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Abstract
In this paper, we consider the Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas sequences.
We introduce the quadra Fibona-Pell,Fibona-Jacobsthal and Pell-Jacobsthal and the hexa Fibona-Pell-
Jacobsthal sequences whose compounds are the Fibonacci, Pell and Jacobsthal sequences. We derive the
Binet-like formulas, the generating functions and the exponential generating functions of these sequences.
Also, we obtain some binomial identities for them.
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1. Introduction
Special numbers and the corresponding recurrence relations and their generalizations have many applications

to every field of science and they have many interesting properties [8, 9, 10]. One application of second order
linear recurrences occurs in graph theory [12]. Second order linear recurrences related to Fibonacci and Lucas
numbers and their generalizations are investigated in [6], [7], [11], [14]. Fourth order linear recurrences and their
generalizations are studied in [3], [4], [13], [15].

In [3] and [4] various fourth order linear recurrences and their polynomials are defined and studied.
In [15] the author define the quadrapell numbers and quadrapell polynomials as fourth order linear recurrences.
In [13] the author define the quadra Fibona-Pell integers sequences and she gives some algebraic identities.
In the present work we consider fourth and sixth orders linear recurrences and we define the quadra Fibona-Pell,

Fibona-Jacobsthal and Pell-Jacobsthal and the hexa Fibona-Pell-Jacobsthal sequences. We give some properties of
them.

The Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal and Jacobsthal-Lucas sequences {Fn}, {Ln}, {Pn}, {pn}, {Jn}
and {jn} are defined by two order recurrences for n ≥ 0, respectively,

Fn+2 = Fn+1 + Fn,

Ln+2 = Ln+1 + Ln,

Pn+2 = 2Pn+1 + Pn,

pn+2 = 2pn+1 + pn,
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Jn+2 = Jn+1 + 2Jn,

jn+2 = jn+1 + 2jn,

with the initial conditions are given as follow, respectively,

F0 = 0, and F1 = 1,

L0 = 2, and L1 = 1,

P0 = 0, and P1 = 1,

p0 = 2, and p1 = 1,

J0 = 0, and J1 = 1,

j0 = 2, and j1 = 1.

The first few members of this sequences are given as follow, respectively,

n 0 1 2 3 4 5 6 7 8 9 10 11 . . .
Fn 0 1 1 2 3 5 8 13 21 34 55 89 . . .
Ln 2 1 3 4 7 11 18 29 47 76 123 199 . . .
Pn 0 1 2 5 12 29 70 169 408 985 2378 5741 . . .
pn 2 1 4 9 22 53 128 309 746 1801 4348 10497 . . .
Jn 0 1 1 3 5 11 21 43 85 171 341 683 . . .
jn 2 1 5 7 17 31 65 127 257 511 1025 2047 . . .

Table 1. The first few members of this sequences

The recurrences involve the characteristic equations, respectively,

x2 − x− 1 = 0,

y2 − 2y − 1 = 0,

z2 − z − 2 = 0.

The roots of the equations are as follows, respectively,

α =
1 +
√
5

2
and β =

1−
√
5

2

γ = 1 +
√
2 and δ = 1−

√
2

λ = 2 and µ = −1.

Then the following equalities follow directly from Vieta’s formulas, respectively,

α+ β = 1, α− β =
√
5, αβ = −1,
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γ + δ = 2, γ − δ = 2
√
2, γδ = −1,

λ+ µ = 1, λ− µ = 3, λµ = −2.

Moreover, the Binet formulas for the Fibonacci, Lucas, Pell, Pell-lucas, Jacobsthal and Jacobsthal-Lucas sequences
are, respectively,

Fn =
αn − βn

α− β
,

Ln = αn + βn,

Pn =
γn − δn

γ − δ
,

pn = γn + δn,

Jn =
λn − µn

λ− µ
,

jn = λn + µn.

The generating functions for the Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal and Jacobsthal-Lucas sequences
are, respectively,

GF (x) =

∞∑
n=0

Fnx
n =

x

1− x− x2
,

GL(x) =

∞∑
n=0

Lnx
n =

2− x
1− x− x2

,

GP (x) =

∞∑
n=0

Pnx
n =

x

1− 2x− x2
,

Gp(x) =

∞∑
n=0

pnx
n =

2− 3x

1− 2x− x2
,

GJ(x) =

∞∑
n=0

Jnx
n =

x

1− x− 2x2
,

Gj(x) =

∞∑
n=0

jnx
n =

2− x
1− x− 2x2

.

The exponential generating functions for the Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal and Jacobsthal-Lucas
sequences are, respectively,

EF (x) =
eαx − eβx

α− β
=

∞∑
n=0

Fn
n!
xn,
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EL(x) = eαx + eβx =

∞∑
n=0

Ln
n!
xn,

EP (x) =
eγx − eδx

γ − δ
=

∞∑
n=0

Pn
n!
xn,

Ep(x) = eγx + eδx =

∞∑
n=0

pn
n!
xn,

EJ(x) =
eλx − eµx

λ− µ
=

∞∑
n=0

Jn
n!
xn,

Ej(x) = eλx + eµx =

∞∑
n=0

jn
n!
xn.

The Fibonacci, Pell and Jacobsthal sequences and identities in the above passage are available in [1],[2],[5],[8] and
[9].

2. New Sequences

In this section we aim to obtain new sequences have the roots of the characteristic equations of Fibonacci, Lucas,
Pell, Pell-Lucas, Jacobsthal and Jacobsthal-Lucas sequences. Then we will examine the situation of these new
sequences in different initial conditions, find the Binet-like formulas and reach the generating functions. Similar
investigations were given in [13, 15, 16]. In [15] the quadra pell numbers are defined and some properties are given.
In [13] the Fibona-Pell integer sequence is defined and some algebraic identities are obtained. In [16] the Quadra
Lucas-Jacobsthal Numbers were investigated.

2.1 The Quadra Fibona-Pell Sequence
Definition 2.1. The quadra Fibona-Pell sequence {FPn}n≥0 is defined by a fourth order recurrence;

FPn+4 = 3FPn+3 − 3FPn+1 − FPn (2.1)

with the different initial conditions FP0 = 0, FP1 = 0, FP2 = 1, FP3 = 3.

The first few members of this sequence are given as follow ;

n 0 1 2 3 4 5 6 7 8 9 10 . . .
FPn 0 0 1 3 9 24 62 156 387 941 1512 . . .
Table 2. The first few members of the quadra Fibona-Pell sequence

If we take the different initial conditions, we generate the certain number sequences as follows;

n 0 1 2 3 Numbers
FPn 0 1 1 2 Fibonacci numbers
FPn 2 1 3 4 Lucas numbers
FPn 0 1 2 5 Pell numbers
FPn 2 1 4 9 Pell-Lucas numbers

Table 3. The first few members of the different initial conditions

The characteristic equation associated to the recurrence relation is

r4 − 3r3 + 3r + 1 = 0. (2.2)
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The roots of the equations are as follows

α =
1 +
√
5

2
, β =

1−
√
5

2
, γ = 1 +

√
2 and δ = 1−

√
2.

Then the following equalities follow directly from Vieta’s formulas

α+ β + γ + δ = 3 and αβγδ = 1.

Theorem 2.1. The Binet-like formula for the quadra Fibona-Pell sequence is

FPn = a1α
n + a2β

n + a3γ
n + a4δ

n,

where,

a1 =
3− (β + γ + δ)

(α− β)(α− γ)(α− δ)
,

a2 =
3− (α+ γ + δ)

(β − α)(β − γ)(β − δ)
,

a3 =
3− (α+ β + δ)

(γ − α)(γ − β)(γ − δ)
,

a4 =
3− (α+ β + γ)

(δ − α)(δ − β)(δ − γ)
,

such that α, β, γ and δ are the roots of the characteristic equation of the quadra Fibona-Pell sequence.

Theorem 2.2. The generating function for the quadra Fibona-Pell sequence is

GFP (x) =

∞∑
n=0

FPnx
n =

x2

1− 3x+ 3x3 + x4
.

Proof. The proof can be given in a similar way of the proof of Theorem 2.14.

The generating function of the quadra Fibona-Pell sequence is the multiplication of the generating function of
the Fibonacci and Pell sequence as seen following,

GF (x)GP (x) =

(
x

1− x− x2

)(
x

1− 2x− x2

)
=

x2

1− 3x+ 3x3 + x4
= GFP (x)

Theorem 2.3. The exponential generating function for the quadra Fibona-Pell sequence is

EFP (x) = a1e
αx + a2e

βx + a3e
γx + a4e

δx =

∞∑
n=0

FPn
n!

xn.

Proof. The proof can be given in a similar way of the proof of Theorem 2.15.

Theorem 2.4. The sum of the first n terms of FPn is

n∑
i=0

FPi =
FPn + 4FPn−1 + 4FPn−2 + FPn−3 + 1

2
, n ≥ 3.

Proof. The proof can be given in a similar way of the proof of Theorem 2.16.
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2.2 The Quadra Fibona-Jacobsthal Sequence
Definition 2.2. The quadra Fibona-Jacobsthal sequence {FJn}n≥0 is defined by a fourth order recurrence;

FJn+4 = 2FJn+3 + 2FJn+2 − 3FJn+1 − 2FJn (2.3)

with the different initial conditions FJ0 = 0, FJ1 = 0, FJ2 = 1, FJ3 = 2.

The first few members of this sequence are given as follow ;

n 0 1 2 3 4 5 6 7 8 9 10 . . .
FJn 0 0 1 2 6 13 30 64 137 286 594 . . .

Table 4. The first few members of the quadra Fibona-Jacobsthal sequence

If we take the different initial conditions, the certain number sequences are generated as follows;

n 0 1 2 3 Numbers
FJn 0 1 1 2 Fibonacci numbers
FJn 2 1 3 4 Lucas numbers
FJn 0 1 1 3 Jacobsthal numbers
FJn 2 1 5 7 Jacobsthal-Lucas numbers

Table 5. The first few members of the different initial conditions

The characteristic equation associated to the recurrence relation is

p4 − 2p3 − 3p2 + 4p+ 2 = 0. (2.4)

The roots of the equations are as follows

α =
1 +
√
5

2
, β =

1−
√
5

2
, λ = 2 and µ = −1.

Then the following equalities follow directly from Vieta’s formulas

α+ β + λ+ µ = 2 and αβλµ = 2.

Theorem 2.5. The Binet-like formulas for the quadra Fibona-Jacobsthal sequence is

FJn = b1α
n + b2β

n + b3λ
n + b4µ

n,

where,

b1 =
2− (β + λ+ µ)

(α− β)(α− λ)(α− µ)
,

b2 =
2− (α+ λ+ µ)

(β − α)(β − λ)(β − µ)
,

b3 =
2− (α+ β + µ)

(λ− α)(λ− β)(λ− µ)
,

b4 =
2− (α+ β + λ)

(µ− α)(µ− β)(µ− λ)
,

such that α, β, λ and µ are the roots of the characteristic equation of the quadra Fibona-Jacobsthal sequence.

Theorem 2.6. The generating function for the quadra Fibona-Jacobsthal sequence is

GFJ(x) =

∞∑
n=0

FJnx
n =

x2

1− 2x− 2x2 + 3x3 + 2x4
.
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Proof. The proof can be given in a similar way of the proof of Theorem 2.14.

The generating function of the quadra Fibona-Jacobsthal sequence is the multiplication of the generating function
of the Fibonacci and Jacobsthal sequence as seen following,

GF (x)GJ(x) =

(
x

1− x− x2

)(
x

1− x− 2x2

)
=

x2

1− 2x− 2x2 + 3x3 + 2x4
= GFJ(x).

Theorem 2.7. The exponential generating function for the quadra Fibona-Jacobsthal sequence is

EFJ(x) = b1e
αx + b2e

βx + b3e
λx + b4e

µx =

∞∑
n=0

FJn
n!

xn.

Proof. The proof can be given in a similar way of the proof of Theorem 2.15.

Theorem 2.8. The sum of the first n terms of FPn is

n∑
i=0

FJi =
FJn + 3FJn−1 + 5FJn−2 + 2FJn−3 + 1

2
, n ≥ 3.

Proof. The proof can be given in a similar way of the proof of Theorem 2.16.

2.3 The Quadra Pell-Jacobsthal Sequence
Definition 2.3. The quadra Pell-Jacobsthal sequence {PJn}n≥0 is defined by a fourth order recurrence;

PJn+4 = 3PJn+3 + PJn+2 − 5PJn+1 − 2PJn (2.5)

with the different initial conditions PJ0 = 0, PJ1 = 0, PJ2 = 1, PJ3 = 3.

The first few members of this sequence are given as follow ;

n 0 1 2 3 4 5 6 7 8 9 10 . . .
FJn 0 0 1 3 10 28 77 203 526 1340 3377 . . .

Table 6. The first few members of the quadra Pell-Jacobsthal sequence

If we take the different initial conditions, we obtain the certain number sequences as follows;

n 0 1 2 3 Numbers
PJn 0 1 2 5 Pell numbers
PJn 2 1 4 9 Pell-Lucas numbers
PJn 0 1 1 3 Jacobsthal numbers
PJn 2 1 5 7 Jacobsthal-Lucas numbers

Table 7. The first few members of the different initial conditions

The characteristic equation associated to the recurrence relation is

q4 − 3q3 − q2 + 5q + 2 = 0. (2.6)

The roots of the equations are as follows

γ = 1 +
√
2, δ = 1−

√
2, λ = 2 and µ = −1.

Then the following equalities follow directly from Vieta’s formulas

γ + δ + λ+ µ = 3 and γδλµ = 2.
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Theorem 2.9. The Binet-like formula for the quadra Pell-Jacobsthal sequence is

PJn = c1γ
n + c2δ

n + c3λ
n + c4µ

n,

where,

c1 =
3− (δ + λ+ µ)

(γ − δ)(γ − λ)(γ − µ)
,

c2 =
3− (γ + λ+ µ)

(δ − γ)(δ − λ)(δ − µ)
,

c3 =
3− (γ + δ + µ)

(λ− γ)(λ− δ)(λ− µ)
,

c4 =
3− (γ + δ + λ)

(µ− γ)(µ− δ)(µ− λ)
,

such that γ, δ, λ and µ are the roots of the characteristic equation of the quadra Pell-Jacobsthal sequence.

Theorem 2.10. The generating function for the quadra Pell-Jacobsthal sequence is

GPJ(x) =

∞∑
n=0

PJnx
n =

x2

1− 3x− x2 + 5x3 + 2x4
.

Proof. The proof can be given in a similar way of the proof of Theorem 2.14.

The generating function of the quadra Pell-Jacobsthal sequence is the multiplication of the generating function
of the Pell and Jacobsthal sequence as seen following,

GP (x)GJ(x) =

(
x

1− 2x− x2

)(
x

1− x− 2x2

)
=

x2

1− 3x− x2 + 5x3 + 2x4
= GPJ(x)

Theorem 2.11. The exponential generating function for the quadra Pell-Jacobsthal sequence is

EPJ(x) = c1e
γx + c2e

δx + c3e
λx + c4e

µx =

∞∑
n=0

PJn
n!

xn.

Proof. The proof can be given in a similar way of the proof of Theorem2.15.

Theorem 2.12. The sum of the first n terms of PJn is

n∑
i=0

PJi =
−PJn+4 + 2PJn+3 + 3PJn+2 − 2PJn+1 + 1

4
, n ≥ 0.

Proof. The proof can be given in a similar way of the proof of Theorem 2.16.

2.4 The Hexa Fibona-Pell-Jacobsthal Sequence
Definition 2.4. The hexa Fibona-Pell-Jacobsthal sequence Kn are defined as follows;

Kn+6 = 4Kn+5 −Kn+4 − 9Kn+3 + 2Kn+2 + 7Kn+1 + 2Kn (2.7)

with the different initial conditions K0 = 0, K1 = 0, K2 = 0, K3 = 1, K4 = 4, K5 = 15.



Quadra Fibona-Pell and Hexa Fibona-Pell-Jacobsthal Sequences 157

The first few members of this sequence are given as follow;

n 0 1 2 3 4 5 6 7 8 . . .
Kn 0 0 0 1 4 15 47 139 389 . . .

Table 8. The first few members of the hexa Fibona-Pell-Jacobsthal sequence

If we take the different initial conditions, the certain number sequences are generated as follows;

n 0 1 2 3 4 5 Numbers
Kn 0 1 1 2 3 5 Fibonacci numbers
Kn 2 1 3 4 7 11 Lucas numbers
Kn 0 1 2 5 12 29 Pell numbers
Kn 2 1 4 9 22 53 Pell-Lucas numbers
Kn 0 1 1 3 5 11 Jacobsthal numbers
Kn 2 1 5 7 17 31 Jacobsthal-Lucas numbers

Table 9. The first few members of the different initial conditions

The characteristic equation associated to the recurrence relation is

t6 − 4t5 + t4 + 9t3 − 2t2 − 7t− 2 = 0. (2.8)

The roots of the equations are as follows

α =
1 +
√
5

2
, β =

1−
√
5

2
, γ = 1 +

√
2, δ = 1−

√
2, λ = 2 and µ = −1.

Then the following equalities follow directly from Vieta’s formulas

α+ β + γ + δ + λ+ µ = 4 and αβγδλµ = −2

Theorem 2.13. The Binet-like formula for the hexa Fibona-Pell-Jacobsthal sequence is

Kn = d1α
n + d2β

n + d3γ
n + d4δ

n + d5λ
n + d6µ

n.

where, the coefficients di’s are uniquely defined by the following relations,

d1 + d2 + d3 + d4 + d5 + d6 = 0

d1α+ d2β + d3γ + d4δ + d5λ+ d6µ = 0

d1α
2 + d2β

2 + d3γ
2 + d4δ

2 + d5λ
2 + d6µ

2 = 0

d1α
3 + d2β

3 + d3γ
3 + d4δ

3 + d5λ
3 + d6µ

3 = 1

d1α
4 + d2β

4 + d3γ
4 + d4δ

4 + d5λ
4 + d6µ

4 = 4

d1α
5 + d2β

5 + d3γ
5 + d4δ

5 + d5λ
5 + d6µ

5 = 15

such that α, β, γ, δ, λ and µ are the roots of the characteristic equation of the hexa Fibona-Pell-Jacobsthal sequence.

Proof. Assume that

Kn = x1α
n + x2β

n + x3γ
n + x4δ

n + x5λ
n + x6µ

n.

where α, β, γ, δ, λ and µ are roots of the characteristic equation of the hexa Fibona-Pell-Jacobsthal sequence and di’s
are un-known parameters. Talking n = o, 1, 2, 3, 4, 5 we have the system of lineer equations below

x1 + x2 + x3 + x4 + x5 + x6 = 0

x1α+ x2β + x3γ + x4δ + x5λ+ x6µ = 0

x1α
2 + x2β

2 + x3γ
2 + x4δ

2 + x5λ
2 + x6µ

2 = 0

x1α
3 + x2β

3 + x3γ
3 + x4δ

3 + x5λ
3 + x6µ

3 = 1

x1α
4 + x2β

4 + x3γ
4 + x4δ

4 + x5λ
4 + x6µ

4 = 4

x1α
5 + x2β

5 + x3γ
5 + x4δ

5 + x5λ
5 + x6µ

5 = 15
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By the simplicity of the roots of the hexa Fibona-Pell-Jacobsthal sequence, the determinant of the system of the
linear equations above is different from zero. Hence, the system of the linear equations above has uniquely solition,
namely, d1, . . . , d6. This completes the proof of the theorem.

Theorem 2.14. The generating function for the hexa Fibona-Pell-Jacobsthal sequence is

GK(x) =

∞∑
n=0

Knx
n =

x3

1− 4x+ x2 + 9x3 − 2x4 − 7x5 − 2x6
.

Proof. Let

GK(x) =

∞∑
n=0

Knx
n = K0 +K1x+K2x

2 +K3x
3 + · · ·+Knx

n + . . .

be the generating function of the hexa Fibona-Pell-Jacobsthal sequence. Multiply both of side of the equality by the
term −4x, x2 9x3, −2x4, −7x5 and −2x6, respectively, such as

−4xGK(x) = −4K0x− 4K1x
2 − 4K2x

3 − 4K3x
4 − · · · − 4Knx

n+1 + . . .

x2GK(x) = K0x
2 +K1x

3 +K2x
4 +K3x

5 + · · ·+Knx
n+2 + . . .

9x3GK(x) = 9K0x
3 + 9K1x

4 + 9K2x
5 + 9K3x

6 + · · ·+ 9Knx
n+3 + . . .

−2x4GK(x) = −2K0x
4 − 2K1x

5 − 2K2x
6 − 2K3x

7 − · · · − 2Knx
n+4 + . . .

−7x5GK(x) = −7K0x
5 − 7K1x

6 − 7K2x
7 − 7K3x

8 − · · · − 7Knx
n+5 + . . .

−2x6GK(x) = −2K0x
6 − 2K1x

7 − 2K2x
8 − 2K3x

9 − · · · − 2Knx
n+6 + . . .

Then, we write Let’s T = (1− 4x+ x2 + 9x3 − 2x4 − 7x5 − 2x6)GK(x).

T = K0 + (K1 − 4K0)x+ (K2 − 4K1 +K0)x
2 + (K3 − 4K2 +K1 + 9K0)x

3+

+ (K4 − 4K3 +K2 + 9K1 − 2K0)x
4 + (K5 − 4K4 +K3 + 9K2 − 2K1 − 7K0)x

5

+ (K6 − 4K5 +K4 + 9K3 − 2K2 − 7K1 − 2K0)x
6 + . . .

+ (Kn − 4Kn−1 +Kn−2 + 9Kn−3 − 2Kn−4 − 7Kn−5 − 2Kn−6)x
n + . . .

Now, by using the initial conditions of the hexa Fibona-Pell-Jacobsthal sequence and

Kn − 4Kn−1 +Kn−2 + 9Kn−3 − 2Kn−4 − 7Kn−5 − 2Kn−6 = 0,

we obtain that

GK(x) =

∞∑
n=0

Knx
n =

x3

1− 4x+ x2 + 9x3 − 2x4 − 7x5 − 2x6
.

Thus, the proof is completed.

We note that the generating function of the hexa Fibona-Pell-Jacobsthal sequence is the multiplication of the
generating functions of the Fibonacci, Pell and Jacobsthal sequences as seen following

GF (x)GP (x)GJ(x) =

(
x

1− x− x2

)(
x

1− 2x− x2

)(
x

1− x− 2x2

)
=

x3

1− 4x+ x2 + 9x3 − 2x4 − 7x5 − 2x6

= GK(x).

Theorem 2.15. The exponential generating function for the Fibona-Pell-Jacobsthal sequence is

EK(x) = d1e
αx + d2e

βx + d3e
γx + d4e

δx + d5e
λx + d6e

µx =

∞∑
n=0

Kn

n!
xn.
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Proof. We know that,

eαx =

∞∑
n=0

αnxn

n!
, eβx =

∞∑
n=0

βnxn

n!
, eγx =

∞∑
n=0

γnxn

n!
, eδx =

∞∑
n=0

δnxn

n!
,

eλx =

∞∑
n=0

λnxn

n!
and eµx =

∞∑
n=0

µnxn

n!

Multiplying each side of the identities, respectively, by d1, d2, d3, d4, d5 and d6 and adding of them, we obtain that

EK(x) = d1e
αx + d2e

βx + d3e
γx + d4e

δx + d5e
λx + d6e

µx

=

∞∑
n=0

(d1α
n + d2β

n + d3α
n + d4β

n + d5λ
n + d6µ

n)
1

n!
xn

=

∞∑
n=0

Kn

n!
xn.

Theorem 2.16. The sum of the first n terms of Kn is
n∑
i=0

Ki =
Kn+6 − 3Kn+5 − 2Kn+4 + 7Kn+3 + 5Kn+2 − 2Kn+1 − 1

4
, n ≥ 0.

Proof. We know that

Kn+6 = 4Kn+5 −Kn+4 − 9Kn+3 + 2Kn+2 + 7Kn+1 + 2Kn

So,

2Kn + 2Kn+1 = Kn+6 − 4Kn+5 +Kn+4 + 9Kn+3 − 2Kn+2 − 5Kn+1.

Applying to the identity above, we deduce that

2K0 + 2K1 = K6 − 4K5 +K4 + 9K3 − 2K2 − 5K1,

2K1 + 2K2 = K7 − 4K6 +K5 + 9K4 − 2K3 − 5K2,

2K2 + 2K3 = K8 − 4K7 +K6 + 9K5 − 2K4 − 5K3,

. . . ,

2Kn−1 + 2Kn = Kn+5 − 4Kn+4 +Kn+3 + 9Kn+2 − 2Kn+1 − 5Kn,

2Kn + 2Kn+1 = Kn+6 − 4Kn+5 +Kn+4 + 9Kn+3 − 2Kn+2 − 5Kn+1

If we sum of both of sides of the identities above, we obtain,

4(K0 +K1 +K2 + · · ·+Kn) + 2Kn+1 − 2K0 = Kn+6 − 3Kn+5 − 2Kn+4

+ 7Kn+3 + 5Kn+2 − 1.

Hence, we get the desired result.

3. Conclusions
In this paper, we define new compound sequences as Fibonacci, Lucas, Pell and Pell-Lucas (Quadra Fibona-Pell),

Fibonacci, Lucas, Jacobsthal and Jacobsthal-Lucas (Quadra Fibona-Jacobsthal), Pell, Pell-Lucas, Jacobsthal and
Jacobsthal-Lucas (Quadra Pell-Jacobsthal) and Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal and Jacobsthal-Lucas
(Hexa Fibona-Pell-Jacobsthal) sequence. We prove that their characteristic equation is a multiplication of the
characteristic equations of Fibonacci, Pell and Jacobsthal. We showed that by certain initial conditions from these
sequences we derive all of compound sequences: Fibonacci, Lucas, Jacobsthal, Jacobsthal-Lucas, Pell and Pell-
Lucas. We gave the Binet-like formula for quadra Fibona-Pell, quadra Fibona-Jacobsthal, quadra Pell-Jacobsthal
and hexa Fibona-Pell-Jacobsthal sequences. Finally, we obtain their generating functions. Also, we see that the
generating functions of these sequences arise from the multiplication of the generating functions of Fibonacci, Pell
and Jacobsthal sequences.
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