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Abstract

In this paper we prove converse theorems to obtain usual convergence of improper integrals

from Cesaro summability.
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1. INTRODUCTION

Given a complex-valued function f:R, - C,

that is Lebesgue integrable over any finite interval
(0,¢) for 0<t<oo,insymbol: feL (R,),we

loc

define
5= [ £y and ()=~ [s)dv, >0

If the limit

lim o() = { (1)
exists, then the improper integral j: f(@)dt is

called Cesaro (or briefly (C,1)) summable to ¢
and we denote s(t) > ¢(C,1). It is obvious that

* Corresponding Author: sefaanil.sezer@medeniyet.edu.tr

lim s(¢) =/ (2)

t—w

implies (1). However, the converse of this
implication is not always true. The purpose of this
work is to determine Tauberian conditions for the
Cesaro summability of improper integrals under
which the converse implication holds.

For any s(¢) = j; f(»)dy, we have the identity [1]

s(t)—o (1) =v() 3)

where
1
OhS j ¥ (v)dy.

For each integer k£ >1, we introduce
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o, ()= Iak /(¥)dy and v, (?) _%_(i:vkl(y)dy

where o,(¢t) = s(¢) and v, () = () .

The classical control modulo of s(¢) is defined by

_, 4
0(0)= 1 ()= 1)

and the general control modulo of order k£ € N of
s(t) is given by [2]

2 (1= o, () - O-(a)kfl ().

A complex-valued function s(¢) defined on
[0,0) is called slowly oscillating [6] if

s(u)=s()| =0

lim limsupmax
A1t 1o t<usit

For the proofs of our results, we require the
following lemmas.

Lemma 1. ([3]) For A>1, we have

M

- j s(u)—s(t)du.

t

s()- ov)——(ow) o(0)—,

For any function s(¢), we denote

d d
(taj s(t) = (tgjkllas(t) and

(t;j s(t) = s(t), (t;j s(t) = l—s(t)

The following identities are useful.

Lemma 2. ([2]) Let k be a positive integer, then
we have

: _,4
(1) vk_l(t)_tdt o, (1),

(i) @, () = (r%} v (D).
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2. MAIN RESULTS

In this section, we determine new Tauberian
conditions for the Cesaro summability of
improper integrals.

Theorem 3. If _[: f()dt is Cesaro summable to ¢

and

Lo,
limlimsup [ L252—dy <o, pe (L,@),  (4)
YRS T y

then j: fodt=1

Proof. From Lemma 1,
A At
ls()—o(0)|< ﬂ|a(,1t) —o(n)|+ j |/ ()| dy.
Since o(¢) is convergent, we obtain
At
limsupls(¢) — o(¢)] < limsup [ | £ ()] dy. (5)
t—o0 t—o0 ¢

Also, using the Holder’s inequality we get

flf(y)ldy=f@dy

S[fdyJ U@@]p

(6)

where 1/¢g+1/ p=1. Then, considering (5) and
(6) we find
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limsup|s(1) — o (1)|

N (7)
| @, (»)| g
A-1)al d .
( ) 1msup(J‘ 5 ly

t—o

Letting 4 — 1" in (7), it follows

limsup |s(t) — O'(t)| <0,

which implies j:’ F(oydt=1. 0

The following corollary is a classical Hardy-type
([4], p.149) Tauberian theorem.

Corollary 4. Let J: f(t)dt be Cesaro summable
to L. If

7 () =0(1), t >, ®)

then j: F(t)dt=

Proof. Let (8) holds, that is |#/(¢) |< M for some
M >0. Hence

ﬂf|a)o(y)|” i< M,/f dy
t y
=M"logAl—>0 as A —>1"

Since all hypotheses of Theorem 3 are satisfied,
the proof follows. 0

For a different proof of Corollary 4, see Laforgia
[5].

As in the following theorem, in place of
recovering the usual convergence of J.:f (t)dt ,
we may get more general information about the

behaviour of J?f (t)dt if we replace Cesaro

summability  of J.:f (t)dt  with  Cesaro

summability of v(z).

Theorem 5. If v(t) is Cesaro summable to ¢ and
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lim hmsupj Lo dy <o, pe(l,0), )

Al 1w

1(J’)|
y

then s(¢) is slowly oscillating.

Proof. Taking Lemma 1 into account for v(¢), we
obtain

At

2 ni0-u o)+ |

t

() —v, ()| <

d
= dy.
& V(y)‘ ly

Since v(t) > ¢(C,1), we get

11msup|v(t) Vl(f)|<hmsup j | o 1(J’)|
y

by using Lemma 2. Now, from the Hoélder’s
inequality

limsup [v(#) = v, (¢)|

at , N (10)
<(A- lqhmsup[.[l Al )l ] ,

—w

where 1/g+1/p=1. Now, taking the limit of
both sides of (10) as 4 — 1" gives

limsup |v(t) -V (t)| <0.

t—o

This necessiate that limsup, , v(¢) = ¢ . Moreover,
by Lemma 2

lo(u)—o()|=

td
—o(Y)d
!dy (y)dy

<[

From the boundedness of v(¢), we also have

max | o(u) ~ o (1) [ M j
t<usit

=M10gi,

whenever M > 0. Then, we conclude
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lim limsupmax | o(u) —o(¢) |= 0.

A1t tow  1Sush
This indicates that o(z) is slowly oscillating.

Therefore, it follows from (3) that, s(¢) is also
slowly oscillating. 0

Corollary 6 Let I: f(®)dt be Cesaro summable

to (. If (9) is satisfied, then I:f(t)dt =/.

Proof. The proof easily follows from Theorem 1
of Canak and Totur [1]. 0

3. CONCLUSION

In this work, we present new Tauberian
conditions for Cesaro summable improper
integrals. We emphasise that, our main results
may be extended to the weighted mean
summability method given by Moéricz [7].
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