MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES 7 (2) 161-173 (2019) ©MSAEN

On the Difference Sequence Space $\ell_p(\hat{T}^q)$

Pinar Zengin Alp* and Merve Ilkhan

Abstract

In this study, we introduce a new matrix $\hat{T}^q = (\hat{t}^q_{nk})$ by

$$\hat{t}_{nk}^{q} = \begin{cases} \frac{q_{n}}{Q_{n}}t_{n} & , \quad k = n\\ \frac{q_{k}}{Q_{n}}t_{k} - \frac{q_{k+1}}{Q_{n}}\frac{1}{t_{k+1}} & , \quad k < n\\ 0 & , \quad k > n. \end{cases}$$

where $t_k > 0$ for all $n \in \mathbb{N}$ and $(t_n) \in c \setminus c_0$. By using the matrix \hat{T}^q , we introduce the sequence space $\ell_p(\hat{T}^q)$ for $1 \le p \le \infty$. In addition, we give some theorems on inclusion relations associated with $\ell_p(\hat{T}^q)$ and find the α -, β -, γ - duals of this space. Lastly, we analyze the necessary and sufficient conditions for an infinite matrix to be in the classes $(\ell_p(\hat{T}^q), \lambda)$ or $(\lambda, \ell_p(\hat{T}^q))$, where $\lambda \in \{\ell_1, c_0, c, \ell_\infty\}$.

Keywords: sequence spaces; matrix transformations; Schauder basis; $\alpha -$, $\beta -$, $\gamma -$ duals. *AMS Subject Classification (2010):* Primary: 11B39; Secondary: 46A45; 46B45. *Corresponding author*

1. Introduction and preliminaries

Let ω denote the set of all real or complex sequences and λ and μ be subsets of ω . We shall use \sup_k instead of $\sup_{k=0}^{\infty}$, where $\mathbb{N} = \{0, 1, 2, ...\}$ to provide convenience. Also, if $u = (u_k)_{k=0}^{\infty} \in \omega$, we simply denote it by $u = (u_k)$. Further, e = (1, 1, ...) and $e^{(k)}$ is the sequence whose kth term is 1 and the other terms are 0, that is, $e^{(k)} = (e_0^{(k)}, e_1^{(k)}, ..., e_k^{(k)}, ...) = (0, 0, ..., 1, ...)$. Any vector subspace of ω is called a *sequence space*. By ℓ_{∞}, c, c_0 and ℓ_p $(1 \le p < \infty)$, we denote the spaces of all bounded, convergent, null sequences and p-absolutely convergent series, respectively.

 λ with a linear topology is called a *K*-space provided each of the maps $p_n : \lambda \to \mathbb{C}$ defined by $p_n(x) = x_n$ is continuous for all $n \in \mathbb{N}$, where \mathbb{C} is the set of all complex numbers. If a *K*-space λ is a complete metric space, it is said to be an *FK*-space. A normed *FK*-space is defined as a *BK*-space, hence, a *BK*-space is a Banach sequence space. For instance, the sequence space ℓ_{∞} is a *BK*-space with the norm given by $||u||_{\ell_{\infty}} = \sup_k |u_k|$. Further, ℓ_p is a complete *p*-normed space with respect to the usual *p*-norm defined by

$$||u||_{\ell_p} = \sum_k |u_k|^p \ (0$$

and ℓ_p is a *BK*-space with respect to ℓ_p -norm defined by

$$||u||_{\ell_p} = \left(\sum_k |u_k|^p\right)^{1/p} \ (1 \le p < \infty).$$

Let $B = (b_{nk})$ be an infinite matrix of real or complex numbers b_{nk} , where $n, k \in \mathbb{N}$. Then B defines a matrix mapping from λ into μ and we write $B : \lambda \to \mu$ if for every sequence $u = (u_k) \in \lambda$, the sequence $Bu = (B_n(u))$, the

Received: 28-07-2019, Accepted: 01-09-2019

B-transform of u, is in μ , where

$$B_n(u) = \sum_k b_{nk} u_k \quad (n \in \mathbb{N}).$$
(1.1)

By (λ, μ) , we denote the class of all infinite matrices that map λ into μ . Hence $A \in (\lambda, \mu)$ if and only if the series $\sum_k b_{nk}u_k$ converges for each $n \in \mathbb{N}$ and every $u \in \lambda$, and $Bu \in \mu$ for all $u \in \lambda$. If λ and μ are two arbitrary Banach spaces, then $\mathcal{B}(\lambda, \mu)$ denotes the set of all bounded linear operators from λ into μ .

The *matrix domain* λ_B of an infinite matrix *B* is defined by

$$\lambda_B = \{ u = (u_k) \in \omega : Bu \in \lambda \}$$

which is also a sequence space.

In the literature, there are many papers related to new sequence spaces constructed by means of the matrix domain of a special triangle. See, for example [1]-[20]. For more information about matrix domains of triangles, one can see [21].

A sequence (β_n) in normed space λ is called a *Schauder basis* for λ if for every $u \in \lambda$ there is a unique sequence (α_n) of scalars such that $u = \sum_n \alpha_n \beta_n$, i.e.,

$$\lim_{m \to \infty} \|u - \sum_{n=0}^m \alpha_n \beta_n\| = 0.$$

By cs_0 , cs and bs, we denote the set of all convergent to zero, convergent and bounded series, respectively, that is, $cs_0 = \left\{ u = (u_k) \in \omega : \left(\sum_{k=0}^n u_k\right)_{n=0}^{\infty} \in c_0 \right\}$, $cs = \left\{ u = (u_k) \in \omega : \left(\sum_{k=0}^n u_k\right)_{n=0}^{\infty} \in c \right\}$ and $bs = \left\{ u = (u_k) \in \omega : \left(\sum_{k=0}^n u_k\right)_{n=0}^{\infty} \in c \right\}$ and $bs = \left\{ u = (u_k) \in \omega : \left(\sum_{k=0}^n u_k\right)_{n=0}^{\infty} \in c \right\}$ and we define the norm on cs_0 , cs and bs by $\|u\|_{cs_0} = \|u\|_{cs} = \|u\|_{bs} = \sup_n |\sum_{k=0}^n u_k|$. For all $z \in \omega$, we write $z^{-1} * \mu = \left\{ x \in \omega : xz = (x_k z_k) \in \mu \right\}$. The set $Z = M(\lambda, \mu) = \bigcap_{u \in \lambda} u^{-1} * \mu = \left\{ a \in \omega : au \in \mu \text{ for all } u \in \lambda \right\}$ is called the multiplier space of λ and μ . In the special case, where $\mu = \ell_1$, $\mu = cs$ or $\mu = bs$, the multiplier spaces $\lambda^{\alpha} = M(\lambda, \ell_1)$, $\lambda^{\beta} = M(\lambda, cs)$ and $\lambda^{\gamma} = M(\lambda, bs)$ are called the α -, β - and γ - duals of λ .

Throughout this paper, we assume that $p, q \ge 1$ with $\frac{1}{p} + \frac{1}{q} = 1$ and denote the collection of all finite subsets of \mathbb{N} by \mathcal{F} .

The difference operator $\Delta : \omega \to \omega$ is defined by $\Delta u = (\Delta u_k) = (u_k - u_{k-1})$ or $\Delta u = (\Delta u_k) = (u_{k-1} - u_k)$ for all $u = (u_k) \in \omega$. When λ is a sequence space, the matrix domain λ_{Δ} is called the difference sequence space. For the first time, Kızmaz [22] gave the notion of difference sequence spaces as

$$\lambda(\Delta) = \{ u = (u_k) \in \omega : (u_k - u_{k-1}) \in \lambda \}$$

for $\lambda = \ell_{\infty}, c$ and c_0 . After Kızmaz, Et and Çolak [23] defined the generalized difference sequence spaces

$$\ell_{\infty}(\Delta^m) = \{ u = (u_k) \in \omega : \Delta^m u \in \ell_{\infty} \},\$$
$$c(\Delta^m) = \{ u = (u_k) \in \omega : \Delta^m u \in c \}$$

and

$$c_0(\Delta^m) = \{ u = (u_k) \in \omega : \Delta^m u \in c_0 \},\$$

where $m \in \mathbb{N}$, $\Delta^m u = (\Delta^m u_k) = (\Delta^{m-1} u_k - \Delta^{m-1} u_{k+1})$ and so that

$$\Delta^m u_k = \sum_{i=0}^m (-1)^i \begin{pmatrix} m \\ i \end{pmatrix} u_{k+i}.$$

The difference space

$$bv_p = \{ u = (u_k) \in \omega : (u_k - u_{k-1}) \in \ell_p \} \quad (0$$

was studied by Altay and Başar [24] for $0 and in the case <math>1 \le p \le \infty$ Başar and Altay [25], and Çolak et al [26]. Recently, for $\lambda \in \{\ell_p, c_0, c, \ell_\infty\}$ $(1 \le p < \infty)$, Kirişçi and Başar [4] introduced the generalized difference sequence space

$$\lambda = \{ u = (u_k) :\in \omega : B(r, s)u = ((B(r, s)u)_k) \in \lambda \},\$$

In [27], the Fibonacci band matrix \hat{F} is defined by using Fibonacci numbers. Also, in [27] the Fibonacci difference sequence spaces $\ell_p(\hat{F})$ and $\ell_{\infty}(\hat{F})$ are introduced.

The Riesz matrix $R_q = (r_{nk})$ is defined by

$$r_{nk} = \begin{cases} \frac{q_k}{Q_n} & , & 0 \le k \le n\\ 0 & , & k > n \end{cases}$$

for all $k, n \in \mathbb{N}$ and where (q_k) is the sequence of positive numbers and $Q_n = \sum_{k=0}^n q_k$ for all $n \in \mathbb{N}$. In [28], the paranormed Riesz sequence space is introduced.

In [29], the band matrix $T = (t_{nk})$ is defined by

$$t_{nk} = \begin{cases} t_n & , \quad k = n \\ -\frac{1}{t_n} & , \quad k < n \\ 0 & , \quad k > n \end{cases}$$

where $t_n > 0$ for all $n \in \mathbb{N}$ and $t = (t_n) \in c \setminus c_0$. Also in [29] the difference sequence spaces are introduced as follows:

$$\ell_p(T) = \left\{ u = (u_n) \in \omega : \sum_n \left| t_n u_n - \frac{1}{t_n} u_{n-1} \right|^p < \infty \right\} \quad (1 \le p < \infty)$$

and

$$\ell_{\infty}(T) = \left\{ u = (u_n) \in \omega : \sup_{n} \left| t_n u_n - \frac{1}{t_n} u_{n-1} \right| < \infty \right\}.$$

For more information on some new difference sequence spaces we refer to [30]-[37].

The paper is organized so that this section is followed by three sections. In Section 2 we give the definition of a new matrix and introduce the sequence spaces $\ell_p(\hat{T}^q)$ and $\ell_{\infty}(\hat{T}^q)$, where $1 \leq p < \infty$. We prove that $\ell_p(\hat{T}^q)$ and $\ell_{\infty}(\hat{T}^q)$ are Banach spaces with respect to the norm defined on these spaces. Further, we establish some inclusion theorems related to the space $\ell_p(\hat{T}^q)$, where $1 \leq p \leq \infty$. In section 3 we determine the α -, β -, γ - duals of the space $\ell_p(\hat{T}^q)$ for $1 \leq p \leq \infty$. In the last section we characterize the classes ($\ell_p(\hat{T}^q)$, λ) and ($\lambda, \ell_p(\hat{T}^q)$) for $\lambda \in \{\ell_1, c_0, c, \ell_\infty\}$.

2. The difference sequence space $\ell_p(\hat{T}^q)$

In this section, we introduce a new matrix \hat{T}^q by multiplying Riesz matrix and the band matrix T and introduce the difference sequence space $\ell_p(\hat{T}^q)$ derived by using this matrix, where $1 \le p \le \infty$. Also, we give some theorems which give inclusion relations corcerning this space. By multiplying these matrices we derive a new matrix $\hat{T}^q = (\hat{t}^q_{nk})$ as

$$\hat{t}_{nk}^{q} = \begin{cases} \frac{q_{n}}{Q_{n}}t_{n} & , \quad k = n\\ \frac{q_{k}}{Q_{n}}t_{k} - \frac{q_{k+1}}{Q_{n}}\frac{1}{t_{k+1}} & , \quad k < n\\ 0 & , \quad k > n. \end{cases}$$

 $(\hat{T}^q)^{-1} = ((\hat{t}^q)_{nk}^{-1})$, the inverse of \hat{T}^q can be easily computed as

$$(\hat{t}^{q})_{nk}^{-1} = \begin{cases} \frac{Q_n}{q_n} \frac{1}{t_n} & , \quad k = n\\ Q_k \left[\frac{1}{q_k} \left(t_k \prod_{j=k}^n \frac{1}{t_j^2} \right) - \frac{1}{q_{k+1}} \left(t_{k+1} \prod_{j=k+1}^n \frac{1}{t_j^2} \right) \right] & , \quad k < n\\ 0 & , \quad k > n. \end{cases}$$

Now, let give the definitions of the difference sequence spaces $\ell_p(\hat{T}^q)$ and $\ell_{\infty}(\hat{T}^q)$ derived by this matrix

$$\ell_p(\hat{T}^q) = \left\{ u = (u_n) \in \omega : \sum_n \left| \frac{1}{Q_n} \sum_{k=0}^n q_k \left(t_k u_k - \frac{u_{k-1}}{t_k} \right) \right|^p < \infty \right\} \quad (1 \le p < \infty)$$

and

$$\ell_{\infty}(\hat{T}^q) = \left\{ u = (u_n) \in \omega : \sup_{n} \left| \frac{1}{Q_n} \sum_{k=0}^n q_k \left(t_k u_k - \frac{u_{k-1}}{t_k} \right) \right| < \infty \right\}.$$

For the \hat{T}^{q} -transform of a sequence $u = (u_n)$, we will use the sequence $\hat{u} = (\hat{u}_n)$ defined as

$$\hat{u}_n = \hat{T}_n^q(u) = \frac{1}{Q_n} \sum_{k=0}^n q_k \left(t_k u_k - \frac{u_{k-1}}{t_k} \right) \ (n \in \mathbb{N}).$$
(2.1)

Theorem 2.1. For $1 \le p \le \infty$, $\ell_p(\hat{T}^q)$ is a Banach space with the norm $\|u\|_{\ell_p(\hat{T}^q)} = \|\hat{T}^q u\|_{\ell_p}$, defined as,

$$\|u\|_{\ell_{p}(\hat{T}^{q})} = \begin{cases} \left(\sum_{n} |\hat{T}_{n}^{q}(u)|^{p}\right)^{1/p} &, 1 \le p < \infty \\ \sup_{n} |\hat{T}_{n}^{q}(u)| &, p = \infty. \end{cases}$$

Proof. If we assume that $||u||_{\ell_p(\hat{T}^q)} = 0$. Then, $||\hat{T}^q u||_{\ell_p} = 0$ and since $||.||_{\ell_p}$ is a norm we have $\hat{T}^q u = \theta$. Since it is known that \hat{T}^q is invertible, we have $u = \theta$.

Let $\alpha \in \mathbb{C}$ and $u \in \ell_p(\hat{T}^q)$. Then,

$$\begin{aligned} \|\alpha u\|_{\ell_{p}(\hat{T}^{q})} &= \|\dot{T}^{q}(\alpha u)\|_{\ell_{p}} = \|\alpha \ddot{T}^{q}u\|_{\ell_{p}} \\ &= |\alpha|\|\dot{T}^{q}u\|_{\ell_{p}} = |\alpha|\|u\|_{\ell_{p}(\hat{T}^{q})} \end{aligned}$$

Finally, for $u, v \in \ell_p(\hat{T}^q)$ we have

$$\begin{aligned} \|u+v\|_{\ell_p(\hat{T}^q)} &= \|\hat{T}^q(u+v)\|_{\ell_p} = \|\hat{T}^q u + \hat{T}^q v\|_{\ell_p} \\ &\leq \|\hat{T}^q u\|_{\ell_p} + \|\hat{T}^q v\|_{\ell_p} = \|u\|_{\ell_p(\hat{T}^q)} + \|v\|_{\ell_p(\hat{T}^q)} \end{aligned}$$

and so the triangle inequality holds.

This means that, $(\ell_p(\hat{T}^q), \|.\|_{\ell_p(\hat{T}^q)})$ is a normed sequence space for $1 \le p \le \infty$. To show that $\ell_p(\hat{T}^q)$ is a Banach space, let (u_n) be a Cauchy sequece in $\ell_p(\hat{T}^q)$. Then, (\hat{u}_n) is a sequence in ℓ_p . Obviously,

$$\begin{aligned} \|u_n - u_m\|_{\ell_p(\hat{T}^q)} &= \|\hat{T}^q(u_n - u_m)\|_{\ell_p} \\ &= \|\hat{T}^q u_n - \hat{T}^q u_m\|_{\ell_p} = \|\hat{u}_n - \hat{u}_m\|_{\ell_p}. \end{aligned}$$

hence, (\hat{u}_n) is a Cauchy sequence in ℓ_p . Since $(\ell_p, \|.\|_{\ell_p})$ is a Banach space, there exists $\hat{u} \in \ell_p$ such that $\lim_{n \to \infty} \hat{u}_n = \hat{u}$ in ℓ_p . Since $u = (\hat{T}^q)^{-1}\hat{u}$, we have

$$\lim_{n \to \infty} \|u_n - u\|_{\ell_p(\hat{T}^q)} = \lim_{n \to \infty} \|\hat{T}^q(u_n - u)\|_{\ell_p}$$
$$= \lim_{n \to \infty} \|\hat{T}^q u_n - \hat{T}^q u\|_{\ell_p} = \lim_{n \to \infty} \|\hat{u}_n - \hat{u}\|_{\ell_p} = 0.$$

Hence $\lim_{n\to\infty} u_n = u$ in $\ell_p(\hat{T}^q)$, where $u \in \ell_p(\hat{T}^q)$.

Remark 2.1. $\ell_p(\hat{T}^q)$ is a *BK*-space for $1 \le p \le \infty$.

Theorem 2.2. The sequence spaces $\ell_p(\hat{T}^q)$ and ℓ_p are linearly isomorphic; that is, $\ell_p(\hat{T}^q) \cong \ell_p$ for $1 \le p \le \infty$.

Proof. It must be shown that there exists a linear bijection between the spaces $\ell_p(\hat{T}^q)$ and ℓ_p for $1 \le p \le \infty$. Let \hat{T}^q be the transformation defined from $\ell_p(\hat{T}^q)$ to ℓ_p by $u \to \hat{u} = \hat{T}^q u = (\hat{T}^q_n(u))$. Then, we have $\hat{T}^q u = \hat{u} \in \ell_p$ for every $u \in \ell_p(\hat{T}^q)$. Hence, \hat{T}^q is a linear transformation. Also, \hat{T}^q is injective since $u = \theta$ whenever $\hat{T}^q u = \theta$.

Moreover, let $v = (v_n) \in \ell_p$ be given for $1 \le p \le \infty$ and define the sequence $u = (u_n)$ as follows:

$$u_n = \sum_{k=0}^n Q_k \left[\frac{1}{q_k} \left(t_k \prod_{j=k}^n \frac{1}{t_j^2} \right) - \frac{1}{q_{k+1}} \left(t_{k+1} \prod_{j=k+1}^n \frac{1}{t_j^2} \right) \right] v_k \quad (n \in \mathbb{N}).$$
(2.2)

Then, by combining (2.1) and (2.2), we get for every $n \in \mathbb{N}$

$$\hat{T}_{n}^{q}(u) = \frac{1}{Q_{n}} \sum_{k=0}^{n} q_{k} \left(t_{k} \sum_{r=0}^{k} Q_{r} \left[\frac{1}{q_{r}} \left(t_{r} \prod_{j=r}^{k} \frac{1}{t_{j}^{2}} \right) - \frac{1}{q_{r+1}} \left(t_{r+1} \prod_{j=r+1}^{k} \frac{1}{t_{j}^{2}} \right) \right] v_{r} \right) \\ - \frac{1}{Q_{n}} \sum_{k=0}^{n} q_{k} \left(\frac{1}{t_{k}} \sum_{r=0}^{k-1} Q_{r} \left[\frac{1}{q_{r}} \left(t_{r} \prod_{j=r}^{k-1} \frac{1}{t_{j}^{2}} \right) - \frac{1}{q_{r+1}} \left(t_{r+1} \prod_{j=r+1}^{k-1} \frac{1}{t_{j}^{2}} \right) \right] v_{r} \right) \\ = v_{n}$$

This means that $\hat{T}^q u = v$. Since $v \in \ell_p$, we have $\hat{T}^q u \in \ell_p$. Thus, we conclude that $u \in \ell_p(\hat{T}^q)$ for any $v \in \ell_p$. Hence \hat{T}^q is surjective.

Since $\|u\|_{\ell_p(\hat{T}^q)} = \|\hat{T}^q u\|_{\ell_p}$ for any $u \in \ell_p(\hat{T}^q)$, we have

$$\|v\|_{\ell_p} = \|\hat{T}^q u\|_{\ell_p} = \|u\|_{\ell_p(\hat{T}^q)}$$

which shows that \hat{T}^q preserves the norm, where $1 \le p \le \infty$. Hence, \hat{T}^q is an isometry. As a result, the space $\ell_p(\hat{T}^q)$ is isometrically isomorphic to ℓ_p for $1 \le p \le \infty$.

It is known that the space ℓ_p is not a Hilbert space with $p \neq 2$. The similar result is valid for the space $\ell_p(\hat{T}^q)$ and the following theorem gives this result.

Theorem 2.3. The space $\ell_p(\hat{T}^q)$ is not an inner product space in the case $p \neq 2$. Hence, $\ell_p(\hat{T}^q)$ is not a Hilbert space for $1 \leq p < \infty$ and $p \neq 2$.

Proof. We must show that the space $\ell_2(\hat{T}^q)$ is a Hilbert space while $\ell_p(\hat{T}^q)$ is not a Hilbert space for $p \neq 2$. By Theorem 2.1, we know that $\ell_2(\hat{T}^q)$ is a Banach space with the norm $||u||_{\ell_2(\hat{T}^q)} = ||\hat{T}^q u||_{\ell_2}$ and its norm can be obtained as follows:

$$\|u\|_{\ell_2(\hat{T}^q)} = \langle u, u \rangle_{\ell_2(\hat{T}^q)}^{1/2} = \langle \hat{T}^q u, \hat{T}^q u \rangle_{\ell_2}^{1/2} = \|\hat{T}^q u\|_{\ell_2}^{1/2}$$

for every $u \in \ell_2(\hat{T}^q)$. Hence $\ell_2(\hat{T}^q)$ is a Hilbert space.

Consider the sequences

$$s = (s_n) = \begin{cases} \frac{1}{t_0} & , \quad n = 0\\ \frac{1}{t_0 t_1^2} + \frac{1}{t_1} & , \quad n = 1\\ t_0 \prod_{i=0}^n \frac{1}{t_i^2} + t_1 \prod_{i=1}^n \frac{1}{t_i^2} - \frac{Q_1 t_2}{q_2} \prod_{i=2}^n \frac{1}{t_i^2} & , \quad n \ge 2 \ (n \in \mathbb{N}) \end{cases}$$

and

$$t = (t_n) = \begin{cases} \frac{1}{t_0} & , \quad n = 0\\ \frac{1}{t_0 t_1^2} - \frac{(Q_0 + Q_1)}{q_1 t_1} & , \quad n = 1\\ t_0 \prod_{i=0}^n \frac{1}{t_i^2} - \frac{(Q_0 + Q_1)}{q_1} t_1 \prod_{i=1}^n \frac{1}{t_i^2} + \frac{Q_1 t_2}{q_2} \prod_{i=2}^n \frac{1}{t_i^2} & , \quad n \ge 2 \quad (n \in \mathbb{N}) \end{cases}$$

With the \hat{T}^q -transforms of *s* and *t*, we have the following sequences

$$\hat{T}^q s = (1, 1, 0, 0, ...)$$
 and $\hat{T}^q t = (1, -1, 0, 0, ...).$

Also, it can be easily seen that

$$\|s+t\|^2_{\ell_p(\hat{T}^q)} + \|s-t\|^2_{\ell_p(\hat{T}^q)} = 8 \neq 4(2^{2/p}) = 2(\|s\|^2_{\ell_p(\hat{T}^q)} + \|t\|^2_{\ell_p(\hat{T}^q)})$$

for $p \neq 2$. This means that the parallelogram equality cannot be satisfied by the norm of the space $\ell_p(\hat{T}^q)$ for $p \neq 2$. Therefore, this norm cannot be gained from an inner product. Therefore, the space $\ell_p(\hat{T}^q)$ with $p \neq 2$ is a Banach space but it is not a Hilbert space, where $1 \leq p < \infty$. The proof is completed.

Remark 2.2. Obviously, the space $\ell_{\infty}(\hat{T}^q)$ is also a Banach space but it is not a Hilbert space.

Now, we give some theorems on inclusion relations associated with the space $\ell_p(\hat{T}^q)$.

Theorem 2.4. For $1 \le p < q < \infty$ the inclusion relation $\ell_p(\hat{T}^q) \subset \ell_q(\hat{T}^q)$ strictly holds.

Proof. Let $1 \le p < q < \infty$. If u is any sequence in $\ell_p(\hat{T}^q)$, then its \hat{T}^q -transform $\hat{T}^q u$ is in ℓ_p . Since the inclusion $\ell_p \subset \ell_q$ holds, $\hat{T}^q u$ is also in ℓ_q . Hence $u \in \ell_q(\hat{T}^q)$ which means that $\ell_p(\hat{T}^q) \subset \ell_q(\hat{T}^q)$. Now, we must prove that the inclusion holds strictly. For this, there should be a sequence $\hat{v} = (\hat{v}_n) \in \ell_q$ but not in ℓ_p , i.e., $\hat{v} \in \ell_q \setminus \ell_p$. The existence of $\hat{v} \in \ell_q \setminus \ell_p$ is clear since, as a well known fact, $\ell_p \subset \ell_q$ is a strict inclusion. Let define the sequence $v = (v_n)$ in terms of the sequence \hat{v} as follows:

$$v_n = \sum_{k=0}^n Q_k \left[\frac{1}{q_k} \left(t_k \prod_{j=k}^n \frac{1}{t_j^2} \right) - \frac{1}{q_{k+1}} \left(t_{k+1} \prod_{j=k+1}^n \frac{1}{t_j^2} \right) \right] \hat{v}_k \quad (n \in \mathbb{N}).$$

Then, it is clear that

 $\hat{T}_n^q(v) = \hat{v}_n$

for every $n \in \mathbb{N}$. This shows that $\hat{T}^q v = \hat{v}$ and since $\hat{v} \in \ell_q \setminus \ell_p$, we have $\hat{T}^q v \in \ell_q \setminus \ell_p$. Hence, the sequence v must be in $\ell_q(\hat{T}^q)$ but cannot be in $\ell_p(\hat{T}^q)$, that is, the inclusion $\ell_p(\hat{T}^q) \subset \ell_q(\hat{T}^q)$ is strict. The proof is completed.

Theorem 2.5. For $1 \le p < \infty$ the inclusion $\ell_p(\hat{T}^q) \subset \ell_\infty(\hat{T}^q)$ is strict.

Proof. If $u \in \ell_p(\hat{T}^q)$, then $\hat{T}^q u \in \ell_p$. Since $\ell_p \subset \ell_\infty$, $\hat{T}^q u \in \ell_\infty$. Hence, $u \in \ell_\infty(\hat{T}^q)$ which shows that $\ell_p(\hat{T}^q) \subset \ell_\infty(\hat{T}^q)$. To show that this inclusion is strict, we define the sequence $v = (v_n)$ by

$$v_n = t_0 \prod_{i=0}^n \frac{1}{t_i^2} + \sum_{i=2}^n (-1)^{i-1} \frac{(Q_{i-2} + Q_{i-1})}{q_{i-1}} \left(t_{i-1} \prod_{k=i-1}^n \frac{1}{t_k^2} \right) + (-1)^n \frac{(Q_{n-1} + Q_n)}{q_n t_n} \quad (n \in \mathbb{N})$$

Then, we have for every $n \in \mathbb{N}$ that

$$\hat{T}_{n}^{q}(v) = \frac{1}{Q_{n}} \sum_{k=0}^{n} q_{k} \left(t_{k} v_{k} - \frac{v_{k-1}}{t_{k}} \right)$$
$$= (-1)^{n}.$$

Then, $\hat{T}^q v \in \ell_{\infty} \setminus \ell_p$ since $((-1)^n) \in \ell_{\infty}$ but not in ℓ_p . Thus, v is in $\ell_{\infty}(\hat{T}^q)$ but not in $\ell_p(\hat{T}^q)$ which means that the inclusion $\ell_p(\hat{T}^q) \subset \ell_{\infty}(\hat{T}^q)$ strictly holds. The proof is completed.

3. The α -, β - and γ -duals of the space $\ell_p(\hat{T}^q)$

In this section, we determine the α -, β - and γ -duals of the sequence space $\ell_p(\hat{T}^q)$, where $1 \le p \le \infty$. Also, we give a sequence of the points of the space $\ell_p(\hat{T}^q)$ which forms a basis for this space.

The following known results in [38] and [39] are fundamental for our investigation.

$$\sup_{n} \sum_{k} |b_{nk}|^q < \infty.$$
(3.1)

$\lim_{n \to \infty} b_{nk} \text{ exists for all } k \in \mathbb{N}.$ (3.2)

$$\lim_{n \to \infty} b_{nk} = 0 \text{ for all } k \in \mathbb{N}.$$
(3.3)

$$\sup_{K\in\mathcal{F}}\sum_{k}\left|\sum_{n\in K}b_{nk}\right|^{q}<\infty.$$
(3.4)

$$\sup_{n,k} |b_{nk}| < \infty. \tag{3.5}$$

$$\sup_{k} \sum_{n} |b_{nk}| < \infty.$$
(3.6)

$$\lim_{n \to \infty} \sum_{k} |b_{nk}| = \sum_{k} \left| \lim_{n \to \infty} b_{nk} \right|.$$
(3.7)

$$\lim_{n \to \infty} \sum_{k} |b_{nk}| = 0.$$
(3.8)

Lemma 3.1. Let $B = (b_{nk})$ be an infinite matrix. The following statements hold: **1**. $B \in (\ell_p, \ell_\infty) \Leftrightarrow (3.1)$. **2**. $B \in (\ell_1, \ell_\infty) \Leftrightarrow (3.5)$. **3**. $B \in (\ell_\infty, \ell_\infty) \Leftrightarrow (3.1)$ with q=1. **4**. $B \in (\ell_p, c) \Leftrightarrow (3.1)$ and (3.2). **5**. $B \in (\ell_1, c) \Leftrightarrow (3.2)$ and (3.5). **6**. $B \in (\ell_\infty, c) \Leftrightarrow (3.2)$ and (3.7). **7**. $B \in (\ell_p, c_0) \Leftrightarrow (3.1)$ and (3.3). **8**. $B \in (\ell_1, c_0) \Leftrightarrow (3.3)$ and (3.5). **9**. $B \in (\ell_\infty, c_0) \Leftrightarrow (3.3)$ and (3.8).

10. $B \in (\ell_p, \ell_1) \Leftrightarrow (3.4)$. **11.** $B \in (\ell_1, \ell_1) \Leftrightarrow (3.6)$. **12.** $B \in (\ell_\infty, \ell_1) \Leftrightarrow (3.4)$ with q=1.

Now, let give two lemmas which are needed to determine the $\alpha -, \beta$ - and γ -duals of the space $\ell_p(\hat{T}^q)$, where $1 \leq p \leq \infty$.

Lemma 3.2. Let $a = (a_n) \in \omega$ and the matrix $\hat{B} = (\hat{b}_{nk})$ be defined by $\hat{B}_n = a_n (\hat{T}_n^q)^{-1}$, that is,

$$\hat{b}_{nk} = \begin{cases} 0 & , \quad k > n \\ a_n (\hat{t}^q)_{nk}^{-1} & , \quad 0 \le k \le n \end{cases}$$

for all $k, n \in \mathbb{N}$. Then, $a \in (\ell_p(\hat{T}^q))^{\alpha}$ if and only if $\hat{B} \in (\ell_p, \ell_1)$, where $1 \leq p \leq \infty$.

Proof. Let \hat{u} be the \hat{T}^{q} -transform of a sequence $u = (u_n) \in \omega$. Then, we have

$$a_n u_n = a_n (\hat{T}^q)_n^{-1} (\hat{u}) = \hat{B}_n (\hat{u})$$

for all $n \in \mathbb{N}$. So, from this equality it can be easily seen that $au = (a_n u_n) \in \ell_1$ with $u \in \ell_p(\hat{T}^q)$ if and only if $\hat{B}\hat{u} \in \ell_1$ with $\hat{u} \in \ell_p$. This implies that $a \in (\ell_p(\hat{T}^q))^{\alpha}$ if and only if $\hat{B} \in (\ell_p, \ell_1)$. The proof is completed.

Lemma 3.3. [40, Theorem 3.1] Let $C = (c_{nk})$ be defined via a sequence $a = (a_k) \in \omega$ and the inverse matrix $V = (v_{nk})$ of the triangle matrix $U = (u_{nk})$ by

$$c_{nk} = \begin{cases} 0 & , \quad k > n\\ \sum_{j=k}^{n} a_j v_{jk} & , \quad 0 \le k \le n \end{cases}$$

for all $k, n \in \mathbb{N}$. Then,

$$\begin{split} (\ell_p(U))^{\gamma} &= \{ a = (a_k) \in \omega : C \in (\ell_p, \ell_{\infty}) \}, \\ (\ell_p(U))^{\beta} &= \{ a = (a_k) \in \omega : C \in (\ell_p, c) \}, \end{split}$$

where $1 \leq p \leq \infty$.

Combining Lemmas 3.1-3.3 we have;

Corollary 3.1. Let the sets $\hat{d}_1, \hat{d}_2, \hat{d}_3, \hat{d}_4, \hat{d}_5$ and \hat{d}_6 be defined as follows:

$$\hat{d_1} = \left\{ a = (a_k) \in \omega : \sup_{K \in \mathcal{F}} \sum_k \left| \sum_{n \in K} \left(Q_k \left[\frac{1}{q_k} \left(t_k \prod_{j=k}^n \frac{1}{t_j^2} \right) - \frac{1}{q_{k+1}} \left(t_{k+1} \prod_{j=k+1}^n \frac{1}{t_j^2} \right) \right] \right) a_n \right|^q < \infty \right\},$$
$$\hat{d_2} = \left\{ a = (a_k) \in \omega : \sum_{j=k}^\infty \left(Q_k \left[\frac{1}{q_k} \left(t_k \prod_{i=k}^j \frac{1}{t_i^2} \right) - \frac{1}{q_{k+1}} \left(t_{k+1} \prod_{i=k+1}^j \frac{1}{t_i^2} \right) \right] \right) a_j \text{ exists for each } k \in \mathbb{N} \right\},$$

$$\begin{split} \hat{d}_{3} &= \left\{ a = (a_{k}) \in \omega : \sup_{n} \sum_{k=0}^{n} \left| \sum_{j=k}^{n} \left(Q_{k} \left[\frac{1}{q_{k}} \left(t_{k} \prod_{i=k}^{j} \frac{1}{t_{i}^{2}} \right) - \frac{1}{q_{k+1}} \left(t_{k+1} \prod_{i=k+1}^{j} \frac{1}{t_{i}^{2}} \right) \right] \right) a_{j} \right|^{q} < \infty \right\} \\ \hat{d}_{4} &= \left\{ a = (a_{k}) \in \omega : \lim_{n \to \infty} \sum_{k=0}^{n} \left| \sum_{j=k}^{n} \left(Q_{k} \left[\frac{1}{q_{k}} \left(t_{k} \prod_{i=k}^{j} \frac{1}{t_{i}^{2}} \right) - \frac{1}{q_{k+1}} \left(t_{k+1} \prod_{i=k+1}^{j} \frac{1}{t_{i}^{2}} \right) \right] \right) a_{j} \right| \right\}, \\ \hat{d}_{5} &= \left\{ a = (a_{k}) \in \omega : \sup_{k} \sum_{n} \left| \left(Q_{k} \left[\frac{1}{q_{k}} \left(t_{k} \prod_{j=k}^{n} \frac{1}{t_{j}^{2}} \right) - \frac{1}{q_{k+1}} \left(t_{k+1} \prod_{j=k+1}^{n} \frac{1}{t_{j}^{2}} \right) \right] \right) a_{n} \right| < \infty \right\} \\ \hat{d}_{6} &= \left\{ a = (a_{k}) \in \omega : \sup_{n,k} \left| \sum_{j=k}^{n} \left(Q_{k} \left[\frac{1}{q_{k}} \left(t_{k} \prod_{i=k}^{j} \frac{1}{t_{i}^{2}} \right) - \frac{1}{q_{k+1}} \left(t_{k+1} \prod_{i=k+1}^{j} \frac{1}{t_{i}^{2}} \right) \right] \right) a_{j} \right| < \infty \right\}. \\ \hat{d}_{6} &= \left\{ a = (a_{k}) \in \omega : \sup_{n,k} \left| \sum_{j=k}^{n} \left(Q_{k} \left[\frac{1}{q_{k}} \left(t_{k} \prod_{i=k}^{j} \frac{1}{t_{i}^{2}} \right) - \frac{1}{q_{k+1}} \left(t_{k+1} \prod_{i=k+1}^{j} \frac{1}{t_{i}^{2}} \right) \right] \right) a_{j} \right| < \infty \right\}. \\ n, the following statements hold: \end{split}$$

and

Then, the following statements hold: (a) $(\ell_p(\hat{T}^q))^{\alpha} = \hat{d}_1$ and $(\ell_1(\hat{T}^q))^{\alpha} = \hat{d}_5$, where 1 .

 $\begin{array}{l} \text{(a)} \ (p(1^{-})) & = \hat{d}_1 \ \text{min} \ (e_1(1^{-})) & = \hat{d}_3 \text{, where } 1$

Now, we give the Schauder basis of the space $\ell_p(\hat{T}^q)$ $(1 \le p < \infty)$.

Theorem 3.1. Let $1 \le p < \infty$ and define the sequence $c^{(k)} \in \ell_p(\hat{T}^q)$ for every fixed $k \in \mathbb{N}$ by

$$(c^{(k)})_{n} = \begin{cases} 0, & n < k \\ \left(Q_{k} \left[\frac{1}{q_{k}} \left(t_{k} \prod_{j=k}^{n} \frac{1}{t_{j}^{2}} \right) - \frac{1}{q_{k+1}} \left(t_{k+1} \prod_{j=k+1}^{n} \frac{1}{t_{j}^{2}} \right) \right] \right), & n \geq k \quad (n \in \mathbb{N}). \end{cases}$$
(3.9)

Then the sequence $(c^{(k)})$ is a basis for the space $\ell_p(\hat{T}^q)$, and every $u \in \ell_p(\hat{T}^q)$ has a unique representation of the form

$$u = \sum_{k} \hat{T}_{k}^{q}(u) c^{(k)}.$$
(3.10)

Proof. Let $1 \le p < \infty$. By (3.9), it is clear that $\hat{T}^q(c^{(k)}) = e^{(k)} \in \ell_p$ and $c^{(k)} \in \ell_p(\hat{T}^q)$ for all $k \in \mathbb{N}$.

Also, let $u \in \ell_p(\hat{T}^q)$ given. For every non-negative integer m, we put

$$u^{(m)} = \sum_{k=0}^{m} \hat{T}_{k}^{q}(u) c^{(k)}.$$

Then, we obtain

$$\hat{T}^{q}(u^{(m)}) = \sum_{k=0}^{m} \hat{T}^{q}_{k}(u)\hat{T}^{q}(c^{(k)}) = \sum_{k=0}^{m} \hat{T}^{q}_{k}(u)e^{(k)}$$

and so

$$\hat{T}_n^q(u - u^{(m)}) = \begin{cases} 0 & (0 \le n \le m) \\ \hat{T}_n^q(u) & (n > m). \end{cases}$$

Let $\epsilon > 0$ be given. Then, there exists a non-negative integer m_0 which satisfies

$$\sum_{n=m_0+1}^{\infty} |\hat{T}_n^q(u)|^p \le \left(\frac{\epsilon}{2}\right)^p$$

So, we obtain for every $m \ge m_0$ that

$$\|u - u^{(m)}\|_{\ell_p(\hat{T}^q)} = \left(\sum_{n=m+1}^{\infty} |\hat{T}_n^q(u)|^p\right)^{1/p} \le \left(\sum_{n=m_0+1}^{\infty} |\hat{T}_n^q(u)|^p\right)^{1/p} \le \frac{\epsilon}{2} < \epsilon$$

which indicates that $\lim_{m\to\infty} ||u-u^{(m)}||_{\ell_p(\hat{T}^q)} = 0$ and hence u is shown as in (3.10).

Finally, we must prove that the representation (3.10) of $u \in \ell_p(\hat{T}^q)$ is unique. Assume that $u = \sum_k \mu_k(u)c^{(k)}$. The continuity of the linear transformation $\hat{T}^q : \ell_p(\hat{T}^q) \to \ell_p$ which is defined in the proof of Theorem 2.2 is clear, we have

$$\hat{T}_{n}^{q}(u) = \sum_{k} \mu_{k}(u) \hat{T}_{n}^{q}(c^{(k)}) = \sum_{k} \mu_{k}(u) \delta_{nk} = \mu_{n}(u) \quad (n \in \mathbb{N})$$

Hence, the representation (3.10) of $u \in \ell_p(\hat{T}^q)$ is unique. The proof is completed.

4. Characterization of some matrix transformations on $\ell_p(T^q)$

In this section of the study, we obtain the characterization of the classes $(\ell_p(\hat{T}^q), \lambda), (\lambda, \ell_p(\hat{T}^q))$, where $1 \le p \le \infty$, $\lambda \in \{\ell_1, c_0, c, \ell_\infty\}$ and $\mu \in \{\ell_1, \ell_\infty\}$.

Throughout this section, we write $b(n,k) = \sum_{j=0}^{n} b_{jk}$ for given an infinite matrix $B = (b_{nk})$, where $n, k \in \mathbb{N}$. Firstly, we give a theorem which is essential for our results.

Theorem 4.1. Let $1 \le p \le \infty$. Then, we have $B = (b_{nk}) \in (\ell_p(\hat{T}^q), \lambda)$ if and only if

$$E^{(m)} = \left(e_{nk}^{(m)}\right) \in (\ell_p, c) \text{ for all } n \in \mathbb{N},$$
(4.1)

$$E = (e_{nk}) \in (\ell_p, \lambda), \tag{4.2}$$

where
$$e_{nk}^{(m)} = \begin{cases} 0, & k > m \\ \sum_{j=k}^{m} Q_k \left[\frac{1}{q_k} \left(t_k \prod_{i=k}^{j} \frac{1}{t_i^2} \right) - \frac{1}{q_{k+1}} \left(t_{k+1} \prod_{i=k+1}^{j} \frac{1}{t_i^2} \right) \right] b_{nj}, & 0 \le k \le m \end{cases}$$

and $e_{nk} = \sum_{j=k}^{\infty} Q_k \left[\frac{1}{q_k} \left(t_k \prod_{i=k}^{j} \frac{1}{t_i^2} \right) - \frac{1}{q_{k+1}} \left(t_{k+1} \prod_{i=k+1}^{j} \frac{1}{t_i^2} \right) \right] b_{nj} \text{ for all } k, m, n \in \mathbb{N}.$

Proof. For the proof, we follow the similar tecnique due to Kirişçi and Başar [4]. Let $B = (b_{nk}) \in (\ell_p(T), \lambda)$ and $u = (u_k) \in \ell_p(\hat{T}^q)$. By (2.2), we have

$$\sum_{k=0}^{m} b_{nk} u_{k} = \sum_{k=0}^{m} b_{nk} \left(\sum_{j=0}^{k} Q_{j} \left[\frac{1}{q_{j}} \left(t_{j} \prod_{i=j}^{k} \frac{1}{t_{i}^{2}} \right) - \frac{1}{q_{j+1}} \left(t_{j+1} \prod_{i=j+1}^{j} \frac{1}{t_{i}^{2}} \right) \right] \right) \hat{u}_{j}$$
$$= \sum_{k=0}^{m} \left(\sum_{j=k}^{m} Q_{k} \left[\frac{1}{q_{k}} \left(t_{k} \prod_{i=k}^{j} \frac{1}{t_{i}^{2}} \right) - \frac{1}{q_{k+1}} \left(t_{k+1} \prod_{i=k+1}^{j} \frac{1}{t_{i}^{2}} \right) \right] b_{nj} \right) \hat{u}_{k}$$
$$= \sum_{k=0}^{m} e_{nk}^{(m)} \hat{u}_{k}$$
$$= E_{n}^{(m)} (\hat{u})$$

for all $m, n \in \mathbb{N}$. Since Bu exists, $E^{(m)}$ belongs to the class (ℓ_p, c) . Letting $m \to \infty$ in the last equality, we obtain $Bu = U\hat{u}$ which gives the result $E \in (\ell_p, \lambda)$.

Conversely, suppose the conditions (4.1), (4.2) hold and take any $u \in \ell_p(T)$. Then, we have $(e_{nk})_{k \in \mathbb{N}} \in \ell_p^\beta$ which gives together with (4.1) that $B_n = (b_{nk})_{k \in \mathbb{N}} \in (\ell_p(\hat{T}^q))^\beta$ for all $n \in \mathbb{N}$. Thus, Bu exists. Therefore, we derive by the above equality as $m \to \infty$ that $Bu = E\hat{u}$, and this shows that $B \in (\ell_p(\hat{T}^q), \lambda)$.

The following conditions are necessary for our study:

$$\sup_{n} \sum_{k} |e_{nk}|^q < \infty.$$
(4.3)

 $\lim_{n \to \infty} e_{nk} \text{ exists for all } k \in \mathbb{N}.$ (4.4)

$$\lim_{n \to \infty} e_{nk} = 0 \text{ for all } k \in \mathbb{N}.$$
(4.5)

$$\sup_{K\in\mathcal{F}}\sum_{k}\left|\sum_{n\in K}e_{nk}\right|^{q}<\infty.$$
(4.6)

$$\sup_{n,k} |e_{nk}| < \infty. \tag{4.7}$$

$$\sup_{k} \sum_{n} |e_{nk}| < \infty.$$
(4.8)

$$\lim_{n \to \infty} \sum_{k} |e_{nk}| = \sum_{k} \left| \lim_{n \to \infty} e_{nk} \right|.$$
(4.9)

$$\lim_{n \to \infty} \sum_{k} |e_{nk}| = 0. \tag{4.10}$$

$$\lim_{m \to \infty} e_{nk}^{(m)} \ exists \ (\forall n, k \in \mathbb{N}),$$
(4.11)

$$\sup_{m,k} \left| e_{nk}^{(m)} \right| < \infty \ (\forall n \in \mathbb{N})$$
(4.12)

$$\sup_{m} \sum_{k=0}^{m} \left| e_{nk}^{(m)} \right|^{q} < \infty \tag{4.13}$$

$$\lim_{m \to \infty} \sum_{k=0}^{m} \left| e_{nk}^{(m)} \right| = \sum_{k} \left| e_{nk} \right| \text{ for each } n \in \mathbb{N}$$

$$(4.14)$$

$$\sup_{N,K\in\mathcal{F}} \left| \sum_{n\in N} \sum_{k\in K} e_{nk} \right| < \infty$$
(4.15)

We obtain the following results by combining Theorem 4.1 and previous conditions.

Theorem 4.2. *The following statements hold:*

1. $B = (b_{nk}) \in (\ell_1(\hat{T}^q), \ell_\infty) \Leftrightarrow (4.7), (4.11) and (4.12).$ **2.** $B = (b_{nk}) \in (\ell_p(\hat{T}^q), \ell_\infty) \Leftrightarrow (4.3), (4.11) and (4.13).$ **3.** $B = (b_{nk}) \in (\ell_\infty(\hat{T}^q), \ell_\infty) \Leftrightarrow (4.11), (4.14) and (4.3) with q=1.$ **4.** $B = (b_{nk}) \in (\ell_1(\hat{T}^q), c) \Leftrightarrow (4.4), (4.7), (4.11) and (4.12).$ **5.** $B = (b_{nk}) \in (\ell_p(\hat{T}^q), c) \Leftrightarrow (4.3), (4.4), (4.11) and (4.13).$ **6.** $B = (b_{nk}) \in (\ell_\infty(\hat{T}^q), c) \Leftrightarrow (4.4), (4.9), (4.11) and (4.14).$ **7.** $B = (b_{nk}) \in (\ell_1(\hat{T}^q), c_0) \Leftrightarrow (4.5), (4.7), (4.11) and (4.12).$ **8.** $B = (b_{nk}) \in (\ell_p(\hat{T}^q), c_0) \Leftrightarrow (4.5), (4.10), (4.11) and (4.13).$ **9.** $B = (b_{nk}) \in (\ell_\infty(\hat{T}^q), c_0) \Leftrightarrow (4.5), (4.10), (4.11) and (4.14).$ **10.** $B = (b_{nk}) \in (\ell_p(\hat{T}^q), \ell_1) \Leftrightarrow (4.8), (4.11) and (4.13).$ **12.** $B = (b_{nk}) \in (\ell_\infty(\hat{T}^q), \ell_1) \Leftrightarrow (4.6), (4.11) and (4.14).$

By using Theorem 4.2, we derive the following result:

Corollary 4.1. *The following statements hold:*

1. $B = (b_{nk}) \in (\ell_1(\hat{T}^q), cs_0) \Leftrightarrow (4.5), (4.7) and (4.11), (4.12).$ **2.** $B = (b_{nk}) \in (\ell_p(\hat{T}^q), cs_0) \Leftrightarrow (4.3), (4.5) and (4.11), (4.13).$ **3.** $B = (b_{nk}) \in (\ell_\infty(\hat{T}^q), cs_0) \Leftrightarrow (4.5), (4.10) and (4.11), (4.14).$ **4.** $B = (b_{nk}) \in (\ell_1(\hat{T}^q), cs) \Leftrightarrow (4.4), (4.7) and (4.11), (4.12).$ **5.** $B = (b_{nk}) \in (\ell_p(\hat{T}^q), cs) \Leftrightarrow (4.3), (4.4) and (4.11), (4.13).$ **6.** $B = (b_{nk}) \in (\ell_\infty(\hat{T}^q), cs) \Leftrightarrow (4.4), (4.9) and (4.11), (4.14).$ **7.** $B = (b_{nk}) \in (\ell_1(\hat{T}^q), bs) \Leftrightarrow (4.7) and (4.11), (4.12).$ **8.** $B = (b_{nk}) \in (\ell_p(\hat{T}^q), bs) \Leftrightarrow (4.3) and (4.11), (4.13).$ **9.** $B = (b_{nk}) \in (\ell_\infty(\hat{T}^q), bs) \Leftrightarrow (4.3) with q = 1 and (4.11), (4.14)$ Now, we introduce the matrix transformations from the space $\lambda \in \{\ell_1, c_0, c, \ell_\infty\}$ to $\ell_p(\hat{T}^q)$, where $1 \le p \le \infty$. Before this, we give the necessary and sufficient conditions for the matrix transformation *B* is in (λ, ℓ_p) .

Lemma 4.1. *The following statements hold:*

(a) $B \in (\ell_{\infty}, \ell_p) = (c, \ell_p) = (c_0, \ell_p)$ if and only if

$$\sup_{K\in\mathcal{F}}\sum_{k}\left|\sum_{n\in K}b_{nk}\right|^{p}<\infty, \text{ where } 1\leq p<\infty.$$
(4.16)

(b) $B \in (\ell_{\infty}, \ell_{\infty}) = (c, \ell_{\infty}) = (c_0, \ell_{\infty})$ if and only if

$$\sup_{n}\sum_{k}|b_{nk}|<\infty.$$
(4.17)

(c) $B \in (\ell_1, \ell_p)$ if and only if

$$\sup_{k} \sum_{n} |b_{nk}|^p < \infty, \text{ where } 1 \le p < \infty.$$
(4.18)

When we change the roles of the spaces $\ell_p(\hat{T}^q)$ and ℓ_p with λ in Theorem 4.1, we obtain the following theorem. **Theorem 4.3.** Assume that the terms of the infinite matrices $B = (b_{nk})$ and $\tilde{B} = (\tilde{b}_{nk})$ satisfies the following relation

$$\tilde{b}_{nk} = \sum_{r=0}^{n-1} \left(\frac{q_r}{Q_n} t_r - \frac{q_{r+1}}{Q_n} \frac{1}{t_{r+1}} \right) b_{rk} + \frac{q_n}{Q_n} t_n b_{nk}$$
(4.19)

for all $k, n \in \mathbb{N}$ and λ be any given sequence space. Then, $B \in (\lambda, \ell_p(\hat{T}^q))$ if and only if $\tilde{B} \in (\lambda, \ell_p)$, where $1 \le p \le \infty$.

Proof. Let $u = (u_k) \in \lambda$. Then, by using the relation (4.19) one can easily obtain the following equality

$$\sum_{k=0}^{m} \tilde{b}_{nk} u_k = \sum_{k=0}^{m} \left(\sum_{r=0}^{n-1} \left(\frac{q_r}{Q_n} t_r - \frac{q_{r+1}}{Q_n} \frac{1}{t_{r+1}} \right) b_{rk} + \frac{q_n}{Q_n} t_n b_{nk} \right) u_k \text{ for all } m, n \in \mathbb{N}$$

which yields as $m \to \infty$ that $(\tilde{B}_n(u)) = (\hat{T}_n^q(Bu))$. Therefore, we conclude that $Bu \in \ell_p(\hat{T}^q)$ for $u \in \lambda$ if and only if $\tilde{B}u \in \ell_p$ for $u \in \lambda$, where $1 \le p \le \infty$. The proof is completed.

By combining Lemma 4.1 and Theorem 4.3, we obtain the following results:

- **Corollary 4.2.** Let the matrices $B = (b_{nk})$ and $\tilde{B} = (\tilde{b}_{nk})$ be connected by (4.19). Then, we obtain: (a) $B = (b_{nk}) \in (\ell_{\infty}, \ell_1(\hat{T}^q)) = (c, \ell_1(\hat{T}^q)) = (c_0, \ell_1(\hat{T}^q))$ if and only if (4.16) holds with p = 1 and \tilde{b}_{nk} instead of b_{nk} . (b) $B = (b_{nk}) \in (\ell_1, \ell_1(\hat{T}^q))$ if and only if (4.18) holds with p = 1 and \tilde{b}_{nk} instead of b_{nk} .
- **Corollary 4.3.** Let the matrices $B = (b_{nk})$ and $\tilde{B} = (\tilde{b}_{nk})$ be connected by (4.19). For 1 , we obtain: $(a) <math>B = (b_{nk}) \in (\ell_{\infty}, \ell_p(\hat{T}^q)) = (c, \ell_p(\hat{T}^q)) = (c_0, \ell_p(\hat{T}^q))$ if and only if (4.16) holds with \tilde{b}_{nk} instead of b_{nk} . (b) $B = (b_{nk}) \in (\ell_1, \ell_p(\hat{T}^q))$ if and only if (4.18) holds with \tilde{b}_{nk} instead of b_{nk} .
- **Corollary 4.4.** Let the matrices $B = (b_{nk})$ and $\tilde{B} = (\tilde{b}_{nk})$ be connected by (4.19). Then, we obtain: (a) $B = (b_{nk}) \in (\ell_{\infty}, \ell_{\infty}(\hat{T}^q)) = (c, \ell_{\infty}(\hat{T}^q)) = (c_0, \ell_{\infty}(\hat{T}^q))$ if and only if (4.17) holds with \tilde{b}_{nk} instead of b_{nk} . (b) $B = (b_{nk}) \in (\ell_1, \ell_{\infty}(\hat{T}^q))$ if and only if (3.5) holds with \tilde{b}_{nk} instead of b_{nk} .

References

- [1] Bektaş, Ç. A., Et, M. and Çolak, R., Generalized difference sequence spaces and their dual spaces. *J. Math. Anal. Appl.* 292 (2004), no. 2, 423-432.
- [2] Aydın, C. and Başar, F., Some new sequence spaces which include the spaces ℓ_p and ℓ_{∞} . *Demonstratio Math.* 38 (2005), no. 3, 641-656.
- [3] Mursaleen, M., Başar, F. and Altay, B., On the Euler sequence spaces which include the spaces ℓ_p and ℓ_{∞} II. *Nonlinear Anal.* 65 (2006), no. 3, 707–717.

- [4] Kirişçi, M. and Başar, F., Some new sequence spaces derived by the domain of generalized difference matrix. *Comput. Math. Appl.* 60 (2010), no. 5, 1299-1309.
- [5] Polat, H., Karakaya, V. and Şimşek, N., Difference sequence spaces derived by using a generalized weighted mean. *Appl. Math. Lett.* 24 (2011), no. 5, 608-614.
- [6] Mursaleen, M. and Noman, A. K., On some new sequence spaces of non-absolute type related to the spaces ℓ_p and ℓ_{∞} I. *Filomat* 25 (2011), no. 2, 33-51.
- [7] Savaş, E., Matrix transformations between some new sequence spaces. Tamkang J. Math. 19 (1988), no. 4, 75-80.
- [8] Candan, M., A new sequence space isomorphic to the space $\ell(p)$ and compact operators. *J. Math. Comput. Sci.* 4 (2014), no. 2, 306-334.
- [9] Kara, E. E. and İlkhan, M., Some properties of generalized Fibonacci sequence spaces. *Linear Multilinear Algebra* 64 (2016), no. 11, 2208-2223.
- [10] Demiriz, S. and Duyar, O., Domain of the generalized double Cesaro matrix in some paranormed spaces of double sequences. *Tbil. Math. J.* 10 (2017), no. 2, 43-56.
- [11] Altay, B. and Kama, R., On Cesaro summability of vector valued multiplier spaces and operator valued series. *Positivity* 22 (2018), no. 2, 575-586.
- [12] Das, A. and Hazarika, B., Some new Fibonacci difference spaces of non-absolute type and compact operators. *Linear Multilinear Algebra*, 65 (2017), no. 12, 2551-2573.
- [13] S. Demiriz and C. Çakan, Some topological and geometrical properties of a new difference sequence space. *Abstr. Appl. Anal.* 2011 (2011), Article ID 213878, 14 pages.
- [14] Ellidokuzoğlu H. B. and S. Demiriz, Euler-Riesz difference sequence spaces. *Turk. J. Math. Comput. Sci.* 7 (2017), 63-72.
- [15] Kirişçi, M., The application domain of infinite matrices with algorithms. Univers. J. Math. Appl. 1 (2018), no. 1, 1-9.
- [16] Ellidokuzoğlu, H. B., Demiriz, S. and Köseoğlu, A., On the paranormed binomial sequence spaces. Univers. J. Math. Appl. 1 (2018), no. 3, 137-147.
- [17] Hazar, G. C. and Sarıgöl, M. A., On absolute Nörlund spaces and matrix operators. Acta Math. Sin. (Engl. Ser.) 34 (2018), no. 5, 812-826.
- [18] Hazar, G. C. and Sarıgöl, M. A., Absolute Cesàro series spaces and matrix operators. Acta Appl. Math. 154 (2018), no. 1, 153-165.
- [19] Gökçe, F. and Sarıgöl, M. A., Generalization of the absolute Cesàro space and some matrix transformations. *Numer. Funct. Anal. Optim.* 40 (2019), no. 9, 1039–1052.
- [20] İlkhan, M. and Kara, E. E., A new Banach space defined by Euler Totient matrix operator, *Oper. Matrices* 13 (2019), no. 2, 527-544.
- [21] Başar, F., Summability Theory and Its Applications, Bentham Science Publishers, İstanbul, 2012.
- [22] Kızmaz, H., On certain sequence spaces. Can. Math. Bull. 24 (1981), no. 2, 169-176.
- [23] Et, M. and Çolak, R., On some generalized difference sequence spaces. Soochow J. Math. 21 (1995), 377-386.
- [24] Altay, B. and Başar, F., The matrix domain and the fine spectrum of the difference operator Δ on the sequence space ℓ_p , 0 .*Commun. Math. Anal.*2 (2007), no. 2, 1-11.
- [25] Başar, F. and Altay, B., On the space of sequences of *p*-bounded variation and related matrix mappings. *Ukr. Math. J.* 55 (2003), 136–147.
- [26] Çolak, R., Et, M. and Malkowsky, E., Some topics of sequence spaces, Lecture Notes in Mathematics, Firat Univ. Press, Firat Univ. Elazığ, Turkey, 1-63, 2004.

- [27] Kara, E. E., Some topological and geometrical properties of new Banach sequence spaces. *J. Inequal. Appl.* 2013:38 (2013), 15 pages.
- [28] Altay, B., Başar, F., On the paranormed Riesz sequence spaces of non-absolute type. Southeast Asian Bull. Math. 26 (2003), no. 5, 701–715.
- [29] Kara, E. E. and İlkhan, M., On some Banach sequence spaces derived by a new band matrix. *British J. Math. Comput. Sci.* 9 (2015), no. 2, 141-159.
- [30] Sarıgöl, M. A., On difference sequence spaces. J. Karadeniz Tech. Univ., Fac. Arts Sci., Ser. Math.-Phys. 10 (1987), 63-71.
- [31] Et, M., On some difference sequence spaces. Turkish J. Math. 17 (1993), 18-24.
- [32] Sönmez, A, Almost convergence and triple band matrix. Math. Comput. Model. 57 (2013), 2393-2402.
- [33] Mursaleen, M. and Noman, A. K., On some new difference sequence spaces of non-absolute type. *Math. Comput. Model.* 52 (2010), 603-617.
- [34] Altay, B., Başar, F. and Mursaleen, M., On the Euler sequence spaces which include the spaces ℓ_p and ℓ_{∞} I. *Inform. Sci.* 176 (2006), no. 10, 1450-1462.
- [35] Aydın, C. and Başar, F., Some new difference sequence spaces. Appl. Math. Comput. 157 (2004), no. 3, 677-693.
- [36] Candan, M., Domain of the double sequential band matrix in the classical sequence spaces. *J. Inequal. Appl.* 2012:281 (2012), 15 pages.
- [37] Candan, M., Almost convergence and double sequential band matrix. Acta Math. Sci. 34B (2014), no. 2, 354-366.
- [38] Stieglitz, M. and Tietz, H., Matrix transformationen von folgenraumen eine ergebnisübersicht. *Math. Z.* 154 (1977), 1-16.
- [39] Maddox, I. J., Lecture Notes in Mathematics. Infinite Matrices of Operators, Springer-Verlag, Berlin Heidelberg New York, 1980.
- [40] Altay, B. and Başar, F., Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space. *J. Math. Anal. Appl.* 336 (2007), no. 1, 632-645.

Affiliations

PINAR ZENGIN ALP **ADDRESS:** Düzce University, Dept. of Mathematics, 81620, Düzce-Turkey. **E-MAIL:** pinarzenginalp@gmail.com **ORCID ID:0000-0001-9699-7199**

MERVE İLKHAN **ADDRESS:** Düzce University, Dept. of Mathematics, 81620, Düzce-Turkey. **E-MAIL:** merveilkhan@duzce.edu.tr **ORCID ID:0000-0002-0831-1474**