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On the Difference Sequence Space `p(T̂ q)
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Abstract
In this study, we introduce a new matrix T̂ q = (t̂qnk) by

t̂qnk =


qn
Qn
tn , k = n

qk
Qn
tk − qk+1

Qn

1
tk+1

, k < n

0 , k > n.

where tk > 0 for all n ∈ N and (tn) ∈ c\c0. By using the matrix T̂ q, we introduce the sequence space
`p(T̂

q) for 1 ≤ p ≤ ∞. In addition, we give some theorems on inclusion relations associated with `p(T̂ q)
and find the α-, β-, γ- duals of this space. Lastly, we analyze the necessary and sufficient conditions for
an infinite matrix to be in the classes (`p(T̂

q), λ) or (λ, `p(T̂
q)), where λ ∈ {`1, c0, c, `∞}.
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1. Introduction and preliminaries

Let ω denote the set of all real or complex sequences and λ and µ be subsets of ω. We shall use supk instead
of supk∈N and

∑
k instead of

∑∞
k=0, where N = {0, 1, 2, ...} to provide convenience. Also, if u = (uk)∞k=0 ∈ ω, we

simply denote it by u = (uk). Further, e = (1, 1, ...) and e(k) is the sequence whose kth term is 1 and the other terms
are 0, that is, e(k) = (e

(k)
0 , e

(k)
1 , ..., e

(k)
k , ...) = (0, 0, ..., 1, ...). Any vector subspace of ω is called a sequence space. By

`∞, c, c0 and `p (1 ≤ p <∞), we denote the spaces of all bounded, convergent, null sequences and p−absolutely
convergent series, respectively.

λ with a linear topology is called a K-space provided each of the maps pn : λ → C defined by pn(x) = xn is
continuous for all n ∈ N, where C is the set of all complex numbers. If a K-space λ is a complete metric space, it is
said to be an FK-space. A normed FK-space is defined as a BK-space, hence, a BK-space is a Banach sequence
space. For instance, the sequence space `∞ is a BK-space with the norm given by ‖u‖`∞ = supk |uk|. Further, `p is a
complete p−normed space with respect to the usual p-norm defined by

‖u‖`p =
∑
k

|uk|p (0 < p < 1)

and `p is a BK-space with respect to `p-norm defined by

‖u‖`p =

(∑
k

|uk|p
)1/p

(1 ≤ p <∞).

Let B = (bnk) be an infinite matrix of real or complex numbers bnk, where n, k ∈ N. Then B defines a matrix
mapping from λ into µ and we write B : λ→ µ if for every sequence u = (uk) ∈ λ, the sequence Bu = (Bn(u)), the
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B−transform of u, is in µ, where
Bn(u) =

∑
k

bnkuk (n ∈ N). (1.1)

By (λ, µ), we denote the class of all infinite matrices that map λ into µ. Hence A ∈ (λ, µ) if and only if the series∑
k bnkuk converges for each n ∈ N and every u ∈ λ, and Bu ∈ µ for all u ∈ λ. If λ and µ are two arbitrary Banach

spaces, then B(λ, µ) denotes the set of all bounded linear operators from λ into µ.
The matrix domain λB of an infinite matrix B is defined by

λB = {u = (uk) ∈ ω : Bu ∈ λ}

which is also a sequence space.
In the literature, there are many papers related to new sequence spaces constructed by means of the matrix

domain of a special triangle. See, for example [1]-[20]. For more information about matrix domains of triangles, one
can see [21].

A sequence (βn) in normed space λ is called a Schauder basis for λ if for every u ∈ λ there is a unique sequence
(αn) of scalars such that u =

∑
n αnβn, i.e.,

lim
m→∞

‖u−
m∑
n=0

αnβn‖ = 0.

By cs0, cs and bs, we denote the set of all convergent to zero, convergent and bounded series, respectively, that

is, cs0 =

{
u = (uk) ∈ ω :

(
n∑
k=0

uk

)∞
n=0

∈ c0
}

, cs = {u = (uk) ∈ ω : (
∑n
k=0 uk)∞n=0 ∈ c} and bs = {u = (uk) ∈ ω :

(
∑n
k=0 uk)∞n=0 ∈ `∞}, and we define the norm on cs0, cs and bs by ‖u‖cs0 = ‖u‖cs = ‖u‖bs = supn |

∑n
k=0 uk|. For

all z ∈ ω, we write z−1 ∗ µ = {x ∈ ω : xz = (xkzk) ∈ µ}. The set Z = M(λ, µ) = ∩u∈λu−1 ∗ µ = {a ∈ ω : au ∈
µ for all u ∈ λ} is called the multiplier space of λ and µ. In the special case, where µ = `1, µ = cs or µ = bs, the
multiplier spaces λα = M(λ, `1), λβ = M(λ, cs) and λγ = M(λ, bs) are called the α-, β- and γ- duals of λ.

Throughout this paper, we assume that p, q ≥ 1 with 1
p + 1

q = 1 and denote the collection of all finite subsets of
N by F .

The difference operator ∆ : ω → ω is defined by ∆u = (∆uk) = (uk − uk−1) or ∆u = (∆uk) = (uk−1 − uk) for
all u = (uk) ∈ ω. When λ is a sequence space, the matrix domain λ∆ is called the difference sequence space. For the
first time, Kızmaz [22] gave the notion of difference sequence spaces as

λ(∆) = {u = (uk) ∈ ω : (uk − uk−1) ∈ λ}

for λ = `∞, c and c0. After Kızmaz, Et and Çolak [23] defined the generalized difference sequence spaces

`∞(∆m) = {u = (uk) ∈ ω : ∆mu ∈ `∞},

c(∆m) = {u = (uk) ∈ ω : ∆mu ∈ c}

and

c0(∆m) = {u = (uk) ∈ ω : ∆mu ∈ c0},

where m ∈ N, ∆mu = (∆muk) = (∆m−1uk −∆m−1uk+1) and so that

∆muk =
m∑
i=0

(−1)i
(
m
i

)
uk+i.

The difference space

bvp = {u = (uk) ∈ ω : (uk − uk−1) ∈ `p} (0 < p <∞)

was studied by Altay and Başar [24] for 0 < p < 1 and in the case 1 ≤ p ≤ ∞ Başar and Altay [25], and Çolak et
al [26]. Recently, for λ ∈ {`p, c0, c, `∞} (1 ≤ p < ∞), Kirişçi and Başar [4] introduced the generalized difference
sequence space

λ̂ = {u = (uk) :∈ ω : B(r, s)u = ((B(r, s)u)k) ∈ λ},
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where B(r, s)u is the sequence defined by (B(r, s)u)k = ruk + suk−1 for all k ∈ N and r, s ∈ R\{0}.
In [27], the Fibonacci band matrix F̂ is defined by using Fibonacci numbers. Also, in [27] the Fibonacci difference

sequence spaces `p(F̂ ) and `∞(F̂ ) are introduced.
The Riesz matrix Rq = (rnk) is defined by

rnk =

{ qk
Qn

, 0 ≤ k ≤ n
0 , k > n

for all k, n ∈ N and where (qk) is the sequence of positive numbers and Qn =
∑n
k=0 qk for all n ∈ N. In [28], the

paranormed Riesz sequence space is introduced.
In [29], the band matrix T = (tnk) is defined by

tnk =


tn , k = n
− 1
tn

, k < n

0 , k > n

where tn > 0 for all n ∈ N and t = (tn) ∈ c\c0. Also in [29] the difference sequence spaces are introduced as follows:

`p(T ) =

{
u = (un) ∈ ω :

∑
n

∣∣∣∣tnun − 1

tn
un−1

∣∣∣∣p <∞
}

(1 ≤ p <∞)

and

`∞(T ) =

{
u = (un) ∈ ω : sup

n

∣∣∣∣tnun − 1

tn
un−1

∣∣∣∣ <∞} .
For more information on some new difference sequence spaces we refer to [30]-[37].
The paper is organized so that this section is followed by three sections. In Section 2 we give the definition of a

new matrix and introduce the sequence spaces `p(T̂ q) and `∞(T̂ q), where 1 ≤ p < ∞. We prove that `p(T̂ q) and
`∞(T̂ q) are Banach spaces with respect to the norm defined on these spaces. Further, we establish some inclusion
theorems related to the space `p(T̂ q), where 1 ≤ p ≤ ∞. In section 3 we determine the α-, β-, γ- duals of the space
`p(T̂

q) for 1 ≤ p ≤ ∞. In the last section we characterize the classes (`p(T̂
q), λ) and (λ, `p(T̂

q)) for λ ∈ {`1, c0, c, `∞}.

2. The difference sequence space `p(T̂ q)

In this section, we introduce a new matrix T̂ q by multiplying Riesz matrix and the band matrix T and introduce
the difference sequence space `p(T̂ q) derived by using this matrix, where 1 ≤ p ≤ ∞. Also, we give some theorems
which give inclusion relations corcerning this space. By multiplying these matrices we derive a new matrix
T̂ q = (t̂qnk) as

t̂qnk =


qn
Qn
tn , k = n

qk
Qn
tk − qk+1

Qn

1
tk+1

, k < n

0 , k > n.

(T̂ q)−1 = ((t̂q)−1
nk ), the inverse of T̂ q can be easily computed as

(t̂q)−1
nk =


Qn
qn

1

tn
, k = n

Qk

[
1

qk

(
tk

n∏
j=k

1

t2j

)
− 1

qk+1

(
tk+1

n∏
j=k+1

1

t2j

)]
, k < n

0 , k > n.

Now, let give the definitions of the difference sequence spaces `p(T̂ q) and `∞(T̂ q) derived by this matrix

`p(T̂
q) =

{
u = (un) ∈ ω :

∑
n

∣∣∣∣∣ 1

Qn

n∑
k=0

qk

(
tkuk −

uk−1

tk

)∣∣∣∣∣
p

<∞

}
(1 ≤ p <∞)
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and

`∞(T̂ q) =

{
u = (un) ∈ ω : sup

n

∣∣∣∣∣ 1

Qn

n∑
k=0

qk

(
tkuk −

uk−1

tk

)∣∣∣∣∣ <∞
}
.

For the T̂ q-transform of a sequence u = (un), we will use the sequence û = (ûn) defined as

ûn = T̂ qn(u) =
1

Qn

n∑
k=0

qk

(
tkuk −

uk−1

tk

)
(n ∈ N). (2.1)

Theorem 2.1. For 1 ≤ p ≤ ∞, `p(T̂ q) is a Banach space with the norm ‖u‖`p(T̂ q) = ‖T̂ qu‖`p , defined as,

‖u‖`p(T̂ q) =


(∑
n
|T̂ qn(u)|p

)1/p

, 1 ≤ p <∞

sup
n
|T̂ qn(u)| , p =∞.

Proof. If we assume that ‖u‖`p(T̂ q) = 0. Then, ‖T̂ qu‖`p = 0 and since ‖.‖`p is a norm we have T̂ qu = θ. Since it is

known that T̂ q is invertible, we have u = θ.
Let α ∈ C and u ∈ `p(T̂ q). Then,

‖αu‖`p(T̂ q) = ‖T̂ q(αu)‖`p = ‖αT̂ qu‖`p
= |α|‖T̂ qu‖`p = |α|‖u‖`p(T̂ q).

Finally, for u, v ∈ `p(T̂ q) we have

‖u+ v‖`p(T̂ q) = ‖T̂ q(u+ v)‖`p = ‖T̂ qu+ T̂ qv‖`p
≤ ‖T̂ qu‖`p + ‖T̂ qv‖`p = ‖u‖`p(T̂ q) + ‖v‖`p(T̂ q)

and so the triangle inequality holds.
This means that, (`p(T̂

q), ‖.‖`p(T̂ q)) is a normed sequence space for 1 ≤ p ≤ ∞. To show that `p(T̂ q) is a Banach

space, let (un) be a Cauchy sequece in `p(T̂ q). Then, (ûn) is a sequence in `p. Obviously,

‖un − um‖`p(T̂ q) = ‖T̂ q(un − um)‖`p
= ‖T̂ qun − T̂ qum‖`p = ‖ûn − ûm‖`p ,

hence, (ûn) is a Cauchy sequence in `p. Since (`p, ‖.‖`p) is a Banach space, there exists û ∈ `p such that lim
n→∞

ûn = û

in `p. Since u = (T̂ q)−1û, we have

lim
n→∞

‖un − u‖`p(T̂ q) = lim
n→∞

‖T̂ q(un − u)‖`p

= lim
n→∞

‖T̂ qun − T̂ qu‖`p = lim
n→∞

‖ûn − û‖`p = 0.

Hence lim
n→∞

un = u in `p(T̂ q), where u ∈ `p(T̂ q).

Remark 2.1. `p(T̂ q) is a BK-space for 1 ≤ p ≤ ∞.

Theorem 2.2. The sequence spaces `p(T̂ q) and `p are linearly isomorphic; that is, `p(T̂ q) ∼= `p for 1 ≤ p ≤ ∞.

Proof. It must be shown that there exists a linear bijection between the spaces `p(T̂ q) and `p for 1 ≤ p ≤ ∞. Let T̂ q

be the transformation defined from `p(T̂
q) to `p by u→ û = T̂ qu = (T̂ qn(u)). Then, we have T̂ qu = û ∈ `p for every

u ∈ `p(T̂ q). Hence, T̂ q is a linear transformation. Also, T̂ q is injective since u = θ whenever T̂ qu = θ.
Moreover, let v = (vn) ∈ `p be given for 1 ≤ p ≤ ∞ and define the sequence u = (un) as follows:

un =

n∑
k=0

Qk

 1

qk

tk n∏
j=k

1

t2j

− 1

qk+1

tk+1

n∏
j=k+1

1

t2j

 vk (n ∈ N). (2.2)
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Then, by combining (2.1) and (2.2), we get for every n ∈ N

T̂ qn(u) =
1

Qn

n∑
k=0

qk

tk k∑
r=0

Qr

 1

qr

tr k∏
j=r

1

t2j

− 1

qr+1

tr+1

k∏
j=r+1

1

t2j

 vr


− 1

Qn

n∑
k=0

qk

 1

tk

k−1∑
r=0

Qr

 1

qr

tr k−1∏
j=r

1

t2j

− 1

qr+1

tr+1

k−1∏
j=r+1

1

t2j

 vr


= vn

This means that T̂ qu = v. Since v ∈ `p, we have T̂ qu ∈ `p. Thus, we conclude that u ∈ `p(T̂ q) for any v ∈ `p.
Hence T̂ q is surjective.

Since ‖u‖`p(T̂ q) = ‖T̂ qu‖`p for any u ∈ `p(T̂ q), we have

‖v‖`p = ‖T̂ qu‖`p = ‖u‖`p(T̂ q)

which shows that T̂ q preserves the norm, where 1 ≤ p ≤ ∞. Hence, T̂ q is an isometry. As a result, the space `p(T̂ q)
is isometrically isomorphic to `p for 1 ≤ p ≤ ∞.

It is known that the space `p is not a Hilbert space with p 6= 2. The similar result is valid for the space `p(T̂ q) and
the following theorem gives this result.

Theorem 2.3. The space `p(T̂ q) is not an inner product space in the case p 6= 2. Hence, `p(T̂ q) is not a Hilbert space for
1 ≤ p <∞ and p 6= 2.

Proof. We must show that the space `2(T̂ q) is a Hilbert space while `p(T̂ q) is not a Hilbert space for p 6= 2. By
Theorem 2.1, we know that `2(T̂ q) is a Banach space with the norm ‖u‖`2(T̂ q) = ‖T̂ qu‖`2 and its norm can be
obtained as follows:

‖u‖`2(T̂ q) = 〈u, u〉1/2
`2(T̂ q)

= 〈T̂ qu, T̂ qu〉1/2`2
= ‖T̂ qu‖`2

for every u ∈ `2(T̂ q). Hence `2(T̂ q) is a Hilbert space.
Consider the sequences

s = (sn) =


1
t0

, n = 0
1
t0t21

+ 1
t1

, n = 1

t0
n∏
i=0

1
t2i

+ t1
n∏
i=1

1
t2i
− Q1t2

q2

n∏
i=2

1
t2i

, n ≥ 2 (n ∈ N)

and

t = (tn) =


1
t0

, n = 0
1
t0t21
− (Q0+Q1)

q1t1
, n = 1

t0
n∏
i=0

1
t2i
− (Q0+Q1)

q1
t1

n∏
i=1

1
t2i

+ Q1t2
q2

n∏
i=2

1
t2i

, n ≥ 2 (n ∈ N)

With the T̂ q-transforms of s and t, we have the following sequences

T̂ qs = (1, 1, 0, 0, ...) and T̂ qt = (1,−1, 0, 0, ...).

Also, it can be easily seen that

‖s+ t‖2
`p(T̂ q)

+ ‖s− t‖2
`p(T̂ q)

= 8 6= 4(22/p) = 2(‖s‖2
`p(T̂ q)

+ ‖t‖2
`p(T̂ q)

)

for p 6= 2. This means that the parallelogram equality cannot be satisfied by the norm of the space `p(T̂ q) for p 6= 2.
Therefore, this norm cannot be gained from an inner product. Therefore, the space `p(T̂ q) with p 6= 2 is a Banach
space but it is not a Hilbert space, where 1 ≤ p <∞. The proof is completed.

Remark 2.2. Obviously, the space `∞(T̂ q) is also a Banach space but it is not a Hilbert space.
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Now, we give some theorems on inclusion relations associated with the space `p(T̂ q).

Theorem 2.4. For 1 ≤ p < q <∞ the inclusion relation `p(T̂ q) ⊂ `q(T̂ q) strictly holds.

Proof. Let 1 ≤ p < q < ∞. If u is any sequence in `p(T̂
q), then its T̂ q-transform T̂ qu is in `p. Since the inclusion

`p ⊂ `q holds, T̂ qu is also in `q . Hence u ∈ `q(T̂ q) which means that `p(T̂ q) ⊂ `q(T̂ q). Now, we must prove that the
inclusion holds strictly. For this, there should be a sequence v̂ = (v̂n) ∈ `q but not in `p, i.e., v̂ ∈ `q\`p. The existence
of v̂ ∈ `q\`p is clear since, as a well known fact, `p ⊂ `q is a strict inclusion. Let define the sequence v = (vn) in
terms of the sequence v̂ as follows:

vn =

n∑
k=0

Qk

 1

qk

tk n∏
j=k

1

t2j

− 1

qk+1

tk+1

n∏
j=k+1

1

t2j

 v̂k (n ∈ N).

Then, it is clear that
T̂ qn(v) = v̂n

for every n ∈ N. This shows that T̂ qv = v̂ and since v̂ ∈ `q\`p, we have T̂ qv ∈ `q\`p. Hence, the sequence v must be
in `q(T̂ q) but cannot be in `p(T̂ q), that is, the inclusion `p(T̂ q) ⊂ `q(T̂ q) is strict. The proof is completed.

Theorem 2.5. For 1 ≤ p <∞ the inclusion `p(T̂ q) ⊂ `∞(T̂ q) is strict.

Proof. If u ∈ `p(T̂ q), then T̂ qu ∈ `p. Since `p ⊂ `∞, T̂ qu ∈ `∞. Hence, u ∈ `∞(T̂ q) which shows that `p(T̂ q) ⊂ `∞(T̂ q).
To show that this inclusion is strict, we define the sequence v = (vn) by

vn = t0

n∏
i=0

1

t2i
+

n∑
i=2

(−1)i−1 (Qi−2 +Qi−1)

qi−1

(
ti−1

n∏
k=i−1

1

t2k

)
+ (−1)n

(Qn−1 +Qn)

qntn
(n ∈ N).

Then, we have for every n ∈ N that

T̂ qn(v) =
1

Qn

n∑
k=0

qk

(
tkvk −

vk−1

tk

)
= (−1)n.

Then, T̂ qv ∈ `∞\`p since ((−1)n) ∈ `∞ but not in `p. Thus, v is in `∞(T̂ q) but not in `p(T̂ q) which means that the
inclusion `p(T̂ q) ⊂ `∞(T̂ q) strictly holds. The proof is completed.

3. The α-, β- and γ-duals of the space `p(T̂ q)

In this section, we determine the α-, β- and γ-duals of the sequence space `p(T̂ q), where 1 ≤ p ≤ ∞. Also, we
give a sequence of the points of the space `p(T̂ q) which forms a basis for this space.

The following known results in [38] and [39] are fundamental for our investigation.

sup
n

∑
k

|bnk|q <∞. (3.1)

lim
n→∞

bnk exists for all k ∈ N. (3.2)

lim
n→∞

bnk = 0 for all k ∈ N. (3.3)

sup
K∈F

∑
k

∣∣∣∣∣∑
n∈K

bnk

∣∣∣∣∣
q

<∞. (3.4)

sup
n,k
|bnk| <∞. (3.5)

sup
k

∑
n

|bnk| <∞. (3.6)
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lim
n→∞

∑
k

|bnk| =
∑
k

∣∣∣ lim
n→∞

bnk

∣∣∣ . (3.7)

lim
n→∞

∑
k

|bnk| = 0. (3.8)

Lemma 3.1. Let B = (bnk) be an infinite matrix. The following statements hold:
1.B ∈ (`p, `∞)⇔ (3.1).
2. B ∈ (`1, `∞)⇔ (3.5).
3. B ∈ (`∞, `∞)⇔ (3.1) with q=1.
4. B ∈ (`p, c)⇔ (3.1) and (3.2).
5. B ∈ (`1, c)⇔ (3.2) and (3.5).
6. B ∈ (`∞, c)⇔ (3.2) and (3.7).
7. B ∈ (`p, c0)⇔ (3.1) and (3.3).
8. B ∈ (`1, c0)⇔ (3.3) and (3.5).
9. B ∈ (`∞, c0)⇔ (3.3) and (3.8).
10. B ∈ (`p, `1)⇔ (3.4).
11. B ∈ (`1, `1)⇔ (3.6).
12. B ∈ (`∞, `1)⇔ (3.4) with q=1.

Now, let give two lemmas which are needed to determine the α−, β- and γ-duals of the space `p(T̂ q), where
1 ≤ p ≤ ∞.

Lemma 3.2. Let a = (an) ∈ ω and the matrix B̂ = (b̂nk) be defined by B̂n = an(T̂ qn)−1, that is,

b̂nk =

{
0 , k > n

an(t̂q)−1
nk , 0 ≤ k ≤ n

for all k, n ∈ N. Then, a ∈ (`p(T̂
q))α if and only if B̂ ∈ (`p, `1), where 1 ≤ p ≤ ∞.

Proof. Let û be the T̂ q-transform of a sequence u = (un) ∈ ω. Then, we have

anun = an(T̂ q)−1
n (û) = B̂n(û)

for all n ∈ N. So, from this equality it can be easily seen that au = (anun) ∈ `1 with u ∈ `p(T̂ q) if and only if B̂û ∈ `1
with û ∈ `p. This implies that a ∈ (`p(T̂

q))α if and only if B̂ ∈ (`p, `1). The proof is completed.

Lemma 3.3. [40, Theorem 3.1] Let C = (cnk) be defined via a sequence a = (ak) ∈ ω and the inverse matrix V = (vnk) of
the triangle matrix U = (unk) by

cnk =

{
0 , k > n∑n

j=k ajvjk , 0 ≤ k ≤ n

for all k, n ∈ N. Then,
(`p(U))γ = {a = (ak) ∈ ω : C ∈ (`p, `∞)},

(`p(U))β = {a = (ak) ∈ ω : C ∈ (`p, c)},

where 1 ≤ p ≤ ∞.

Combining Lemmas 3.1-3.3 we have;

Corollary 3.1. Let the sets d̂1, d̂2, d̂3, d̂4, d̂5 and d̂6 be defined as follows:

d̂1 =

a = (ak) ∈ ω : sup
K∈F

∑
k

∣∣∣∣∣∣
∑
n∈K

Qk
 1

qk

tk n∏
j=k

1

t2j

− 1

qk+1

tk+1

n∏
j=k+1

1

t2j

 an

∣∣∣∣∣∣
q

<∞

 ,

d̂2 =

a = (ak) ∈ ω :

∞∑
j=k

(
Qk

[
1

qk

(
tk

j∏
i=k

1

t2i

)
− 1

qk+1

(
tk+1

j∏
i=k+1

1

t2i

)])
aj exists for each k ∈ N

 ,
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d̂3 =

a = (ak) ∈ ω : sup
n

n∑
k=0

∣∣∣∣∣∣
n∑
j=k

(
Qk

[
1

qk

(
tk

j∏
i=k

1

t2i

)
− 1

qk+1

(
tk+1

j∏
i=k+1

1

t2i

)])
aj

∣∣∣∣∣∣
q

<∞

 ,

d̂4 =

a = (ak) ∈ ω : lim
n→∞

n∑
k=0

∣∣∣∣∣∣
n∑
j=k

(
Qk

[
1

qk

(
tk

j∏
i=k

1

t2i

)
− 1

qk+1

(
tk+1

j∏
i=k+1

1

t2i

)])
aj

∣∣∣∣∣∣
 ,

d̂5 =

a = (ak) ∈ ω : sup
k

∑
n

∣∣∣∣∣∣
Qk

 1

qk

tk n∏
j=k

1

t2j

− 1

qk+1

tk+1

n∏
j=k+1

1

t2j

 an

∣∣∣∣∣∣ <∞


and

d̂6 =

a = (ak) ∈ ω : sup
n,k

∣∣∣∣∣∣
n∑
j=k

(
Qk

[
1

qk

(
tk

j∏
i=k

1

t2i

)
− 1

qk+1

(
tk+1

j∏
i=k+1

1

t2i

)])
aj

∣∣∣∣∣∣ <∞
 .

Then, the following statements hold:
(a) (`p(T̂

q))α = d̂1 and (`1(T̂ q))α = d̂5, where 1 < p ≤ ∞.
(b) (`p(T̂

q))β = d̂2 ∩ d̂3, (`∞(T̂ q))β = d̂2 ∩ d̂4 and (`1(T̂ q))β = d̂2 ∩ d̂6, where 1 < p <∞.
(c) (`p(T̂

q))γ = d̂3 and (`1(T̂ q))γ = d̂6, where 1 < p ≤ ∞.

Now, we give the Schauder basis of the space `p(T̂ q) (1 ≤ p <∞).

Theorem 3.1. Let 1 ≤ p <∞ and define the sequence c(k) ∈ `p(T̂ q) for every fixed k ∈ N by

(c(k))n =


0 , n < k(

Qk

[
1

qk

(
tk

n∏
j=k

1

t2j

)
− 1

qk+1

(
tk+1

n∏
j=k+1

1

t2j

)])
, n ≥ k (n ∈ N). (3.9)

Then the sequence (c(k)) is a basis for the space `p(T̂ q), and every u ∈ `p(T̂ q) has a unique representation of the form

u =
∑
k

T̂ qk (u)c(k). (3.10)

Proof. Let 1 ≤ p <∞. By (3.9), it is clear that T̂ q(c(k)) = e(k) ∈ `p and c(k) ∈ `p(T̂ q) for all k ∈ N.
Also, let u ∈ `p(T̂ q) given. For every non-negative integer m, we put

u(m) =

m∑
k=0

T̂ qk (u)c(k).

Then, we obtain

T̂ q(u(m)) =

m∑
k=0

T̂ qk (u)T̂ q(c(k)) =

m∑
k=0

T̂ qk (u)e(k)

and so

T̂ qn(u− u(m)) =

{
0 (0 ≤ n ≤ m)

T̂ qn(u) (n > m).

Let ε > 0 be given. Then, there exists a non-negative integer m0 which satisfies

∞∑
n=m0+1

|T̂ qn(u)|p ≤
( ε

2

)p
.

So, we obtain for every m ≥ m0 that

‖u− u(m)‖`p(T̂ q) =

( ∞∑
n=m+1

|T̂ qn(u)|p
)1/p

≤

( ∞∑
n=m0+1

|T̂ qn(u)|p
)1/p

≤ ε

2
< ε



On the Difference Sequence Space `p(T̂ q) 169

which indicates that lim
m→∞

‖u− u(m)‖`p(T̂ q) = 0 and hence u is shown as in (3.10).

Finally, we must prove that the representation (3.10) of u ∈ `p(T̂ q) is unique. Assume that u =
∑
k µk(u)c(k).

The continuity of the linear transformation T̂ q : `p(T̂
q)→ `p which is defined in the proof of Theorem 2.2 is clear,

we have
T̂ qn(u) =

∑
k

µk(u)T̂ qn(c(k)) =
∑
k

µk(u)δnk = µn(u) (n ∈ N).

Hence, the representation (3.10) of u ∈ `p(T̂ q) is unique. The proof is completed.

4. Characterization of some matrix transformations on `p(T̂
q)

In this section of the study, we obtain the characterization of the classes (`p(T̂
q), λ), (λ, `p(T̂

q)), where 1 ≤ p ≤ ∞,
λ ∈ {`1, c0, c, `∞} and µ ∈ {`1, `∞}.

Throughout this section, we write b(n, k) =
∑n
j=0 bjk for given an infinite matrix B = (bnk), where n, k ∈ N.

Firstly, we give a theorem which is essential for our results.

Theorem 4.1. Let 1 ≤ p ≤ ∞. Then, we have B = (bnk) ∈ (`p(T̂
q), λ) if and only if

E(m) =
(
e

(m)
nk

)
∈ (`p, c) for all n ∈ N, (4.1)

E = (enk) ∈ (`p, λ), (4.2)

where e
(m)
nk =


0 , k > m∑m

j=kQk

[
1

qk

(
tk

j∏
i=k

1
t2i

)
− 1

qk+1

(
tk+1

j∏
i=k+1

1
t2i

)]
bnj , 0 ≤ k ≤ m

and enk =
∞∑
j=k

Qk

[
1

qk

(
tk

j∏
i=k

1
t2i

)
− 1

qk+1

(
tk+1

j∏
i=k+1

1
t2i

)]
bnj for all k,m, n ∈ N.

Proof. For the proof, we follow the similar tecnique due to Kirişçi and Başar [4]. Let B = (bnk) ∈ (`p(T ), λ) and
u = (uk) ∈ `p(T̂ q). By (2.2), we have

m∑
k=0

bnkuk =

m∑
k=0

bnk

 k∑
j=0

Qj

 1

qj

tj k∏
i=j

1

t2i

− 1

qj+1

tj+1

j∏
i=j+1

1

t2i

 ûj

=

m∑
k=0

 m∑
j=k

Qk

[
1

qk

(
tk

j∏
i=k

1

t2i

)
− 1

qk+1

(
tk+1

j∏
i=k+1

1

t2i

)]
bnj

 ûk

=

m∑
k=0

e
(m)
nk ûk

= E(m)
n (û)

for all m,n ∈ N. Since Bu exists, E(m) belongs to the class (`p, c). Letting m → ∞ in the last equality, we obtain
Bu = Uû which gives the result E ∈ (`p, λ).

Conversely, suppose the conditions (4.1), (4.2) hold and take any u ∈ `p(T ). Then, we have (enk)k∈N ∈ `βp which
gives together with (4.1) that Bn = (bnk)k∈N ∈ (`p(T̂

q))β for all n ∈ N. Thus, Bu exists. Therefore, we derive by the
above equality as m→∞ that Bu = Eû, and this shows that B ∈ (`p(T̂

q), λ).
The following conditions are necessary for our study:

sup
n

∑
k

|enk|q <∞. (4.3)

lim
n→∞

enk exists for all k ∈ N. (4.4)

lim
n→∞

enk = 0 for all k ∈ N. (4.5)
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sup
K∈F

∑
k

∣∣∣∣∣∑
n∈K

enk

∣∣∣∣∣
q

<∞. (4.6)

sup
n,k
|enk| <∞. (4.7)

sup
k

∑
n

|enk| <∞. (4.8)

lim
n→∞

∑
k

|enk| =
∑
k

∣∣∣ lim
n→∞

enk

∣∣∣ . (4.9)

lim
n→∞

∑
k

|enk| = 0. (4.10)

lim
m→∞

e
(m)
nk exists (∀n, k ∈ N), (4.11)

sup
m,k

∣∣∣e(m)
nk

∣∣∣ <∞ (∀n ∈ N) (4.12)

sup
m

m∑
k=0

∣∣∣e(m)
nk

∣∣∣q <∞ (4.13)

lim
m→∞

m∑
k=0

∣∣∣e(m)
nk

∣∣∣ =
∑
k

|enk| for each n ∈ N (4.14)

sup
N,K∈F

∣∣∣∣∣∑
n∈N

∑
k∈K

enk

∣∣∣∣∣ <∞ (4.15)

We obtain the following results by combining Theorem 4.1 and previous conditions.

Theorem 4.2. The following statements hold:
1. B = (bnk) ∈ (`1(T̂ q), `∞)⇔ (4.7), (4.11) and (4.12).
2. B = (bnk) ∈ (`p(T̂

q), `∞)⇔ (4.3), (4.11) and (4.13).
3. B = (bnk) ∈ (`∞(T̂ q), `∞)⇔ (4.11), (4.14) and (4.3) with q=1.
4. B = (bnk) ∈ (`1(T̂ q), c)⇔ (4.4), (4.7), (4.11) and (4.12).
5. B = (bnk) ∈ (`p(T̂

q), c)⇔ (4.3), (4.4), (4.11) and (4.13).
6. B = (bnk) ∈ (`∞(T̂ q), c)⇔ (4.4), (4.9), (4.11) and (4.14).
7. B = (bnk) ∈ (`1(T̂ q), c0)⇔ (4.5), (4.7), (4.11) and (4.12).
8. B = (bnk) ∈ (`p(T̂

q), c0)⇔ (4.3), (4.5), (4.11) and (4.13).
9. B = (bnk) ∈ (`∞(T̂ q), c0)⇔ (4.5), (4.10), (4.11) and (4.14).
10. B = (bnk) ∈ (`1(T̂ q), `1)⇔ (4.8), (4.11) and (4.12).
11. B = (bnk) ∈ (`p(T̂

q), `1)⇔ (4.6) , (4.11) and (4.13).
12.B = (bnk) ∈ (`∞(T̂ q), `1)⇔ (4.7), (4.11) and(4.14).

By using Theorem 4.2, we derive the following result:

Corollary 4.1. The following statements hold:
1. B = (bnk) ∈ (`1(T̂ q), cs0)⇔ (4.5), (4.7) and (4.11), (4.12).
2. B = (bnk) ∈ (`p(T̂

q), cs0)⇔ (4.3), (4.5) and (4.11), (4.13).
3. B = (bnk) ∈ (`∞(T̂ q), cs0)⇔ (4.5), (4.10) and (4.11), (4.14).
4. B = (bnk) ∈ (`1(T̂ q), cs)⇔ (4.4), (4.7) and (4.11), (4.12).
5. B = (bnk) ∈ (`p(T̂

q), cs)⇔ (4.3), (4.4) and (4.11), (4.13).
6. B = (bnk) ∈ (`∞(T̂ q), cs)⇔ (4.4), (4.9) and (4.11), (4.14).
7. B = (bnk) ∈ (`1(T̂ q), bs)⇔ (4.7) and (4.11), (4.12).
8. B = (bnk) ∈ (`p(T̂

q), bs)⇔ (4.3) and (4.11), (4.13).
9. B = (bnk) ∈ (`∞(T̂ q), bs)⇔ (4.3) with q = 1 and (4.11), (4.14)

hold with d(n, k) instead of dnk.
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Now, we introduce the matrix transformations from the space λ ∈ {`1, c0, c, `∞} to `p(T̂ q), where 1 ≤ p ≤ ∞.
Before this, we give the necessary and sufficient conditions for the matrix transformation B is in (λ, `p).

Lemma 4.1. The following statements hold:
(a) B ∈ (`∞, `p) = (c, `p) = (c0, `p) if and only if

sup
K∈F

∑
k

∣∣∣∣∣∑
n∈K

bnk

∣∣∣∣∣
p

<∞, where 1 ≤ p <∞. (4.16)

(b) B ∈ (`∞, `∞) = (c, `∞) = (c0, `∞) if and only if

sup
n

∑
k

|bnk| <∞. (4.17)

(c) B ∈ (`1, `p) if and only if
sup
k

∑
n

|bnk|p <∞, where 1 ≤ p <∞. (4.18)

When we change the roles of the spaces `p(T̂ q) and `p with λ in Theorem 4.1, we obtain the following theorem.

Theorem 4.3. Assume that the terms of the infinite matrices B = (bnk) and B̃ = (b̃nk) satisfies the following relation

b̃nk =

n−1∑
r=0

(
qr
Qn

tr −
qr+1

Qn

1

tr+1

)
brk +

qn
Qn

tnbnk (4.19)

for all k, n ∈ N and λ be any given sequence space. Then, B ∈ (λ, `p(T̂
q)) if and only if B̃ ∈ (λ, `p), where 1 ≤ p ≤ ∞.

Proof. Let u = (uk) ∈ λ. Then, by using the relation (4.19) one can easily obtain the following equality

m∑
k=0

b̃nkuk =

m∑
k=0

(
n−1∑
r=0

(
qr
Qn

tr −
qr+1

Qn

1

tr+1

)
brk +

qn
Qn

tnbnk

)
uk for all m,n ∈ N

which yields as m→∞ that (B̃n(u)) = (T̂ qn(Bu)). Therefore, we conclude that Bu ∈ `p(T̂ q) for u ∈ λ if and only if
B̃u ∈ `p for u ∈ λ, where 1 ≤ p ≤ ∞. The proof is completed.

By combining Lemma 4.1 and Theorem 4.3, we obtain the following results:

Corollary 4.2. Let the matrices B = (bnk) and B̃ = (b̃nk) be connected by (4.19). Then, we obtain:
(a) B = (bnk) ∈ (`∞, `1(T̂ q)) = (c, `1(T̂ q)) = (c0, `1(T̂ q)) if and only if (4.16) holds with p = 1 and b̃nk instead of bnk.
(b) B = (bnk) ∈ (`1, `1(T̂ q)) if and only if (4.18) holds with p = 1 and b̃nk instead of bnk.

Corollary 4.3. Let the matrices B = (bnk) and B̃ = (b̃nk) be connected by (4.19). For 1 < p <∞, we obtain:
(a) B = (bnk) ∈ (`∞, `p(T̂

q)) = (c, `p(T̂
q)) = (c0, `p(T̂

q)) if and only if (4.16) holds with b̃nk instead of bnk.
(b) B = (bnk) ∈ (`1, `p(T̂

q)) if and only if (4.18) holds with b̃nk instead of bnk.

Corollary 4.4. Let the matrices B = (bnk) and B̃ = (b̃nk) be connected by (4.19). Then, we obtain:
(a) B = (bnk) ∈ (`∞, `∞(T̂ q)) = (c, `∞(T̂ q)) = (c0, `∞(T̂ q)) if and only if (4.17) holds with b̃nk instead of bnk.
(b) B = (bnk) ∈ (`1, `∞(T̂ q)) if and only if (3.5) holds with b̃nk instead of bnk.
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[35] Aydın, C. and Başar, F., Some new difference sequence spaces. Appl. Math. Comput. 157 (2004), no. 3, 677-693.

[36] Candan, M., Domain of the double sequential band matrix in the classical sequence spaces. J. Inequal. Appl.
2012:281 (2012), 15 pages.

[37] Candan, M., Almost convergence and double sequential band matrix. Acta Math. Sci. 34B (2014), no. 2, 354-366.

[38] Stieglitz, M. and Tietz, H., Matrix transformationen von folgenraumen eine ergebnisübersicht. Math. Z. 154
(1977), 1-16.

[39] Maddox, I. J., Lecture Notes in Mathematics. Infinite Matrices of Operators, Springer-Verlag, Berlin Heidelberg
New York, 1980.
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