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Abstract
In this paper, we characterize the de Sitter space by means of spacelike and timelike curves that fully
lies on it. For this purpose, we consider the tangential part of the second derivative of the unit speed
curve on the hypersurface, and obtain the vector equations of the geodesics. We find the geodesics as
hyperbolas, ellipses, and helices. Moreover, we give an example of null curve with constant curvature in
4−dimensional Minkowski space and we illustrate the geodesics of S11(r)× R.
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1. Introduction
Let we consider (n+ 1)−dimensional Minkowski space Ln+1 = Rn+1

1 endowed with the standart flat metric
ds2 = −dx21+dx22+ ...+dx2n+1, where x = (x1, x2, ..., xn+1) ∈ Ln+1. De Sitter space can be defined as a submanifold
of a generalized Minkowski space of one higher dimension. For r > 0, the n−dimensional de Sitter space Sn1 (r) is
defined as the following hyperquadric of Ln+1

Sn1 (r) =
{
x ∈ Ln+1 : 〈x, x〉 = r2

}
The metric on the de Sitter space is the metric induced from the ambient Minkowski metric. The induced metric is
nondegenerate and has Lorentzian signature. De Sitter spacetime is the maximally symmetric spacetime of constant
positive curvature. It is a solution of the vacuum Einstein equations with a positive cosmological constant. For
n ≥ 3, the de Sitter space Sn1 (r) is a simply connected Lorentzian space form with constant sectional curvature 1/r2.

In [1], the authors characterized the unit sphere in terms of the curves on hypersurfaces and curvatures. For a
closed hypersurface in Rn+1, they proved that “If every curve on M has curvature ≥ 1 and there exits a curve γ of
lenght π with constant curvature 1 on M, then M is the unit sphere”. Meanwhile, they compared the curvature
κ of the curve γ on a hypersurface and normal curvature at initial point γ(0) of the curve. In [6], the authors
defined some conditions related with the curves and normal curvature, in the direction of any tangent vector to
surface. They stated these conditions as “Every unit speed curve X(s) on hyperbolic space with raidus r satisfies
〈X ′′(s), X ′′(s)〉 ≥ −1/r2” and “For every unit tangent vector v to M, the normal curvature κn(v) in the direction
of v satisfies |κn(v)| ≤ 1/r”. They used this two conditions for find the geodesics of space and characterize the
hyperbolic spaces. In ([2], p.457), condition about the chord property of the curve is given by

〈X(t)−X(s), T (t)− T (s)〉 = 0

where the X(s) is unit speed curve and T is the unit tangent vector field of the curve. The authors showed that, the
curves which satisfy condition above are the curves with constant curvatures. These curves have some interesting
properties, for instance, the unit tangent vector field of the curve is given as T (s) = AX(s) + b for any constant
skew symmetric matrix A and constant vector b. Also the derivatives of

∣∣X(k)(s)
∣∣ are constant for all k, 1 ≤ k ≤ n,
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in n−dimensional Euclidean space. In [9], the unit speed nonnull curves with constant curvature are called as
“C−curve” in Minkowski space. The authors proved that the norm of the high order derivatives of the C−curves
are constant and the unit tangent vector field of the curve is T (s) = AX(s) + c, for suitable constant semi skew
symmetric matrix A, in Minkowski space. In ([8], p.89), O’Neill gave an important result for the geodesics of the
product manifolds by the following.

Lemma 1.1. Let M and N be hypersurfaces in Minkowski space. A curve γ(s) = (α(s), β(s)) in M ×N is a geodesic if and
only if its projections α in M and β in N are both geodesics.

We use this Lemma for state the geodesics of Sn−11 (r) × R. When we do this, we add the linear term to the
equation of geodesics of the de Sitter space.

In [10], null curves that parametrized by the pseudo-arc on Sn1 (r) are characterized in terms of Cartan curvatures.
The author set up the position vector of the curve with linear combination of Cartan frame. This curve can be
represent by

X(s) = b1L+ b2N +

n−1∑
i=1

ciWi (1.1)

where {L,N,W1, ...,Wn−1} is Cartan frame and b1, b2, ci, 1 ≤ i ≤ n − 1 are coefficients. By initial condion of
〈X(s), X(s)〉 = r2, permanently differentiating the confront equations gives the Cartan curvatures {k1, k2, ..., km}
depends on the coefficients in (1.1).

In this study, we mean with “curve fully lies on de Sitter space" that the curves lie on boundary of de Sitter space.
That is, we consider the de Sitter space as timelike surface. In the light of [6], we characterize the de Sitter space
Sn−11 (r), by considering null and nonnull curves that fully lies on it. For this purpose, we consider the tangential
part of the second derivative of the unit speed curve on the hypersurface and the normal curvature in the direction
of any tangent vector to surface. Consequently, we obtain the vector equations of planar and helical geodesics of
the de Sitter space and Sn−11 (r)× R. Throughout the study, we try to answer some questions like following,

“What is the characteristic property of the curves and geodesics that fully lies on de Sitter space and Sn−11 (r)×R
?”

We prove that the planar and helical nonnull geodesics that fully lies on de Sitter space and Sn−11 (r)× R, are the
C−curves, that is curve with constant curvature. Moreover, we show that all null geodesics on de Sitter space are
nothing but the lines.

Throughout this article, all curves regular, and all hypersurfaces smooth and connected, unless otherwise
mentioned.

2. Characterization by Timelike and Spacelike Curves

Let ∇ and ∇ be the Levi-Civita connections on Ln+1 and the hypersurface M, respectively. Consider that, Z is
the unit normal vector field on M and S is the shape operator of the hypersurface. It follows from Gauss equation
that

∇VW = ∇VW + εM 〈S(V ),W 〉Z (2.1)

where V,W ∈ χ(M) and εM = 〈Z,Z〉 (see [7], p.77). ∇VW and εM 〈S(V ),W 〉Z are called the tangential and the
normal part of∇VW, respectively.

Let X(s) be a unit speed nonnull curve on the timelike hypersurface M and X ′(s) be a tangent vector to M at
X(s). Since M is timelike, εM = 1 (i.e. Z is spacelike). If V =W = X ′(s) in equation (2.1) then we have

X ′′(s) = kg(s) + 〈S(X ′(s)), X ′(s)〉Z(s) (2.2)

where kg(s) is the tangential part of X ′′(s). Hence, equation (2.2) becomes

X ′′(s) = kg(s) + 〈X ′′(s), Z(s)〉Z(s) (2.3)

It follows from equation (2.3) that every geodesic curve X(s) on timelike hypersurfaces satisfy

X ′′(s) = 〈X ′′(s), Z(s)〉Z(s) (2.4)

Moreover, any unit tangent vector v to M, the normal curvature in the direction of v is given by κn(v) = 〈S(v), v〉 .
Hence, it follows from v = X ′(s) and (2.2) that

X ′′(s) = kg(s) + κn(X
′(s))Z(s) (2.5)
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Lemma 2.1. Suppose that kg(s) is spacelike or timelike vector for all s. Then, every unit speed curve on timelike hypersurface
M satisfy 〈X ′′(0), X ′′(0)〉 = κn(v)

2, X ′(0) = v if and only if X(s) is a geodesic curve on M .

Proof. Let X(s) be a geodesic curve on M . Consider that p ∈M and unit tangent vector v to M such that X(0) = p
and X ′(0) = v. It follows from kg(s) = 0 and (2.5) that

X ′′(0) = κn(v)Z(s)

and this implies the left side.
If 〈X ′′(0), X ′′(0)〉 = κn(v)

2, it follows from equation (2.5) and hypothesis, that kg(s) = 0. Hence, X(s) is a
geodesic.

Lemma 2.2. LetX(s) be a unit speed curve on timelike hypersurfaceM and the tangential part ofX ′′(s) satisfy 〈kg(s), kg(s)〉 ≤
0, then, the following conditions are equivalent:

(C) Every unit speed curve X(s) on M satisfies 〈X ′′(s), X ′′(s)〉 ≤ 1

r2
.

(N) For every unit tangent vector v to M, the normal curvature κn(v) in the direction of v satisfies |κn(v)| ≤
1

r
.

Proof. For any unit tangent vector v to M at p, we consider the geodesic X with X(0) = p and X ′(0) = v. It follows
from Lemma 2.1 that

〈X ′′(0), X ′′(0)〉 = κn(v)
2 ≤ 1

r2

Thus, (C) implies (N).

Conversely, 〈X ′′(s), X ′′(s)〉 = 〈kg(s), kg(s)〉+ κn(X
′(s))2 ≤ κn(X ′(s))2 ≤

1

r2
where the inequality follows from

〈kg(s), kg(s)〉 ≤ 0.

Theorem 2.1. Suppose that the unit speed curveX(s) on timelike hypersurfaceM satisfies condition (C) with 〈kg(s), kg(s)〉 ≤
0. If 〈X ′′(s), X ′′(s)〉 = 1

r2
, then, it is a periodic parametrization of an ellipse given by

X1(s) = ξ11 sin
s

r
+ ξ12 cos

s

r
+ ξ13 (2.6)

or hyperbola given by
X2(s) = ξ21 sinh

s

r
+ ξ22 cosh

s

r
+ ξ23 (2.7)

for some vectors ξji ∈ Ln+1, 1 ≤ i ≤ 3, 1 ≤ j ≤ 2.

Proof. Suppose that a unit speed curve X(s) on M satisfies the condition (C). It follows from Lemma 2.2 that

〈X ′′(s), X ′′(s)〉 = |kg(s)|2 + κn(X
′(s))2 ≤ |kg(s)|2 +

1

r2
(2.8)

Together with (2.8), the hypothesis 〈X ′′(s), X ′′(s)〉 = 1

r2
implies that X(s) is a geodesic with κn(X ′(s)) =

1

r
. Thus,

from equation (2.5) we have

X ′′(s) =
1

r
Z(s) (2.9)

Since κn(X ′(s)) =
1

r
is a maximum value of normal curvatures at X(s), X ′(s) is a principal direction of M. Besides,

the equation κn(X ′(s)) = 〈S(X ′(s)), X ′(s)〉 =
1

r
implies that

S (X ′(s)) =
1

r
X ′(s) (2.10)

for spacelike X(s) curves. Moreover, we have S (X ′(s)) = −Z ′(s). Thus, it follows from (2.9) and (2.10) that

X ′′′(s) = − 1

r2
X ′(s) (2.11)

Solutions of (2.11) gives the X1(s).

On the other hand, for timelike X(s) curves, S(X ′(s)) = −1

r
X ′(s). Likewise we get X2(s).
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Theorem 2.2. Let M be a timelike hypersurface in Minkowski space. Then, up to isometries of Ln+1, M is de Sitter space
with radius r if and only if there exits a point p ∈M such that for every unit speed geodesic X(s) of M through the point p,

〈X ′′(s), X ′′(s)〉 = 1

r2
holds and X(s) satisfies the (C) with 〈kg(s), kg(s)〉 ≤ 0.

Proof. Suppose that the unit speed curveX(s) satisfies the condition (C) with 〈kg(s), kg(s)〉 ≤ 0 and 〈X ′′(s), X ′′(s)〉 =
1/r2 holds for all unit speed geodesic X(s) of M through the point p. Then, by isometries of Ln+1, we may assume
that p = (0, ..., 0, r) and the unit normal Z(p) at p is given by Z(p) = (0, ..., 0, 1). For any arbitrary point q ∈M, the
completeness of M implies that there exits a unit speed geodesic X(s) of M connecting p and q with X(0) = p.

Together with the hypothesis, Theorem 2.1 shows that for some vectors ξji ∈ Ln+1, 1 ≤ i ≤ 3, 1 ≤ j ≤ 2, the geodesic
X(s) is given by X1(s) or X2(s). Hence, we get

(X1)′(s) =
ξ11
r
cos

s

r
− ξ12

r
sin

s

r
(2.12)

and

(X2)′(s) =
ξ21
r
cosh

s

r
+
ξ22
r
sinh

s

r
(2.13)

Since the geodesic X(s) is of unit speed〈
ξ11 , ξ

1
2

〉
= 0,

〈
ξ11 , ξ

1
1

〉
=
〈
ξ12 , ξ

1
2

〉
= r2 (2.14)

and 〈
ξ21 , ξ

2
2

〉
= 0, −

〈
ξ21 , ξ

2
1

〉
=
〈
ξ22 , ξ

2
2

〉
= r2 (2.15)

It follows fromX ′′(s) =
1

r
〈X(s), X ′′(s)〉Z(s) and the assumptionZ(p) = (0, ..., 0, 1) that ξ11 = (0, ..., 0, r), ξ12 = ru in

(2.6), and ξ21 = (r, 0, ..., 0), ξ22 = ru in (2.7) for some unit vectors, u = (u1, u2, ..., un−1, 0) and u = (0, u1, u2, ..., un−1)
respectively. Together with the initial condition X(0) = p, this shows that X(s) is given by

X1(s) = (0, ..., 0, r) sin
s

r
+ ru cos

s

r
(2.16)

or
X2(s) = (r, 0, ..., 0) sinh

s

r
+ ru cosh

s

r
(2.17)

We have
〈
Xi(s), Xi(s)

〉
= r2, for i = 1, 2 which means X(s) lie on Sn−11 (r).

Conversely, all curves on M satisfies 〈X(s), X(s)〉 = r2. Since Z(s) = X(s)/r, by straightforward calculations,
we get the right side.

Corollary 2.1. The geodesics of fully lies on Sn−11 (r)× R are the helices given by

X3(s) = ξ31 sin
s

r
+ ξ32 cos

s

r
+ ξ33s+ ξ34 (2.18)

and
X4(s) = ξ41 sinh

s

r
+ ξ42 cosh

s

r
+ ξ43s+ ξ44 (2.19)

for some vectors ξ3i , ξ
4
i ∈ Ln+1, 1 ≤ i ≤ 4.

Proof. The geodesics of Sn−11 (r) are given by equations (2.6) and (2.7). It is obvious that the lines are geodesic in R.
It follows from Lemma 1.1, the geodesic curves that fully lies on Sn−11 (r)× R are given by (2.18) and (2.19).

Corollary 2.2. The geodesics on de Sitter space and Sn−11 (r)× R are the C−curves.

Proof. The geodesics of Sn−11 (r)× R are given by Xi(s), 1 ≤ i ≤ 4. Let we consider the curve,

X4(s) = ξ41 sinh
s

r
+ ξ42 cosh

s

r
+ ξ43s+ ξ44 (2.20)
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The unit tangent vector field of X4(s) is given by

T (s) =
ξ41
r
cosh

s

r
+
ξ42
r
sinh

s

r
+ ξ43 (2.21)

It follows from (2.20) and (2.21) that 〈
X4(t)−X4(s), T (t)− T (s)

〉
= 0

Hence, X4(s) is a C−curve as part of the definition. In other cases, the proof is similar.

3. Null Curves and Some Examples

In this section, we follow the previous section to find all null curves on de Sitter space. We characterize these
curves in terms of the second derivative of the curve. Moreover, we give an example, a null curve on S31(1), and we
give some illustrations of geodesics. We note that, in the literature, there are various approachs for null curves such
that the subject depends the choice of the Frenet frame of the curve (see [3], [4], and [5]).

Let us consider the curve X(s) as a null curve on Sn−11 (r). Since X(s) is null curve 〈X ′(s), X ′(s)〉 = 0. Differenti-
ating 〈X(s), X(s)〉 = r2 twice yields 〈X ′′(s), X(s)〉 = 0. From (2.3) and Z(s) = X(s)/r, we get X ′′(s) = kg(s), for
all s. In the light of ([3], Chapter 3), we have

〈kg(s), kg(s)〉 ≥ 0 (3.1)

for all null curves on Sn−11 (r).
We say that a null curve X(s) in Ln+1 is parametrized by the pseudo-arc if 〈X ′′(s), X ′′(s)〉 = 1. Based on (3.1),

we should examine such two conditions 〈kg(s), kg(s)〉 = 0 and 〈kg(s), kg(s)〉 > 0. Assume that 〈kg(s), kg(s)〉 6= 0,
then 〈kg(s), kg(s)〉 > 0, and

u(s) =

∫ s

s0

〈X ′′(s), X ′′(s)〉1/4 ds

becomes the pseudo-arc parameter (see, [10]). Let X(s) be a null curve parametrized by the pseudo-arc on S21.
Then it can be shown easily that X(s) is a line, that is, all null curves on S21 are just the line. Also these curves are
geodesics on hyperboloid in 3−dimensional Minkowski space (see, [5], p.59-60). In higher dimensions, null curves
on Sn−11 are more rich from three dimensional Minkowski space (see Example 3.1). For characterization of all null
curves, in terms of Cartan curvatures, on Sn−11 , n ≥ 4, see [10]. On the other hand, if we suppose that X(s) is a
geodesic curve or say equivalently kg(s) = X ′′(s) = 0 then the hypothesis conclude that X(s) is a line on Sn−11 (r).
Consequently, all null geodesic curves on Sn−11 (r) are nothing but the lines.

Now, let us give some examples, curves in the de Sitter space.

Example 3.1. Let we give the curve X(s) such that

X(s) =

(
1√
2
sinh s,

1√
2
cosh s,

1√
2
sin s,

1√
2
cos s

)
Obviously 〈X(s), X(s)〉 = 1, that is X(s) lies on S31(1). If we check the causality of X we get 〈X ′(s), X ′(s)〉 = 0.
Hence, X(s) is a null curve in three dimensional de Sitter space with radius 1. Moreover, this curve satisfy

〈X(t)−X(s), T (t)− T (s)〉 = 0

in Minkowski space. This leads to extend the definition of C−curves, that is, we can consider that X(s) is a null
C−curve in three dimensional de Sitter space. According to Euclidean metric we get

〈X(t)−X(s), T (t)− T (s)〉 = (cosh s− cosh t) (sinh s− sinh t)

that means X is not C−curve in Euclidean space.

Example 3.2. Let us give the intersection of S21 and some planes in L3. For instance, the intersection of S21(1) and a
plane with a slope less than 1 is an ellipse (Figure 1a), and a plane with a slope equal to 1 containing the origin is
parallel lines (Figure 1b).
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(a) A plane with slope less than 1 (b) A plane with slope 1
Figure 1. Intersection of hyperboloid with planes

(a) Hyperbola (b) Pair of lines
Figure 2. Cross section and contour plot of hyperboloid

The intersection of S21(1) and a non-tangential plane with a slope greater than 1 is hyperbola (Figure 2a), and a
tangential plane is a pair of lines (Figure 2b, by contour plot). Moreover, the intersection of S21(1) and a plane with a
slope equal 1 not containing the origin is a parabola and a plane orthogonal to axis of hyperboloid is circle.

Example 3.3. We give sample of spacelike and timelike geodesics of S11(2)× R by

X1(s) = (s/2, 2 sin s, 2 cos s)

and
X2(s) = (2 sinh s, 2 cosh s, s)

respectively (see Figure 3a and Figure 3b).

(a) Spacelike helix (b) Timelike helix
Figure 3. Spacelike and timelike geodesics of S11(2)× R
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Our last picture is about null geodesics of S11(1/2)× R and S11(2/3)× R such that these curves are given as

X3(s) =

(
1

2
sinh 2s,

1

2
cosh 2s, s

)
and

X4(s) =

(
2

3
sinh 3s,

2

3
cosh 3s, 2s

)
by Figure 4.

Figure 4. Null helices of product space
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