, & Behr, 1988), plays a significant role in the development of students’ 

mathematics. Thus, it has been regarded as an important concept in students’ elementary school 

mathematics and in advanced mathematics (Kilpatrick, Swafford, & Findell, 2001; NCTM, 2000). Large 

scale international studies such as TIMSS and PISA also treat proportional reasoning as a benchmark 

for students’ mathematical competence.  

Although proportional reasoning has a significant role in students’ mathematical development, 

researchers (e.g., Ayan & Isiksal-Bostan, 2018; De Bock, Verschaffel, & Janssens, 1998; Misailadou & 

Williams, 2003; Modestou & Gagatsis, 2007) reported their difficulties with this concept. One of the 

most reported difficulties in developing students’ proportional reasoning is that traditional instruction 

places more attention to the rule memorization and rote computations. Hence, students usually refer to 

the cross-multiplication and across-multiplication strategies when solving missing-value problems 

(Fisher, 1988; Arican, 2018; Arican, 2019). Although these strategies are effective in obtaining correct 

answers, students apply them without understanding multiplicative relationships presented (Lamon, 

2007; Stemn, 2008). Another important difficulty is that students, even preservice and in-service 

teachers, have a tendency to determine nonproportional relationships as proportional and apply 

proportional strategies for solving nonproportional problems (e.g., Atabas & Oner, 2017; Izsák & 

Jacobson, 2017; Lim, 2009; Modestou & Gagatsis, 2007; Van Dooren, De Bock, Janssens, & 

Verschaffel, 2007). In addition, some researchers (e.g., Degrande, Van Hoof, Verschaffel, & Van 

Dooren, 2017; Van Dooren, De Bock, Hessels, Janssens, & Verschaffel, 2005) also observed the 

opposite of this incorrect tendency—that is assuming proportional relationships as nonproportional. 
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Two quantities can form either a directly proportional relationship or an inversely proportional 

relationship. In a directly proportional relationship, two quantities, x and y, remain in a constant ratio 

relationship (i.e., x/y =k). On the other hand, in an inversely proportional relationship, the product of 

values of two quantities is equal to a constant (i.e., x*y = k). As explained in the previous paragraph, 

students usually refer to the rote computations and formulas when solving proportion problems without 

understanding constant ratio and constant product relationships between quantities. Moreover, they 

frequently attend to the simultaneous increases or decreases and rate of change when determining 

directly and inversely relationships which are not sufficient in distinguishing proportional relationships 

from nonproportional relationships (Arican, 2018; Arican, 2019). Therefore, it is essential for 

mathematics teachers to develop their students’ meaningful understanding of ratios, directly, inversely, 

and nonproportional relationships. A meaningful understanding of ratios, directly, inversely, and 

nonproportional relationships necessitates students to recognize a ratio is a multiplicative comparison 

of two quantities, to detect directly and inversely proportional relationships between quantities, and to 

distinguish proportional relationships from nonproportional relationships. Two kinds of proportional 

relationship problems have been used in mathematics education literature: missing-value and 

comparison problems. In missing-value problems, students are presented with three of the four values 

of a proportion, and they are asked to determine the missing-value. Whereas, in comparison problems, 

students compare two ratios to decide whether they are equal, or if one is larger or smaller. In this study, 

both missing-value and comparison problems were used in exploring students’ proportional reasoning. 

Regarding the difficulties mentioned above, researchers have been conducting qualitative and 

quantitative studies to examine students’ proportional reasoning. Although these studies provide useful 

information, they lack diagnostic information about students’ difficulties and incorrect tendencies. 

Moreover, generalizing findings over a population in qualitative studies is quite difficult because they 

have been usually conducted over a small sample. Hence, the size of the research sample is regarded as 

one of the main challenges for the generalization of findings in qualitative studies. On the other hand, 

as stated by Ranjbaran and Alavi (2017), quantitative studies usually employ traditional techniques to 

obtain examinees’ total, average, or individual scores to measure their mathematical knowledge or skills 

(e.g., Kuzu, 2017). While these scores provide valuable insights on examinees’ overall performance, 

they do not offer diagnostic information on their strengths and weaknesses in terms of subject areas. In 

addition, the traditional techniques used in quantitative studies are not that useful in identifying 

multidimensional characteristics of a research topic (Bradshaw, Izsák, Templin, & Jacobson, 2014). 

Therefore, in recent years, researchers (e.g., Arican & Kuzu, 2019; Bradshaw et al., 2014; Choi, Lee, & 

Park, 2015; Dogan & Tatsuoka, 2008; Im & Park, 2010; Jurich & Bradshaw, 2014; Lee, Park, & Taylan, 

2011; Sen & Arican, 2015; Terzi & Sen, 2019; Toker & Green, 2012) have been applying cognitive 

diagnostic models (CDMs) to provide diagnostic feedback on examinees’ performance in mathematics.  

In this study, inspired by the new developments in measuring students’ mathematical knowledge, a 

multidimensional proportional reasoning test (PRT) was developed from the perspective of a general 

CDM, the log-linear cognitive diagnostic model (LCDM) (Henson, Templin, & Willse, 2009). The PRT 

intended to measure the students’ mastery of four core cognitive skills, which are also referred to as 

attributes, students rely on when solving ratio and proportion problems. These four cognitive skills are 

determined as follows: Understanding the concept of a ratio and determining the value of a quantity in 

a given ratio; Recognizing directly proportional relationships and solving daily-life problems involving 

this type of relationships; Recognizing inversely proportional relationships and solving daily-life 

problems involving this type of relationships; and Recognizing nonproportional relationships and 

solving daily-life problems involving this type of relationships. Thus, the current study contributes to 

the mathematics education literature by investigating middle school students’ proportional reasoning 

and providing diagnostic feedback for their particular strengths and weaknesses on the ratio and 

proportion concepts. 
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BACKGROUND 

 

Cognitive Diagnosis Models 

CDMs, which are also known as diagnostic classification models (DCMs), are a family of psychometric 

models that categorize examinees as either a master or nonmaster of an attribute, which is a categorical 

latent variable, according to their item responses. “CDMs predict the probability of an observable 

categorical response from unobservable (i.e., latent) categorical variables” (Ravand & Robitzsch, 2015, 

p. 2). The term attribute is used to define cognitive skills that are required in solving a specific item. 

The aim of CDMs is to offer diagnostic feedback with regard to these carefully defined attributes 

(Bradshaw et al., 2014). One of the strengths of CDMs over the Classical Theories is that they provide 

highly reliable examinee estimates with a small number of items (Templin & Bradshaw, 2013) and small 

sample sizes (Bradshaw & Cohen, 2010). Therefore, in this study, a CDM analysis was conducted to 

understand middle school students’ understanding of ratios, directly, inversely, and nonproportional 

relationships and diagnostic feedback were provided for their particular strengths and weaknesses. 

There are three types of CDMs: compensatory, noncompensatory, and general. In the compensatory 

models (i.e., deterministic input, noisy-or-gate model [DINO], Templin & Henson, 2006; and 

compensatory reparameterized unified model [C-RUM], Hartz, 2002), mastering one or some of the 

attributes, which are required to obtain a correct answer, can compensate for nonmastery of other 

attributes. Hence, mastery of at least one of the required attributes is enough to solve an item correctly. 

On the other hand, in the noncompensatory models (i.e., deterministic input, noisy-and-gate model 

[DINA], Junker & Sijtsma, 2001; and noncompensatory reparameterized unified model [NC-RUM], 

DiBello, Stout, & Roussos, 1995, Hartz, 2002), the lack of mastery of one of the required attributes 

cannot be completely compensated by the mastery of other attributes. Therefore, possession of all 

required attributes is needed to obtain a correct answer. However, the general models (i.e., general 

diagnostic model [GDM], von Davier, 2005; log-linear cognitive diagnostic model [LCDM], Henson, 

Templin, & Willse, 2009; and generalized DINA [G-DINA], de la Torre, 2011) can behave either as a 

compensatory model or noncompensatory model (Ravand & Robitzsch, 2015).  

Using a generalized linear model, the LCDM can estimate attribute effects on each item response in a 

compensatory or noncompensatory manner and maps those item responses onto latent attributes 

(Bradshaw et al., 2014). Hence, it provides more flexibility to the researchers by helping them to detect 

patterns of attribute mastery (Bradshaw et al., 2014). Therefore, in this current study, the PRT was 

developed from the perspective of the LCDM. The LCDM estimates the probability of an examinee’s 

(e) correct response for an item (i), which measures two attributes (𝛼𝑒1and 𝛼𝑒2), by applying the 

following equation: 

𝑙𝑛 (
𝑃(𝑋𝑒𝑖 = 1|𝛼𝑒)

𝑃(𝑋𝑒𝑖 = 0|𝛼𝑒)
) = 𝜆𝑖,0 + 𝜆𝑖,1(1)(𝛼𝑒1) + 𝜆𝑖,1(2)(𝛼𝑒2)+𝜆𝑖,2(1∗2)(𝛼𝑒1𝛼𝑒2) (1) 

In Equation 1, 𝑙𝑛 (
𝑃(𝑋𝑒𝑖 = 1|𝛼𝑒)

𝑃(𝑋𝑒𝑖 = 0|𝛼𝑒)
) models the log-odds of a correct response which is conditional on an 

examinee’s attribute pattern. The log-odds is called a logit and represented as 𝑙𝑛 (
𝑃(𝑋𝑒𝑖 = 1|𝛼𝑒)

𝑃(𝑋𝑒𝑖 = 0|𝛼𝑒)
) =

Logit(𝑋𝑒𝑖 = 1|𝛼𝑒) in which 𝑃(𝑋𝑒𝑖 = 1|𝛼𝑒) =
Exp (Logit(𝑋𝑒𝑖 = 1|𝛼𝑒)

1+Exp (Logit(𝑋𝑒𝑖 = 1|𝛼𝑒)
. In Equation 1, the parameter 

𝜆𝑖,0 is the intercept of the LCDM and represents the predicted log-odds of a correct response for 

individuals who have not mastered Attribute 1 or Attribute 2 (Bradshaw et al., 2014). Parameter 𝜆𝑖,1(1) 

is the simple main effect that represents the predicted log-odds of a correct response for individuals who 

have mastered Attribute 1, but not Attribute 2. Similarly, parameter 𝜆𝑖,1(2) is the simple main effect that 

represents the predicted log-odds of a correct response for individuals who have mastered Attribute 2, 
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but not Attribute 1. Finally, parameter 𝜆𝑖,2(1∗2) is the interaction effect that represents the predicted log-

odds of a correct response for individuals who have mastered both Attribute 1 and Attribute 2. The 

following example was provided for making sense of Equation 1:  

Example: Let students are given the following question: 2 * 4 + 6 = ? To solve this question, they need 

to understand multiplication (𝛼1) and addition (𝛼2). The LCDM analysis provides estimations of the 

intercept, main, and interaction effect parameters. Assume the following parameter estimations are 

provided by the LCDM: 𝜆𝑖,0 = −2, 𝜆𝑖,1(1) = 3, 𝜆𝑖,1(2) = 2, and 𝜆𝑖,2(1∗2) = 1. Hence, replacing these 

parameters in Equation 1, we obtain Logit(𝑋𝑒𝑖 = 1|𝛼𝑒) = −2 + 3(𝛼𝑒1) + 2(𝛼𝑒2) + 1(𝛼𝑒1𝛼𝑒2). In 

CDMs, there are 2𝑛 attribute mastery profiles in which n responds to the number of attributes. Hence, 

we have 22 = 4 attribute profiles in this example. Table 1 presents LCDM predicted logits and 

probabilities of mastery for each of these four attribute profiles. According to Table 1, 12% of the 

nonmasters of two attributes were able to solve this item. Whereas, 73% of the students who had 

mastered attribute 1 (multiplication), and 50% of the students who had mastered attribute 2 (addition) 

solved this item correctly. Finally, 98% of the students who had mastered both multiplication and 

addition solved this item correctly. 

Table 1.  

LCDM Predicted Logits and Probabilities   

𝛼1 𝛼2 The LCDM Logit function Logit Probability 

0 0 𝜆𝑖,0 + 𝜆𝑖,1(1) ∗ (0) + 𝜆𝑖,1(2) ∗ (0) + +𝜆𝑖,2(1∗2) ∗ (0) ∗ (0) -2 Exp (−2)

1+Exp (−2)
 = 0.12 

1 0 𝜆𝑖,0 + 𝜆𝑖,1(1) ∗ (1) + 𝜆𝑖,1(2) ∗ (0) + +𝜆𝑖,2(1∗2) ∗ (1) ∗ (0) -2+3=1 Exp (0)

1+Exp (0)
 = 0.73 

0 1 𝜆𝑖,0 + 𝜆𝑖,1(1) ∗ (0) + 𝜆𝑖,1(2) ∗ (1) + +𝜆𝑖,2(1∗2) ∗ (0) ∗ (1) -2+2=0 Exp (1)

1+𝐸xp (1)
 = 0.5 

1 1 𝜆𝑖,0 + 𝜆𝑖,1(1) ∗ (1) + 𝜆𝑖,1(2) ∗ (1) + +𝜆𝑖,2(1∗2) ∗ (1) ∗ (1) -2+3+2+1=4 Exp (4)

1+Exp (4)
 = 0.98 

 

METHODOLOGY 

 

This quantitative study was conducted following three corresponded steps: test development, acquisition 

of Q-matrix, and administration of the test and Q-matrix validation. In the following pages, these three 

steps were discussed in details. 

Step 1: Test Development 

In the first step, the PRT was developed. Hence, core skills required in solving middle school ratio and 

proportion problems were determined. In doing so, I examined the Turkish middle school mathematics 

curricula and referred to the CCSS and NCTM standards. Therefore, I determined a list of critical skills 

and asked three mathematics educators and a mathematics teacher to provide feedback on these skills. 

After receiving expert feedback, four core skills that served as attributes were determined (Table 2). 

Table 2.  

Attributes Required in Solving Turkish Middle School Ratio and Proportion Problems  

Attributes 

Attribute 1. 

Understanding the 

concept of a ratio and 

determining the value 

of a quantity in a given 

ratio. 

Attribute 2. Recognizing 

directly proportional 

relationships and solving 

daily-life problems 

involving this type of 

relationships. 

Attribute 3. Recognizing 

inversely proportional 

relationships and solving 

daily-life problems 

involving this type of 

relationships. 

Attribute 4. Recognizing 

nonproportional 

relationships and solving 

daily-life problems 

involving this type of 

relationships. 
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The test items were developed by a group of six people (myself and five preservice teachers [PSTs]) 

around the four attributes by following the problem examples provided in the Turkish middle school 

mathematics curricula, Turkish national tests, and mathematics education literature. The five PSTs were 

student teaching under my guidance at the middle school in which the study was conducted. To develop 

test items, I designed various problems around the four attributes and asked each one of these five PSTs 

to write at least one problem for each attribute. After collecting items that I and the PSTs wrote, I 

checked those items for their contents and included items in the test if they were measuring the intended 

attributes. As a result of these efforts, we had 25 items in our test. Next, we asked a middle school 

mathematics teacher to control these items for their suitability to the middle school mathematics 

program. Based on his feedback, we decided to delete three items. Thus, the final PRT included 22 

multiple-choice items (see Appendix 1). In the PRT, Item 5 was adapted from Lim (2009); Item 14 was 

adapted from Cramer, Post, and Currier (1993); and Item 22 was adapted from Beckmann (2011).  

Step 2: Acquisition of the Q-Matrix 

In the second step, using the four attributes in Table 2, the test items were independently coded for their 

measured attribute by four mathematics educators, including myself, and a middle school mathematics 

teacher with more than 10 years teaching experience. Three mathematics educators and the mathematics 

teacher were instructed about the coding process. The independent codes received from these experts 

enabled me to assess whether the test items were measuring the intended attributes. This step of the 

study was very crucial because correct alignment of items with attributes helps researchers obtain high 

CDM classification accuracy (Rupp & Templin, 2008). Hence, I obtained the Q-matrix (Tatsuoka, 

1985), which expresses the item–attribute alignment, using the independent codes received from these 

experts. In the Q-matrix (Table 3), code “1” represents an item measuring corresponding attribute(s); 

whereas, code “0” represents an item not measuring corresponding attribute(s). In the Q-matrix, code 

“1” was applied if at least three coders agreed that an item measured the corresponding attribute, else a 

code “0” was applied for that attribute. Therefore, in the PRT, two items measured three attributes; 14 

items measured two attributes; and six items measured a single attribute. 

Table 3.  

The Q-matrix 

Attributes 
Items 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Total 

Attribute 1 1 1 1 1 0 1 1 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 13 

Attribute 2 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 13 

Attribute 3 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1 9 

Attribute 4 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 6 

Note: Code “1” represents items measuring the corresponding attribute, and Code “0” represents items not 

measuring the corresponding attribute. 

Step 3: Administration of the Test and Q-Matrix Validation 

In the last step, conducted during the Spring 2018 semester, the PRT was administered to 282 seventh 

grade students enrolled at a middle school in a province located in the central Turkey. The school was 

among one of the high achieving schools in this province. There were eight seventh grade classrooms 

in this school, and the PRT was administered to the volunteered students in these eight classrooms. In 

Turkey, ratio, proportion, and proportional relationships are taught in sixth and seventh grades. Hence, 

the students are expected to have the required knowledge on these topics before their participation in 

the study. Before the administration of the PRT, the necessary permissions were obtained from the 

Ministry of Education, school administration, and students’ parents. Therefore, the students participated 

in this study on a voluntary basis. They were given 40 minutes to complete this test, and five PSTs 

assisted me in collecting the students’ responses to test items. Next, the students’ responses to the test 

items were coded dichotomously (i.e., correct responses were coded as “1,” and incorrect responses 

were coded as “0”) in which missing responses were coded as “9”. Finally, the LCDM analysis was 

conducted using the Q-matrix and dichotomously coded responses.  
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When developing a test from the perspective of Classical Test Theories, an item analysis needs to be 

performed, which was accomplished by examining item difficulty and discrimination indices, in order 

to detect problematic items. However, because CDMs are designed for diagnostic purposes, they use 

different measures for defining an item as good or bad. According to CDMs, a reliable test is one that 

correctly estimates examinees’ profiles (Templin, 2008). CDMs examine test quality by determining 

item-attribute discrimination indices (e.g., Henson & Douglas, 2005; Henson, Roussos, Douglas, & He, 

2008) that highlight how well an item estimates the required attribute or attributes. Having well 

discriminating items results in obtaining high attribute classification reliability that indicates overall 

quality of the test items. Item-attribute discrimination indices of the PRT items were determined by 

using an executable CDM file, which is specifically designed to determine item-attribute discrimination 

indices (Table 4). If the item-attribute discrimination index is 0, masters and nonmasters of attribute(s) 

have the same probability of answering the item correctly. In addition, discrimination index with a value 

of 1 indicates that the correct answer rate is higher for masters of the attribute(s). In addition, a negative 

index indicates that the correct answer rate is higher for nonmasters of the attribute(s). Although there 

is not a clear cut-off score for determining poor item-attribute discrimination indices, de la Torre (2008) 

stated a discrimination index .31 as low. Hence, the item-attribute discrimination indices in Table 4 

show that the PRT items discriminated well between masters and nonmasters of an attribute. Therefore, 

as required, while the masters of attribute(s) tended to answer the items correctly, nonmasters tended to 

answer these items incorrectly. Thus, the analysis of the data was continued using 22 items and the Q-

matrix described in Table 3. 

Table 4.  

Item-Attribute Discrimination Indices 

Item Attribute 1 Attribute 2 Attribute 3 Attribute 4 

1 .46 .49 
  

2 .85 .69 
  

3 .88 .85 
  

4 .51 .37 
  

5 
   

.78 

6 .71 .70 
  

7 .42 .32 
  

8 
  

.77 
 

9 
  

.81 
 

10 
  

.89 
 

11 .85 
 

.73 
 

12 
   

.84 

13 .59 .52 
  

14 
   

.84 

15 .85 
 

.79 
 

16 .78 .77   

17 .83  .69  

18 .81 .77   

19  .59 .71 .97 

20 .71 .80   

21  .77 .78 .91 

22  .76 .73  

Item difficulty index, which ranges between 0 and 1, expresses the proportion of students that answer 

an item correctly. Although reporting this index is usually a desired method in Classical Test Theories, 

in this study, the difficulty indices together with the students’ responses were presented to better grasp 

the students’ strengths and weaknesses in ratio and proportion concepts. According to Table 4, the item 

difficulty index ranged between .25 and .93, with a mean of .60. There were seven medium difficulty 

items (index values between .40 and .60), four difficult items (index values less than .40), and 11 easy 

items (index values more than .60). Hence, there was a good balance among the items in terms of their 

level of difficulty. Table 5 shows that Items 5 and 14 were perceived as the most difficult items, which 

were answered by only 26% and 25% of the students, respectively. On the other hand, Item 7 was the 

easiest item having been answered correctly by 93% of the students. No high or low level outliers were 
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deleted at this level because the purpose of the PRT was to determine the students’ strengths and 

weaknesses and did not aim to measure their academic achievement. 

Table 5. 

The Students’ Responses and Item Difficulty Indices  

Items A B C D NA Dif. Items A B C D NA Dif. 

1 39 2 237 * 2 2 .84 12 54 16 187 * 22 3 .66 

2 31 24 20 203 * 4 .72 13 230 * 7 32 10 3 .82 

3 48 23 64 128 19 .45 14 69 186 * 9 13 5 .25 

4 7 245 * 2 26 2 .87 15 32 50 29 163 * 8 .58 

5 184 * 6 73 8 11 .26 16 21 15 207 * 21 18 .73 

6 23 172 * 26 56 5 .61 17 110 * 72 20 61 19 .39 

7 262 * 5 8 7 0 .93 18 177 * 33 14 44 14 .63 

8 77 30 172 * 2 1 .61 19 49 33 88 105 * 7 .37 

9 25 138 * 4 112 3 .49 20 18 23 17 215 * 9 .76 

10 20 66 19 127 * 50 .45 21 41 156 * 50 22 13 .55 

11 170 * 9 17 84 2 .60 22 29 158 * 29 21 45 .56 

Note: * indicates the correct answer, NA: No answer, and Dif.: Difficulty index. 

The Data Analysis and Model Fit 

After testing the overall quality of the PRT items, the next stage was to obtain examinee estimates. 

Estimates from the data were calculated using Mplus 6.12 statistical software (Muthen & Muthen, 2011). 

The LCDM codes for Mplus were generated by R software (R Core Team, 2017) using the “Mplus Input 

Generator,” which was written by Dr. Olga Kunina-Habenicht. The first step of the data analysis was to 

determine the best-fit LCDM model. To determine this best-fit model, one-way, two-way, and three-

way log-linear structural model parameterizations were compared (Table 6). In Table 6, Model A 

represents the one-way structural model, Model B represents the two-way structural model, and Model 

C represents the three-way structural model. While Model A only included intercepts (i.e., 𝜆𝑖,0 in 

Equation 1) and main effects (i.e., 𝜆𝑖,1(1) and 𝜆𝑖,1(2)), Model B included intercepts, main effects, and 

two-way interaction effects (i.e., 𝜆𝑖,2(1∗2)). Moreover, Model C, which was the full model, included 

intercepts, main effects, and both two- and three-way interaction effects. These three models were 

compared with each other conducting a chi-square difference test using the log-likelihood values with 

the Maximum Likelihood Robust (MLR) estimator (Satorra & Bentler, 2010). In Table 6, a significant 

chi-square difference (p < .05) recommends that the larger model with more freely estimated parameters 

would better fit the data than the smaller model with less freely estimated parameters (Werner & 

Schermelleh-Engel, 2010). On the other hand, a nonsignificant chi-square difference indicates that both 

models fit the data equally well. Thus, the data estimation should be carried out using the model with 

smaller information model fit indices (i.e., AIC, BIC, and SSA BIC).  

Table 6.  

Model Modifications and Fit Indices for One-Way, Two-Way, and Three-Way Models and the Final Model 

Model Description AIC BIC SSA BIC LL NPR Chd df p 

A One-way structural model  6080.07 6360.50 6116.34 -2963,04 77 - - - 

B Two-way structural model 6052.63 6405.89 6098.31 -2929.32 97 50.26 1 .000 

C Three-way structural model 6056.29 6416.84 6102.91 -2929.15 99 .15 1 .696 

Y Best-fit model 6037.716 6332.71 6075.86 -2937.86 81 - - - 
Note: AIC: Akaike’s information criteria; BIC: Bayesian information criteria; SSA BIC: sample size adjusted Bayesian 

information criteria; LL: Log-likelihood; NPR: number of estimated parameters; Chd: chi-square difference; df: degrees of 

freedom. 

Table 6 showed that Model B, two-way structural model, was superior over Model A, one-way structural 

model, (p = .00). Next, comparing Model B with Model C, three-way structural model, a nonsignificant 

chi-square difference (p = .696 > .05) was obtained. Hence, Model B was a better fit for the data than 

Model C because it yielded smaller model fit indices. The next step was to remove nonsignificant two-

way interaction effects in Model B since they did not contribute to the estimation of attribute mastery 
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profiles. In Model B, there were a total of 20 two-way interaction effects, and the LCDM analysis 

showed that seven of them were nonsignificant. Hence, these two-way interaction effects were removed 

one by one, starting from the interaction effect with the highest p-value. After removing the interaction 

effect with the highest p-value, the model was run again and the model fit indices were checked in order 

to determine if removing this interaction effect improved the model fit. If this new model yielded smaller 

AIC, BIC, and SSA BIC indices, then estimations were preceded with this new model. The last step of 

obtaining the best-fit model was to remove nonsignificant main effects. In Model B there were 40 main 

effects, and nine of these main effects were nonsignificant. Therefore, by removing these nonsignificant 

main effects, Model Y was obtained, which was the best-fitting model. Model Y estimated 81 free 

parameters, and model fit indices are presented in Table 6. 

 

RESULTS 

 

The LCDM places test-takers into some latent classes based on their mastery of attributes. The total 

number of possible attribute profiles is calculated by the formula 2^A in which A represents the number 

of attributes. Hence, there were 2^4 = 16 distinct attribute profiles since four attributes were estimated. 

Attribute profiles, number of students belonging to each profile, and proportions of these counts are 

presented in Table 7. The LCDM does not provide exact numbers for students belonging each profile 

but presents an estimation of these numbers. When reporting number of students in each profile, the 

LCDM provides decimal numbers, which were rounded up to closest whole number. Table 7 shows that 

approximately 111 students (39.1%) mastered all four attributes. On the other hand, roughly 71 students 

(25%) did not master any attributes. Thus, most students either mastered all four of the attributes or none 

of these attributes. Moreover, about 43 students (15.3%) mastered only Attribute 2, “Recognizing 

directly proportional relationships and solving daily-life problems involving this type of relationships,” 

and none of the students belonged to the Latent Classes 2 (0001), 3 (0010), 4 (0011), 6 (0101), 7 (0110), 

8 (0111), and 13 (1100). This finding showed that none of the students mastered Attribute 3, 

“Recognizing inversely proportional relationships and solving daily-life problems involving this type of 

relationships” and Attribute 4, “Recognizing nonproportional relationships and solving daily-life 

problems involving this type of relationships” alone, Attribute 1, “Understanding the concept of a ratio 

and determining the value of a quantity in a given ratio” and Attribute 2 together, Attributes 2 and 3 

together, Attributes 2 and 4 together, Attributes 3 and 4 together, or Attributes 2, 3, and 4 together.  

Table 7.  

Estimated Number of Students Belonging to each Attribute Profile and their Proportions 

Class Attribute Profile Count Proportion 

1 0000 71 0.250 

2 0001 0 0 

3 0010 0 0 

4 0011 0 0 

5 0100 43 0.153 

6 0101 0 0 

7 0110 0 0 

8 0111 0 0 

9 1000 5 0.016 

10 1001 21 0.076 

11 1010 2 0.008 

12 1011 8 0.029 

13 1100 0 0 

14 1101 7 0.024 

15 1110 14 0.049 

16 1111 111 0.392 
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Note: Attribute profiles show the students’ mastery of Attributes 1 through 4. For instance, attribute profile 0101 

indicates the students’ mastery of Attributes 2 and 4 and nonmastery of Attributes 1 and 3.  

Proportions of attribute mastery are calculated by summing up corresponding proportions in Table 7. 

For instance, mastery of Attribute 1 can be calculated by the sum of proportions beginning from Latent 

Class 9 and ending up with Latent Class 16. The proportions for the mastery of remaining attributes are 

also calculated summing up the corresponding proportions in Table 7. Table 8 shows that roughly 59.5% 

of the students mastered Attribute 1, “Understanding the concept of a ratio and determining the value of 

a quantity in a given ratio”; 61.9% of the students mastered Attribute 2, “Recognizing directly 

proportional relationships and solving daily-life problems involving this type of relationships”; 47.9% 

of the students mastered Attribute 3, “Recognizing inversely proportional relationships and solving 

daily-life problems involving this type of relationships”; and 52.2% of the students mastered Attribute 

4, “Recognizing nonproportional relationships and solving daily-life problems involving this type of 

relationships.” The proportions presented in Table 8 suggest that, among the four attributes, the students 

were better at mastering Attribute 2. On the other hand, they obtained the lowest proportion of mastery 

from Attribute 3. To assess how accurately proportions of attribute mastery in Table 8 were estimated, 

the CDM measure of reliability indices (Templin & Bradshaw, 2013) were calculated. According to 

Templin and Bradshaw (2013), the CDM measure of reliability relies upon “the correlation of mastery 

statuses between two hypothetical independent administrations of the same test” (p. 259). Hence, this 

procedure was equivalent to determining test–retest reliability. According to Table 8, Attributes 1 and 3 

were estimated at 99% certainty and Attribute 2 and Attribute 4 were estimated at 97% and 96% 

certainty, respectively. Although there is no systematic investigation on the effect of sample size on 

CDM classification accuracy, some researchers (e.g., Tatsuoka, 1983; Lei & Li, 2016) stated that CDM 

classification accuracy increases with the sample size (Ravand & Robitzsch, 2018). On the other hand, 

CDMs can provide highly reliable examinee estimates with small sample sizes (Bradshaw & Cohen, 

2010). As a rule of thumb, it is suggested that the number of items and sample size should exceed the 

number of latent classes (e.g., Huebner, 2010; Ravand & Robitzsch, 2018). In this study, there were 16 

latent classes which was less than number of items (i.e., 22) and sample size (i.e., 282). Moreover, 

reliability indices in Table 8 indicate that the LCDM provided highly reliable attribute mastery 

estimations that suggested overall validity of the PRT.  

Table 8.  

The Students’ Attribute Mastery Proportions and Reliability Indices 

 A1 A2 A3 A4 

Mastery .595 .619 .479 .522 

Reliability .99 .97 .99 .96 

Note: The letter A represents the term Attribute. 

To understand the contribution of attributes on the respondents’ success, the LCDM provides item 

parameter estimates. These item parameter estimates are converted to proportions that show the 

respondents’ success rates. Item parameter estimates, standard errors, and estimated probabilities are 

provided in Appendix 2. In Appendix 2, estimated proportions for intercepts were calculated using the 
𝐸𝑥𝑝(𝜆𝑖,0)

1+𝐸𝑥𝑝(𝜆𝑖,0)
 formula in which the letter i represents the item number. Estimated proportions for main and 

interaction effects were also calculated by adapting the same formula. For instance, 
𝐸𝑥𝑝(𝜆𝑖,0+𝜆𝑖,1(1))

1+𝐸𝑥𝑝(𝜆𝑖,0+𝜆𝑖,1(1))
 

calculates the estimated proportions for Attribute 1 (i.e., 𝜆𝑖,1(1) is item parameter estimate for Attribute 

1 and item i). On average, items had an intercept of -0.55 that suggested that roughly 36.6% of the 

students who had not mastered any of the attributes (i.e., nonmasters) answered the items correctly 

evidently by guessing. Appendix 2 shows that Items 9 and 19 were the most difficult items for the 

nonmasters, which were answered by 18.8% and 19.5% of them, respectively. On the other hand, Items 

4 and 7 were the easiest items for the nonmasters, which were answered by 73.2% and 73.1% of them, 

respectively. Moreover, Appendix 2 shows that the attributes were partly compensatory. For example, 

the proportion of a correct response to Item 16 increases from .407 to .723 to .739 to 1 when comparing 

examinees who mastered neither attribute, only Attribute 1, only Attribute 2, and both attributes, 
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respectively. Thus, the students who had mastered both Attribute 1 and Attribute 2 had more chance of 

answering Item 16 than the ones who did not master any attributes or than the ones who mastered a 

single attribute. 

One of the advantages of CDMs is that they can be used in providing diagnostic feedback on individual 

performance. Mplus calculates respondents’ posterior probabilities using an expected a posteriori (EAP) 

estimation for each latent class. Each respondent’s estimations of attribute mastery can be calculated by 

the sum of posterior probabilities in corresponding latent classes. For instance, estimation of Attribute 

1 is calculated by summing up posterior probabilities beginning from Latent Class 9 and ending up with 

Latent Class 16. Table 9 presents four selected students’ response patterns and estimated proportions of 

attribute mastery. Table 9 showed that while Student 195 had a 99.8% chance of mastering Attribute 1, 

Student 147 had only 28.9% chance of mastering this attribute. Although there is not an exact cutoff 

score when deciding respondents’ mastery status, proportions less than .40 suggested nonmastery, 

proportions over .60 suggested mastery, and proportions in between .40 and .60 are regarded as 

questionable (Rupp, Templin, & Henson, 2010). Hence, in Table 9, Student 53 could not master any 

attributes; Student 147 mastered only Attribute 2; Student 195 mastered Attributes 1, 2, and 4; and 

Student 261 mastered all four attributes. Therefore, in Table 9, as in this example, classroom teachers 

and educators may use these individual scores to understand each student’s mastery of selected skills. 

In terms of questionable proportions of attribute mastery, CDMs use a model-internal classification 

criterion. Hence, classifications of respondents into the latent classes are “the direct result of the 

application of a psychometric model” (Rupp et al., 2010, p. 86). Thus, CDMs classify each respondent 

in one of the latent classes using posterior probabilities calculated for each attribute profile.  

Table 9. 

Four Selected Students’ Item Response Patterns and Estimated Proportions of Attribute Mastery   

ID Response Pattern P(A1) P(A2) P(A3) P(A4) 

53 10*100100*0110**0*0*0* .289 .102 .002 .279 

147 1001*11000101001000101 .054 .905 .000 .018 

195 111111100*11111101110* .998 .990 .075 .966 

261 1111101101011011001101 .918 .866 .649 .812 

Note: The words A and C represent attribute and latent class, respectively, and the asterisks indicate the missing 

responses. 

 

DISCUSSION and CONCLUSIONS 

 

The purpose of the current study was to investigate Turkish seventh grade middle school students’ 

understanding of ratios and proportions and to provide diagnostic feedback on their strengths and 

weaknesses on these concepts. By carefully examining national and international standards and large-

scale assessments, four core cognitive skills that were deemed to be necessary for solving middle school 

ratio and proportion problems were identified. In the next step, a multidimensional test, the PRT, was 

designed around these four attributes. Diagnostically reliable interpretations of the students’ 

understanding of ratios and proportions were provide using the LCDM in analyzing their responses to 

the PRT items. In this quantitative study, the development of the PRT and the findings that were 

subsequently obtained from the application of this test were explained.  

In terms of the students’ mastery of the four attributes, the LCDM results suggested that there were not 

extreme differences among the students’ mastery levels of the attributes. However, the students were 

better at “Recognizing directly proportional relationships and solving problems involving this type of 

relationships” (Attribute 2) and “Understanding the concept of a ratio and determining the value of a 

quantity in a given ratio” (Attribute 1) in comparison to “Recognizing inversely proportional 

relationships and solving problems involving this type of relationships” (Attribute 3) and “Recognizing 
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nonproportional relationships and solving problems involving this type of relationships” (Attribute 4). 

Although the students obtained the highest mastery proportions for Attribute 2 (i.e., .619), roughly 38% 

of them could not master this attribute. Similarly, more students could not master the remaining 

attributes. Hence, this finding suggested that many students had difficulty understanding ratio concept, 

recognizing directly, inversely, and nonproportional relationships and solving daily-life problems 

involving these three types of relationships.  

Among the four attributes, the lowest proportion of mastery was for Attribute 3 (i.e., .479). According 

to this result, roughly 52% of the students had difficulty recognizing inversely proportional relationships 

and solving problems involving this type of relationships. The analysis showed that in Items 8, 9, and 

11, which measured this attribute, respectively 77, 112, and 84 students solved these items as if they 

were direct proportion problems (Table 5). In accordance with this result, researchers such as Degrande 

et al. (2017) and Van Dooren et al. (2005) reported students’ tendency to assume inversely proportional 

relationships to be proportional and use of proportional strategies for solving inverse proportion 

problems. In addition, many students had difficulty mastering Attribute 4, approximately 48% of them 

could not master this attribute. This finding suggested constraints in their understanding of 

nonproportional relationships and differentiating this type of relationships from directly and inversely 

proportional relationships. The literature on ratios and proportions has many examples (e.g., Atabas & 

Oner, 2017; Modestou & Gagatsis, 2007; Van Dooren et al., 2007) expressing students’ challenges in 

differentiating proportional relationships from nonproportional relationships and vice versa.  

Table 7 showed that 25% of the students could not master any attributes and 39.2% of them mastered 

all four attributes. Hence, roughly 64% of the students either mastered all four attributes or did not 

master any attributes. This finding suggested a knowledge gap between the selected students. In my 

discussion with the mathematics teachers of the eight classrooms, they pointed out this gap by stating 

that they had high achieving and low achieving students in each class. Thus, teachers may use 

information obtained studies like this one in detecting and narrowing this knowledge gap between high 

achieving and low achieving students. 

In the item level, Items 4 and 7 appeared as the easiest items having been answered correctly by 87% 

and 93% of the students, respectively (Table 5). Similarly, Appendix 2 presented that 73.2% and 73.1% 

of the nonmasters were also able to answer these two items, respectively. However, regarding with these 

two items, the students who had mastered Attribute 1 or Attribute 2 or both of them had higher correct 

answer rates than the nonmasters. High correct answer rates by the nonsmasters could be explained by 

both items included a simple direct proportion, which is one of the most popular and repeated concepts 

in mathematics textbooks. On the other hand, Table 5 pointed out that Items 5 and 14 were the most 

difficult items for the students having been answered correctly by 26% and 25% of the students, 

respectively. Both items included nonroutine real-life contexts with nonproportional relationships. 

Hence, the students’ poor performance on these two items showed their insufficient experiences with 

this type of problems. Thus, this result suggests that classroom teachers should expand their teaching by 

using nonroutine problems, which may also expand students’ proportional reasoning by forcing them to 

think out of the box, and real-life contexts with nonproportional relationships.  

Table 5 also showed the students’ confusion over the directly and inversely proportional graphs. In Item 

19, 63% of the students had difficulty identifying graphs that were not depicting a directly proportional 

relationship. By the same token, in Item 21, 45% of the students had difficulty identifying the inversely 

proportional graph. In both items, many students assumed nonproportional relationships presented in 

options A as directly and inversely proportional, respectively. Similar incorrect tendencies reported by 

Arican (2018), Arican (2019), De Bock et al. (1998), Modestou and Gagatsis (2007), and Van Dooren 

et al., (2007) who observed students’ over attention to linearity when inferring directly and inversely 

proportional relationships.  

Studies on students’ proportional reasoning usually report difficulties that they have with ratio and 

proportion concepts. However, they lack diagnostic information about these difficulties. Hence, this 
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study differs from those studies by providing students’ mastery levels of four core cognitive skills which 

they rely on when solving ratio and proportion problems. Furthermore, rather than providing an overall 

score of students, DCMs present attribute mastery profiles of individuals that help educators detecting 

each individual’s strengths and weaknesses in terms of subject areas. Therefore, as in Table 9, teachers 

and educators can use CDMs in determining students’ mastery of cognitive skills and use this 

information on detecting their strengths and weaknesses and provide diagnostic feedback if necessary. 

Implications for Teaching and Suggestions 

Classical Test Theories offer only limited information about students’ strengths and weaknesses because 

they provide a single overall score for each student. Hence, in recent years, researchers have been paying 

more attention to CDMs in order to provide diagnostic feedback on students’ performance. Briefly, in 

the current study, the LCDM analysis suggested Turkish seventh grade middle school students’ overall 

weaknesses in all four attributes. Therefore, teachers should work to expand students’ knowledge of 

ratios, proportions, and proportional relationships in order that they can develop meaningful 

understanding of these concepts. The results obtained from the LCDM analyses may provide new 

insights into students’ understanding of these concepts.  

In Turkey, for many years, the national tests that are conducted at the end of eighth and twelfth grades 

only included multiple-choice items. Moreover, parents and school administrators have paid attention 

to students’ number of correct answers, and teachers’ success was measured by these numbers. Hence, 

teachers directly or indirectly directed to teach rules and rote computations rather than developing their 

students’ meaningful understanding of mathematics. Therefore, Turkish students’ weaknesses on the 

PRT items might be a reflection of the traditional mathematics instruction that has been used in 

classrooms for many years. Thus, considering findings obtained from research such as the current study 

and other factors (i.e., students’ educational background, socio-economic status, access to educational 

technologies, etc.) that influence students’ academic achievements can effect policymakers’ decision-

making on curricular choices and can therefore help policymakers in developing effective educational 

systems. 

This study included 282 students, which was a relatively small sample, from an over achieving middle 

school. Hence, future studies should examine students’ proportional reasoning using a larger sample and 

including schools with varying educational achievements. Moreover, there is a need for future studies 

to apply qualitative methods (i.e., interviews, classroom observations, etc.) together with CDM analysis 

to better understand students’ strengths and weaknesses on the concepts of ratios, proportions, and 

proportional relationships. 
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APPENDIX 1. 

Proportional Reasoning Test 

1) 
Two numbers are in a ratio of . If small number is 45, what is the value of large number? 

 A) 27 B) 55 C) 75 D) 85 

2) There are some number of red and blue balls in a container. The ratio of the number of red balls to the number 

of blue balls is . If there are a total of 42 balls in this container, how many of them are blue? 

 A) 6 B) 12 C) 18 D) 24 

3) The measures of outer angles of a triangle are proportional to the numbers 9, 12, and 15. What is the measure 

of the greatest internal angle of this triangle? 

 A) 45 B) 60 C) 75 D) 90 

4) A teacher gives her students 2 candies for every 5 questions they answer correctly. If a student received a 

total of 14 candies, how many correct answers is this student had? 

 A) 28 B) 35 C) 45 D) 70 

5) Two different but identical candles, A and B, are burning at the same constant rate but they are lit at different 

times. We know that when candle A has burned 24 mm, candle B has burned 18 mm. When 36 mm of candle 

B has burned, how many millimeters will candle A have burned? 

 A) 48 B) 44 C) 42 D) 40 

6) Lemonade A is made by mixing 4 cups of water with 2 tablespoons of sugar, Lemonade B is made by mixing 

7 cups of water with 5 tablespoons of sugar, and Lemonade C is made by mixing 3 cups of water with 1 

tablespoon of sugar. Which one of the following information is true about the flavors of these lemonades? 

 A) The least taste of 

sugar is taken from 

Lemonade A 

B) The most taste of 

sugar is taken from 

Lemonade B. 

C) The same taste of sugar is 

taken from Lemonade A and 

Lemonade C. 

D) The most taste of 

sugar is taken from 

Lemonade C. 

7) An athlete, who runs at a constant speed, consumes 150 calories in 2 hours. If this athlete keeps running at 

this same constant speed, how many calories does he consume after 3 hours? 

 A) 225 B) 200 C) 175 D) 120 

8) Three painters working at the same pace can paint a building in 12 days. In how many days 4 painters can 

paint the same building? 

 A) 16 B) 8 C) 9 D) 10 

9) A car travels the distance between two cities in 6 hours driving at a constant speed of 60 kilometers per hour. 

If this car increases its speed to 90 kilometers per hour, how many hours can it take between the two cities? 

 A) 3 B) 4 C) 6 D) 9 

10) Twelve workers working at the same pace can a finish a certain job in 15 days working 7 hours each day. 

How many days are needed for 14 workers to finish the same job working 5 hours each day? 

 A) 10 B) 12 C) 16 D) 18 

11) x and y are two inversely proportional quantities. We know that when x is 12, y is 4. When x is 6, what is the 

value of y? 

 A) 8 B) 6 C) 4 D) 2 

12) Mehmet bought a 90 cm long plant from the market. This plant grows 30 cm each year. After three years, the 

height of the plant was measured as 180 cm. According to this information, how many centimeters should be 

the height of the plant after 6 years? 

 A) 360 B) 300 C) 270 D) 240 

13) a and b two numbers that vary in a directly proportional relationship. We know that when a is 5, b is 15. So, 

when b is 24, what is a? 

 A) 8 B) 12 C) 14 D) 16 

14) Ayse and Esra, who are running at the same speed, started running around an 800 meters circular track at 

different times. It is known that when Ayse ran 300 meters, Esra ran 200 meters. According to this 

information, when Esra ran 400 meters, how many meters can Ayse ran? 

 A) 500 B) 600 C) 700 D) 800 

15) Three painters working at the same pace can paint a building in 8 days. Which one of the following tables 

depicts the relationship between the number of painters and painting time correctly? 

 A) 

Number of Painters 1 2 3 4 

Painting Time 2 4 8 16 
 

B) 

Number of Painters 1 2 3 4 

Painting Time 24 16 8 4 
 

 C) 

Number of Painters 1 2 3 4 

Painting Time 16 12 8 6 
 

D) 

Number of Painters 1 2 3 4 

Painting Time 24 12 8 6 
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16) The table in below shows the relationship between the number of chickens on a farm and the average number 

of eggs they produce per week. According to this table, how many chickens are required to have 240 eggs per 

week? 

Number of Chickens Number of Eggs per Week 

4 12 

6 18 

9 27 

12 36 
 

 A) 120 B) 100 C) 80 D) 60 

17) (m+3) and (n+1) are two numbers that vary in an inversely proportional relationship. We know that when m 

is 1, n is 2. When m is 3, what is n? 

 A) 1 B) 2 C) 3 D) 4 

18) The graph below shows that 30 kg sugar is present in an 80 kg mixture. How many kg sugar are there in a 120 

kg mixture? 

 
 A) 45 B) 40 C) 35 D) 20 

19) 

 
Which one(s) of the above graphs do not depict a directly proportional relationship? 

 A) Only IV B) Only II C) II and IV D) I, II, and IV 

20) At a certain time of a day, the length of the shadow of a 60 meters long apartment is measured as 12 meters. 

At the same certain time, what is the length of the shadow of a 5 meters long tree? 

 
 A) 4 B) 3 C) 2 D) 1 

21) 

 
Which one(s) of the above graphs depict an inversely proportional relationship? 

 A) Only I B) Only III C) I and III D) I, II, and IV 

22) In a bakery, 3 people working at the same constant rate can frost 12 cakes in 4 hours. In this bakery, how 

many hours are needed by 4 people to frost 8 cakes? 

 A) 1 B) 2 C) 3 D) 4 
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APPENDIX 2. 

Item Parameter Estimates, Standard Errors, and Estimated Proportions 
i λi,0 Pr. λi,1(1) Pr. λi,1(2) Pr. λi,1(3) Pr. λi,1(4) Pr. λi,2(1,2) Pr. λi,2(2,3) Pr. λi,2(2,4) Pr. λi,2(3,4) Pr. 

1 .09 (.27) .521 27.26 (1.04) 1.00 1.29 (.53) .798     -23.75 (1.53) .992       

2 -.04 (.26)  .491 2.62 (.99) .930 -1.67 (.74) .153     3.30 (1.38) .985       

3 -1.36 (.23) .204         2.69 (.33) .791       

4 1.01 (.22) .732 2.48 (.60) .97               

5 -.29 (.21) .427       -1.57 (.42) .14         

6 -.65 (.26) .343   1.98 (.36) .790             

7 1.00 (.29) .731 2.56 (.87) .97 26.5 (.85) 1.00             

8 -.60 (.19) .355     2.71 (.37) .89           

9 -1.46 (.24) .188     2.97 (.38) .82           

10 -1.11 (.23) .249     2.96 (.39) .86           

11 -.88 (.21) .293 2.41 (.31) .82               

12 -.58 (.21) .359       3.59 (.96) .95         

13 .41 (.20) .600 1.72 (.77) .89       26.39 (1.23) 1.00       

14 -.68 (.20) .337       -.91 (.37) .17         

15 -.96 (.22) .277 1.26 (.59) .58   1.50 (.67) .63           

16 -.38 (.28) .407 1.34 (.56) .72 1.42 (.54) .739     25.56 (1.22) 1.00       

17 -.91 (.22) .286 -2.71 (1.90) .03   4.10 (1.89) .96           

18 -.54 (.19) .368         4.02 (.67) .97       

19 -1.42 (.32) .195   1.19 (.51) .443 -22.4 (.84) .00 -19.8 (.84) .00   22.36 (1.27) .00 2.39 (1.30) .00   

20 -1.29 (.39) .217 27.95 (1.08) 1.00 3.64 (.93) .914     -26.14 (1.55) .985       

21 -.89 (.27) .290   2.04 (.56) .759 -23.3 (.94) .00     44.13 (1.15) .00 -44.65 (.96) .76 23.80 (1.08) .00 

22 -.59 (.27) .358   2.59 (1.1) .881 2.56 (1.35) .88     -3.10 (1.81) .99     

Note: The terms i and Pr stands for items and proportions, respectively, and numbers between parentheses are standard errors.  
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TÜRKÇE GENİŞLETİLMİŞ ÖZET 

 

Orantısal akıl yürütme çarpımsal akıl yürütmenin özel bir biçimi olup (Lesh, vd., 1988), öğrencilerin 

matematiksel gelişiminde önemli bir rol oynamaktadır. İlkokul aritmetiğinde ve daha üst düzey 

matematikte önemli bir kavram olan orantısal akıl yürütme (Kilpatrick, vd., 2001; NCTM, 2000), 

“orantısal ilişkileri tespit etme, temsil etme, analiz etme, açıklama ve kanıt sunma” (Lamon, 2007, s. 

647) olarak tanımlamıştır. Bu nedenle, orantısal akıl yürütme, iki nicelik arasındaki orantısal ilişkileri 

tespit etmeyi ve ifade etmeyi gerektirir (CCSSI, 2010). Orantısal akıl yürütme öğrencilerin matematiksel 

gelişiminde önemli bir rol oynasa da, araştırmacılar (ör., Ayan & Isiksal-Bostan, 2018; De Bock, vd., 

1998; Misailadou & Williams, 2003; Modestou & Gagatsis, 2007) öğrencilerin oran, orantı ve orantısal 

ilişkiler konularında zorlandıklarını belirtmişlerdir. Geleneksel matematik öğretiminin kural ve ezbere 

dayalı hesaplamalara daha fazla önem vermesi öğrencilerin orantısal akıl yürütmelerinin gelişimine 

engel olarak görülen en önemli yanlışlardan birisidir. Bu nedenle, öğrenciler, hatta öğretmen adayları 

ve öğretmenler, eksik-değer problemlerini çözerken daha çok çapraz-çarpım yöntemini tercih 

etmektedirler (Fisher, 1988). Her ne kadar bu yöntem öğrencilerin doğru cevabı elde etmelerine imkân 

verse de, öğrenciler bu yöntemi problemde verilen nicelikler arasındaki çarpımsal ilişkileri anlamadan 

mekanik olarak uygulamaktadırlar (Lamon, 2007). Öğrencilerin nicelikler arasındaki çarpımsal ilişkileri 

anlamadan verilen problemleri çözmeleri, orantılı olan ve olmayan ilişkileri birbirleriyle 

karıştırmalarına neden olabilmektedir. Bundan dolayı, yapılan pek çok çalışmada (ör., Atabas & Oner, 

2017; Izsák & Jacobson, 2017; Modestou & Gagatsis, 2007; Van Dooren, vd., 2007) öğrencilerin 

orantısal olmayan ilişkileri orantısal olarak düşünme eğilimine sahip oldukları ve bu tip ilişkiler içeren 

soruları orantısal yöntemler kullanarak çözmeye çalıştıkları rapor edilmiştir. Bunun yanı sıra, bazı 

araştırmacılar (ör., Degrande, vd., 2017; Van Dooren, vd., 2005) öğrencilerin doğru ve ters orantılı 

ilişkileri orantısal olmayan olarak düşünme eğilimini de gözlemlemişlerdir. 

Öğrencilerin orantısal akıl yürütmelerini incelemek adına araştırmacılar nitel veya nicel çalışmalar 

yürütmektedirler. Bu çalışmalar öğrencilerin orantısal akıl yürütmeleri hakkında faydalı bilgiler sağlasa 

da, öğrencilerin güçlü ve zayıf yönleri hakkında tanısal bilgiden yoksundurlar. Bundan dolayı, son 

yıllarda bazı araştırmacılar (ör., Bradshaw, vd., 2014; Lee, vd., 2011) öğrencilerin, öğretmen adaylarının 

ve öğretmenlerin matematik performansları hakkında tanılayıcı geribildirim sağlamak için bilişsel tanı 

modellerine başvurmaktadırlar. Bu sebeple, bu çalışmada öğrencilerin matematik bilgilerini ölçmedeki 

yeni gelişmeler takip edilerek, 22 çoktan-seçmeli sorudan oluşan bir orantısal akıl yürütme testi genel 

bilişsel tanı modellerinden log-lineer cognitive diagnostic model (LCDM) (Henson, vd., 2009) 

perspektifinden geliştirilmiştir. Bu test yardımıyla öğrencilerin oran ve orantı problemlerini çözerken 

kullandıkları bilişsel becerilerdeki ustalık derecelerini belirleme amaçlanmıştır. LCDM analizlerinden 

elde edilen sonuçlar kullanılarak yedinci sınıf öğrencilerinin orantısal akıl yürütmeleri incelenmiş olup, 

güçlü ve zayıf yönleri için tanısal geri bildirimler sağlanmıştır. 

Bu çalışma birbirini izleyen üç adımı takip ederek gerçekleştirilmiştir: test geliştirme, Q-matris’in elde 

edilmesi ve testin uygulanması ve Q-matris’in doğrulanması. İlk olarak, orantısal akıl yürütme testini 

geliştirmek için gerekli olan temel beceriler belirlenmiştir. Bunun için Milli Eğitim Bakanlığı ortaokul 

matematik müfredatı, uluslararası yayınlar ve öğretim standartları incelenmiştir. Bunun sonucunda şu 

dört temel beceri belirlenmiştir: Oran kavramını anlama ve verilen bir orandaki bir niceliğin değerini 

belirleme (Beceri 1); Doğru orantılı ilişkileri tanıma ve bu tür ilişkileri içeren günlük yaşam 

problemlerini çözme (Beceri 2); Ters orantılı ilişkileri tanıma ve bu tür ilişkileri içeren günlük yaşam 

problemlerini çözme (Beceri 3); Orantısal olmayan ilişkileri tanıma ve bu tür ilişkileri içeren günlük 

yaşam problemlerini çözme (Beceri 4). Daha sonra, bu dört temel beceri etrafında 22 çoktan-seçmeli 

sorudan oluşan bir test geliştirilmiştir. İkinci adımda, her bir test maddesi, dört matematik eğitimcisi ve 

bir ortaokul matematik öğretmeni tarafından ölçtükleri beceriler için bağımsız olarak kodlanarak Q-
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matris elde edilmiştir. Son adımda ise geliştirilen test bir ortaokulda öğrenim gören 282 yedinci sınıf 

öğrencisine uygulanmıştır. 

Toplanan öğrenci yanıtları doğru yanıtlar “1,” yanlış yanıtlar “0” ve eksik cevaplar ise “9” olarak 

kodlanmış ve elde edilen Q-matris ile birlikte Mplus programı kullanılarak analiz edilmişlerdir. Elde 

edilen sonuçlar öğrencilerin her dört beceriye sahip olma derecelerini gözler önüne sermiştir. 

Öğrencilerin %59,5’nin birinci beceriye; %61,9’nun ikinci beceriye; %47,9’nun üçüncü beceriye ve 

%52,2’nin dördüncü beceriye sahip oldukları görülmüştür. Bu sonuç, öğrencilerin ters orantılı ve 

orantısal olmayan ilişkileri belirleme de ve bu tür ilişkiler içeren problemleri çözme de zorlandıklarını 

göstermiştir. Öğrencilerin becerilere sahip olma olasılıkları sırasıyla 0,99, 0,97, 0,99 ve 0,96 

güvenirlikle ölçülmüştür. Ayrıca, analizler neticesinde öğrencilerin %25’nin hiçbir beceriye sahip 

olmadığı ve %39,1’nin ise her dört beceriye de sahip olduğu belirlenmiştir. Bu sonuç, çalışmaya katılan 

öğrenciler arasında becerilere sahip olma bakımından büyük bir fark olduğunu ortaya koymuştur. 

Bunlara ek olarak, hiçbir beceriye sahip olmayan öğrencilerin ortalamada %36,6’nın testteki maddeleri 

tahmin yöntemini kullanarak doğru cevaplayabildikleri belirlenmiştir.  

Yapılan çalışmalar son yıllarda araştırmacıların öğrencilerin matematik performanslarıyla ilgili tanısal 

geri bildirim sağlamak için bilişsel tanı modellerine daha fazla başvurduklarını göstermektedir. Bu 

nedenle, mevcut çalışma bulgularının eğitimcilere müfredat seçimleri ve daha etkili öğretim metotları 

geliştirmede yardımcı olabileceği düşünülmektedir. 
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