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Abstract

In this study, firstly the definition of operator («, m)-convex function is defined. Secondly, a new lemma is
given. Then, new theorems are obtained in terms of this lemma. Finally, they are applied for synchronous
and asynchronous functions.
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1. Introduction

The following inequality holds for any convex function f defineon R and a,b € R, witha < b

Both inequalities hold in the reversed direction if f is concave. The inequality (1.1) is known in the literature as
the Hermite-Hadamard’s inequality. The Hermite-Hadamard’s inequality may be regarded as a refinement of the
concept of convexity and it follows easily from Jensen’s inequality. The classical Hermite-Hadamard inequality
provides estimates of the mean value of a continuous convex function f : [a,b] — R.

First, we review the operator order in B(H) and the continuous functional calculus for a bounded selfadjoint
operator. For selfadjoint operators A, B € B(H) we write, for every = € H,

A<B (orB>A) if (Az,x) <(Bz,z) (or (Bx,x)> (Az,z))

we call it the operator order. Let A be a selfadjoint linear operator on a complex Hilbert space (H, < -, >) and
C(Sp(A)) the C* -algebra of all continuous complex-valued functions on the spectrum A. The Gelfand map
establishes a *-isometrically isomorphism ® between C(Sp(A)) and the C* -algebra C*(A) generated by A and the
identity operator 17 on H as follows [1]: For any f,g € C(Sp(A)) and any «, 8 € C we have

L ®(af + Bg) = a®(f) + 52(g) ;
2. o(fg) = 2(f)®(g) and &(f*) = (f)*;
3. RN = IFIl -= suprespa | F(D)];

4. ®(fp) = land ®(f1) = A, where fy(t) = 1and f;(t) = ¢, for t € Sp(A).
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If f is a continuous complex-valued functions on C'(Sp(A), the element ®(f) of C*(A) is denoted by f(A) and we
call it the continuous functional calculus for a bounded selfadjoint operator A.

If A is bounded selfadjoint operator and f is real valued continuous function on Sp(A), then f(¢) > 0 for any
t € Sp(A) implies that f(A) > 0, i.e f(A) is a positive operator on H. Moreover, if both f and g are real valued
functions on Sp(A) such that f(¢) < g(t) for any ¢ € Sp(4), then f(A) < g(A) in the operator order B(H). A real
valued continuous function f on an interval [ is said to be operator convex (operator concave ) if

F(L=XNA+AB) < (2)(1 =N f(A) +Af(B)
in the operator order in B(H), for all X € [0, 1] and for every bounded self-adjoint operator A and B in B(H) whose
spectra are contained in /.
We denoted by B(H)™" the set of all positive operators in B(H) and K is subset of B(H)™.
Erdas [5], [11] et al. and Salas [6] et al. studied at operator m, (a, m)-convex and operator p-convex functions.

Also Rooin et al. [7] studied about operator m-convex functions. They generalized the celebrated Jensen
inequality for continuous m-convex functions and Hilbert space operators and then used suitable weight functions
to give some weighted refinements etc.

In the second chapter, we use the similar technique with Ghazanfari et al. [8],[9].
Definition 1.1. [2] The function f : [a,b] — R is said to be («, m)-convex, where (a,m) € [0,1]?, if for every
x,y € [a,b] and t € [0,1] we have
fltz+m(l—t)y) <t f(x) + m(l —t*)f(y)

Note that (o, m) € {(0,0), (e, 0), (1,0), (1,m), (1,1), (o, 1)} one obtains the following classes of functions respec-
tively, increasing, a-starshaped, starshaped, m-convex, convex and a-convex
Denote by K, (b) the set of the («, m)-convex functions on [a,b] for which f(0) < 0.

We note that Beta and Gamma functions [8] are defined respectively, as follows

1
S = [ -0 e >y
0

and -
D(z,y) = / e e >0
0

Theorem 1.1. [8] Let f : I — R be operator sy-convex and g : I — R be operator sy-convex function on the interval I for
operators in K C B(H)™. Then for all positive operators A and B in K with spectra in I, the inequality

A1<f(tA +(1—=t)B)x,z)(g(tA+ (1 —t)B)z, x)dt
1

S1 —+ S92 —+ 1
holds for any x € H with || z ||= 1.

Theorem 1.2. [8] Let f : I — R be operator si-convex and g : I — R be operator so-convex function on the interval I for
operators in K C B(H)™. Then for all positive operators A and B in K with spectra in I, the inequality

o ()5 )

M(A, B)(z) + B(s1 + 1,50+ 1)N(A, B)(z) (1.2)

< /1<f(tA (1= ) B)a, e)(g(tA+ (1 — £) B, o)dt
0

1
+ B(si+ 1,50+ 1)M(A, B)(z) + mN(A, B)(z) (1.3)
holds for any x € H with || « ||= 1, where
M = M(A,B)(x) = (f(A)z,z){g(A)z, )+ (f(B)r,x){g(B)z, ) (1.4)

N=N(A,B)(x) = (f(A)z,z)(g(B)r,z)+ (f(B)r,x)(g9(A)z, ) (1.5)
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Theorem 1.3. [3] Let A, B € B(H)". Then AB + BA is positive if and only if
f(A+B) < f(A)+ f(B)
for all non-negative operator functions f on [0, c0).

Theorem 1.4. [4] Let f : I — R be an operator convex function on the interval I. Then for all selfadjoint operators A and B
with spectra in I, we have the inequality

(45) = 35 2)]
1f<(1—t)A+tB>dt

{Jc(Aﬂ;B) n f(A)+f(B)}

2
f(A) + f(B)
2

IN
S—

0

IA

IN

2. MAIN RESULT

2.1 Some New Hermite-Hadamard type Inequalities via Operator (o, m)-convex Functions
Definition 2.1. For (o, m) € [0,1]?, the function f : I — Ris said to be operator (a, m)-convex, if for every bounded
selfadjoint operators A, B, whose spectra are contained in I and ¢ € [0, 1],

fEA+m(1-t)B) <t*f(A)+m(1l—t*)f(B)
inequality holds.

Lemma 2.1. If f is operator (e, m)-convex on [0, 0o) and nondecreasing function for operator in K, L (Axz, z), L (Bz,z) C I,
m € (0,1] and « € [0, 1] then f(A) is positive for every A € K.

Proof. Since A € K and f operator («, m)-convex function, we have

tA+m(l—t)B+m((1—t)2 +tA
= o m—i—l( ))
< f(tA—i—m(l—t)A—i—m((l—t)%—HA))
< tf(A) +m1 =) f(A) + (1= t) f(A) + mt® f(A)
f4) < f(A)m+1)
0 < mf(A)

This implies that f(A4) >0

Lemma 2.2. Let f : I C [0,00) — R be a continuous function on the interval I. Then for every two positive operators
A, B € K C B(H)" with spectra in I the function f is operator («., m)-convex for operators in

[A,B] :={(1-t)A+mtB:tc[0,1]}
if and only if the function
Yz, AB - [O, 1] — R

defined by
0z 4,81 =< f(1—t)A+mtB)z,x >

is (o, m)-convex on (0, 1] for every x € H with ||z| = 1.
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Proof. Let f be operator (a, m)-convex for operators in [A,B], then for any t1,¢2 € [0,1] and A,y > 0, m, A,y € (0, 1]
with A + m~y = 1 we have

z,4,8(At1 + myta)
FL (= Aty +mata)A) + m(Aty + m’ytg)B> :c,x>

A+ myA — Xty A — mAyta A+ mAt B + meyth)x, x>

Il

(
(
f()\[(l —t1)A+mt1 Bl + my[(1 — t2)A + mth]):c, :c>
(

FIA = t)A+mt Bl +m(1—A)[(1- tz)% + mt25]>x,x>

IN

/\a< ([(1 —t1)A +mt B] + m(1 — A*)[(1 - tz)% + mtgﬁ}>z,x>

< A%pa,B(t1) +m(1 = AX)ps 4, B(t2)

showing that ¢, 4 g is a (@, m)-convex function on [0, 1] Let now ¢, 4 g be (o, m)-convex on [0, 1], we show that f
is operator (a, m)-convex for operators in [A, B]. For every C := (1 — t1)A+ mt;B and D := (1 — t3) A + mt2 B, we

have

<

Theorem 2.1. Let f :

(f((1 = XN)C +mAD)z, )

(f((L=N[(1 —=t1)A+mt; B+ mA[(1 — t2) A+ mtoB])z, x)
(f(A—t1A4+mt1B — AA + M1 A

—Amt1 B +mAA — mMy A+ m* Mo B)x, )

(AL —t1) = MA(1 — 1) + mAA(1 — t3) + mt; B — Amt, B + m? Mty B)x, x)
(F(=M(A =t))A+mt1B)+ A(1 —t1) + mt1 B

+mA(A(L — t9) + mtaB))x, x)

(F((1=X)((1 = t1)A+mt1B) + mA((1 — ta) A + miaB))z, )

(1= A")(f(C)z, ) + mA*(f(D)z, z)

I — R be on operator (o, m)-convex and nondecreasing function on the interval I C [0, 00) for

operators in K C B(H)*. Then for all positive operators A, B € K C B(H)*t with spectrain I, X (Az, z), 2 (Bx,z) C I
p P P p m m

and m € (0,1],a € [0,

1] then we have the inequality

IN

2 2

<f(A + mB)x,x> 1/01 [<f(tA Fm(l—1)B) +mf((1— t)% +tB)x,x>}dt

LA + i (Bl
2 a+1

m((f()e,2) + (f(B)a,a))
a+1 ]

IN

+

Proof. Forz € H with ||z|| = 1and t € [0, 1], we have < [tA+m(1—t)Blz,z >=t < Az,x > +m(l—t) < Bx,z >€ I.
For (Az,z) € Sp(A) C I and (Bz,z) € Sp(B) C I, continuity of f and imply that the following operator-valued

integral exist

/1 f(tA+ (1 —t)B)dt.
0

Since f is operator («, m)-convex, therefore for ¢ € [0,1] and A, B € K, we have the belove inequality

F(EA+m(1 = 1)B) < 2 F(4) +m(1 - t°) f(B).
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And then we get following inequalities,

(1(2p)e )

A+m(l— m((1—t)2
(t +m(1 t)B—f—2 ((1 t)m+tB))x,m>

(f(tA+m(1 = t)B)w,x) +m{ £(1 - t)% +tB)z,z)]

(f
1

/1 [(sea+m — 0By, 2) +m{ (0~ )2+ 1B)2,2)]

0

S
—
~~
h
+
(V]
3
Sy
~—
~—"
INA
N | =

and,

% /01 [<f(tA +m(l— t)B)x,:c> + m<f((1 - t)% + tB)x,det
% /01 [to‘<f(A)a:,x> +m(1— ta)<f(B)a:,x>

+m(1 — t"‘)<f(%)x, x> + mta<f(B)x, I>} dt

IN

integrating of inequalities on [0,1], we get the inequality.
Remark 2.1. If m = o = 1 is taken in the above theorem, Hermite-Hadamard inequality is obtained.

2.2 The Hermite-Hadamard type Inequalites for the Product two Operator (o, m)-convex Functions
Let f : I — R be operator (o1, m1) and g : I — R operator (as, m2) function on the interval I. Then for all

positive operators A and B on a Hilbert space H with spectra in I.

Theorem 2.2. For my,mg € (0,1] and oy, € [0,1], let f : I — R be operator (a1, mq)-convex and g : I — R operator
(2, mo)-convex and nondecreasing function on the interval I for operators in K. Then, A, B € K with spectra in I, the

inequality

/ [(f(tA £ (1= )B)a,2){g(tA + ma(1 — 1) B)z, )] di

) ( maoaia L )
aq —|—052+1 (a1 + as)(ag +as +1)

(
(o r )
(

OLQ"’I Oél—|—0ég—|—1)

e )
mim
e a;+1 a2+1 a; +as+1

exist. Where

K:=K(A)(z) = (f(A)z,z)(g(A)z, ) 2.1)
L= L(A, B)(x) = (f(A)z,)(g(B)a, ) 22)
R:= R(A, B)(z) = (f(B)x, z){g(A)z, z) (2.3)
5= 8(B)(x) = (f(B)z,z){(g(B)x,z). (2.4)
Proof. Forxz € H, ||z|| =1and ¢ € [0, 1] we have
<[tA+m(17t >: t(Az,2) + m(1 — t)(Bz,z) € I.

Since (Ax,x) € Sp(A) C I and (Bx,x) € Sp(B) C I,

/1 F(LA +mi(1— ) B)dt, /1 g(tA+ma(l — 1) B)dt
0 0
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and

/Ol(fg)(tA +m(1—t)B)dt

integrals exist.
f, g operator (aq,mq)-convex and (as, m2)-convex, respectively, every for t € [0, 1]

t (f(A)z, x) +ma(1 =) (f(B)z, )
t*2(g(A)z, x) +ma(1 — 1) {g(B)z, z)

(fEA+mi(1 —t)B)z,x)
(9(tA+mo(1 —t)B)x, x)

[VANVAN

((f(tA+m1(1—th,x)( (tA + ms(1 — t)B)z, >)
<trer(f(A)z, x)(g(A)z, )+t ma(1 —t°2)(f(A)z, 2){9(B)z, x)

+t*2my (1 =) (f(B)z, z)(9(A)z, x)
+myma (1 — 1)1 = %) (f(B)z, z){(g(B)z, )

confirmation. Integrating of inequalities over [0,1] we get the following inequality,

/0 (£ + ma(1— )B)ar ) (g(tA + ma(1 — ) B)a, ) dt

K L
= (a1 + oy —|—1) + ((a1 +a$(2oiy12+a2 —|—1)>
mloqR
+<(042 +1)(a1 +az+ 1))

N A )
mim — —
e ap+1 as + 1 a; +as+1

Remark 2.2. If we take m1,ma, aq, g = 1in Theorem(2.2) and s1, s2 = 1 in (1.2) inequalities is same.

Theorem 2.3. f : I — R operator (a1, my)-convex function and g : I — RT operator (aa, ms)-convex function.
Sp(A),Sp(B) C I, For every A, B € K operators, =(Ax, x), - (Bx,z) C I,my,mz € (0,1] and o, az € [0,1]

(1(H 322 )ma) (o5 )os)

1 1
< 5/ [(f(tA +mi(1—t)B)z,z){(g(tA + mao(l - t)B)xw)}
0
_’_} 2KOZ2
4| (1 + 1) (o1 + a2 +1)
2
(2 gy 2 T2 )
a1 +az+1 at+1l og+1
2m1 my my
R - ~ )
o +oag+1 ! ag+1 as+1
2m1m20zlS
_|_
(a1 +1) (1 +az +1)

exist. Here K, L, R and S are given by (2.1)-(2.4)

Proof. f:I — RT operator (a1, m;)-convex function and ¢ : I — R* operator (as, m2)-convex function. For every
tel,z€ Hand ||z||=1

tA+mi(1—t)B+m((1—t)A +1tB
)y = (007 et
1
g

<f(tA +my(1—t)B)z, x> + <f(m1((1 - t)mil + tB))x,acﬂ

IN
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tA+my(1 —t)B+ma((1—1t)74 +1tB
T

[(gtA+ mo(t = 0)B)z.2) + (g (mal(1 ~ )2 4 1B)) )]

ma

((5)es) -

<

S

| —

(555 )oe)

< (ftA4+my(1 —t)B)x,x){(g(tA + me(1 — t)B)z, )

+ma(f(tA+mi(1 —t)B)x, z){g((1 — t)mi2 +tB)x,x)

+mi(f((1 - t)mil +tB)x,x){g(tA + mo(l — t)B)x, x)

+mama(f((1 — t)mil +tB)x,x){g((1 — t)mi2 +tB)x, z)]

g (55 ) (o (525 )

(ftA4+mi(1 —t)B)z,x)(g(tA + ma(1 — t)B)x, )

IN

_l_
—~

—~~ o~~~

—

|

~

2
—  ~— ~—

—~ ~

~

= B

=5 8

&

~

_|_

3

_

~~

2

=

Ss)

~—

8

=

Integrating of above inequalities over [0,1] we get the inequality.

Remark 2.3. 1f we take my, ma, a1, g = 1 in Theorem(2.3) and s1, s = 1 in (1.3) inequalities is same.

Theorem 2.4. f,g: I C R — R* (a1, m2), (a2, ma)-convex and non-negative functions respectively. Let A, B selfadjoint
operators on interval I.
Let L(Az,z), L(Bz,z) C I, mi,ms € (0,1] and on, a € [0, 1]. Then the following inequality holds.

<f(M#£)x, ac> /01<g(tA +mao(l —t)B)x,x)dt

+<g(A+Tm2B>x, x> /01<f(tA +mi(1 - t)B)z, z)dt

1

: /0 (£ + ma(1 = 0)B)a ) (g(tA + ma(1 — 1) B}, )]

IN

L1
4

( 1 n 1 2 )
Oél+1 042+1 Ot1+012+1

(K4 mimaS)

I T B
o) +ag +1 a; +1 as +1

HI (50 ) (o (525 )

)(mzL + m1R)
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Here K, L, R and S are given by (2.1)-(2.4).

Proof. Since f and g are operator m1, ms-convex, respectively, then for m,t € [0, 1] observe that

B tA+mi(1=t)B+my((1—t)A +1tB
(r(ezp)as) - (s o0 ). .
1
=3

2

[<f(tA+m1(1—t)B) > <f((1—t)A+m1tB)x,a:>}

tA+ ma(l —t)B+ mao( (1 — )FthB

2

% <g tA+msa(1 —t)B)r, > + <g((1 —t)A+ mztB)a:,:cﬂ

Note: For a,b,c,d € Rif a < band ¢ < d inequality

ad + be < ac+ bd

exist. If we use the above note, then we obtain followings,

(1(H325)e)

- [( (tA +ma(1 — t)B)z, z) + (g((1 — ) A + mﬂB)x,x)}

2
Ho( 52 )ma)

x5 [(FA+mi (1= OBz, z) + (£((1 — ) A+ mutB)a, )]

(55 )m ) o( 52 )oe) +

IN
N | =

IN

i [t F(A)) o (1 = 120 F(B)a, )
x(1 - 1°2)(g(A)a, ) + mat®(g(B)r, )
(1= ) F (A, ) + mt® << ) )
(122 (g(A)a, ) + ma(1 — 1°){g(B)z, 7))

_|_

)
<f(“%13)w><g(f“m23) 7)

So, the proof is completed.

Remark 2.4. 1f we take a1, az = 1, then we obtain the following inequality;
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<f(14+m13) x> /01<g(tA+m2(1—t)B)x,x>dt
(A+mgB

4+
S

) J>A%ﬂwﬂwmﬂ—wBWJMt

< %/[ (tA +mi(1 —1)B)z, ) {g(tA + mo(1 — ) B)a, )
K msL mR mimsS
TR 6 12
(1 (R ) (o S22 )

2.3 Applications for Synchronous and Asynchronous Functions

We say that the functions f, g : [a, b] — R are synchronous (asynchronous) on the interval [a,b] if the satisfy the

following condition:

(f(t) = F(s))(g(t) = g(s)) = ()0

for each t,s € [a,b] [10]. It is obvious that, if f, g are monotonic and have the same monotonicity on the interval
[a,b], then they are synchronous on [a,b] while if they have opposite monotonicity, they are synchronous. The

following result provides an inequality of Cebysev type for functions of selfadjoint operators.

Theorem 2.5. [10] Let A be a selfadjoint operator with Sp(A) C [m, M] for some real numbers m < M, if f,
are continuous and synchronous (asynchronous) on [m, M|, then

(f(A)g(A)z, z) > ()(f(A)z, 2){9(A)z, z)
forany x € H with || z ||= 1.
As a simple consequence of the above Theorem(2.5) we imply that if f, g synchronous, then
N(A,B)(x) < M(A, B)(z) < P(A, B)(x)
for any x € H with || z ||= 1. If £, g asynchronous, then reverse inequalities holds as follow
N(A,B)(z) > M(A, B)(z) > P(A, B)(z)
Where M and N are given by (1.4) and (1.5).

Pi=P(A,B)@) = ([f(A)g(A)+ f(B)g(B)lz,x)

Theorem 2.6. Let f, g : [m, M] — RT operator (o, m)-convex and A, B, Sp(A) |J Sp(B) C [m, M], L (Az, z)
I, mi,mg € (0, 1] and o, 09 € [07 1] Then,

1. If f, g are synchronous and f,g > O then the inequality

1
A[WM+WO4BM@MM+WO4BM@W

mima(ar + 1) + maas
= ( (a1 + 1) (a1 + 1) )P

Remark 2.5. If we get a1, az = 1 then we obtain the following inequality

A [(F(EA+mi (1~ 0)B)a, 2) (g(tA + ma(1 — 1) B)z, a)

2mimeo + mo
< 2eiTee e
< ()P

g:[m, M =R

(2.5)

7%<Bx,x> C
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2. If f, g are synchronous and f, g > 0 then the inequality

(1(FF2 )z o (52 o)
< %/0 [(F(tA+mi (1 )B)z,2){g(tA + mo(1 — 1) Bz, 2)]

+1 2comyma(as + 1) + 2mao(as + 1) (g + 1)
4 (041 +1)(042+].)(Ck1 +C¥2+1)

P

Remark 2.6. 1f we get a1, as = 1 then we obtain the following inequality

(1(HFE ) o520 )os)

2
< 5[ [easm—0B e+ m - 0B

mims + 2m2>
— =P
( 12

3. If f, g are synchronous and f,g > 0 then the inequality

<f(A+Tm1B)x’ x> /1<g(tA +ma(l —t)B)x, x)dt

+<9<M%ﬁ)x, :(:> /Ol(f(tA +mi(l —t)B)z, z)dt
1

1
2/0 [(f(tAerl(l — )B)z, 2){g(tA + ma(1 ft)B)x,xﬂ

+1 2a2m1m2(a2 —+ 1) + 2m2(a2 —+ 1)(011 + ].)
4 (1 + 1) (a2 + 1) (o1 + a2+ 1)

HI (e ) (o525 )

Remark 2.7. 1f we get a1, as = 1 then we obtain the following inequality

IN

<f(M#£)x,z> /01<g(tA+m2(1 —t)B)x, x)dt
n Q(M#ﬁ)x,x> /01<f(tA+m1(1 — #)B)z, z)dt

1 1
5 / (A +ma (1 = )B)a, @) (g(tA + ma(1 — 1) B)a, )]
0
mims + 2mso A+mB A+ moB
HEE )P+ (A5 Jme) (o (5 o)
1. If f, g are asynchronous and f, g > 0 then the inequality

IN

Theorem 2.7.

1
/0 [(F(tA+ma (1 = )B)w, @) (g(tA + ma(1 — ) B)a, @) | dt

mlmg(al + 1) + moao
< (a1 + Do + 1) )N

Remark 2.8. If we get a1, as = 1 then we obtain the following inequality
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/0 (A +ma(1 = )B)a, @) (g(tA + ma(1 = ) B)a, @) | i

S (lemg +m2)N

2. If f, g are asynchronous and f, g > 0 then the inequality

(1(H 322 )ma)(o(F52 )or)

< 3 /0 {<f(tA +mi(1 —t)B)x, z){g(tA + ma(1l — t)B)zx, xﬂ

1 [2a2m1m2(a2 + 1) + 2m2(a2 + 1)(0[1 + 1) N

4 (o +1)(az + D(ag + g + 1)

Remark 2.9. If we get a1, az = 1 then we obtain the following inequality

(155 )(o(H52)e)
< 5| [(eA+ma - 0B).a) A+ ma -0 B)r.a)]

(m1m2 + 2m2)N

_|_

3. If f, g are asynchronous and f,g > 0 then the inequality

<f(M#£)x, x> /01<g(tA + ma(1 — t)B)z, z)dt

+<9(A+Tm2B)$’ x> /01<f(tA +mi(l — t)B)z, z)dt

IN

% /0 {<f(tA +mi1(1 —t)B)x, z){g(tA + ma(1l — t)B)zx, xﬁ

N

4 (o1 +1)(az + D(ag + ag + 1)

H{1 (50 ) (o(F525 )

Remark 2.10. If we get a1, az = 1 then we obtain the following inequality

1 lQagmlmg(ag + 1) + 2m2(a2 + 1)(0[1 + 1)

<f(A+mlB) x> /01<g(tA+m2(1t)B)x,x>dt

(A—I—sz)m x> /01<f(tA+m1(1 —t)B)x, x)dt

+
Q

<

N =

/0 (A +ma(1 = )B)2,2)(g(tA + ma(1 ~ 1) B)z, )]

()N + (1 (o (52 )

_|_
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