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Abstract: Item Response Theory (IRT) models traditionally assume a normal 
distribution for ability. Although normality is often a reasonable assumption 
for ability, it is rarely met for observed scores in educational and psychological 
measurement. Assumptions regarding ability distribution were previously 
shown to have an effect on IRT parameter estimation. In this study, the normal 
and uniform distribution prior assumptions for ability were compared for IRT 
parameter estimation when the actual distribution was either normal or 
uniform. A simulation study that included a short test with a small sample size 
and a long test with a large sample size was conducted for this purpose. The 
results suggested using a uniform distribution prior for ability to achieve more 
accurate estimates of the ability parameter in the 2PL and 3PL models when 
the true distribution of ability is not known. For the Rasch model, an explicit 
pattern that could be used to obtain more accurate item parameter estimates 
was not found. 

1. INTRODUCTION 

Item Response Theory (IRT) is widely used in psychological measurement (Embretson, 1996), 
and in educational measurement (Lord & Novick, 1968) for designing and analyzing the 
measurement instruments. It also has applications in other fields such as public health, ecology 
and sociology. In educational measurement, the student ability is the subject of the 
measurement. Ability is a latent trait and it cannot be measured directly. Thus, student responses 
to items in a test are used to measure ability in educational measurement. IRT defines a 
continuous and monotonic mathematical function (Reckase, 2009) for explaining the 
relationship between latent ability and student responses to the test items (Embretson & Reise, 
2000). In this study, the latent ability is assumed to be unidimensional, and the IRT models that 
are for analyzing the unidimensional latent ability are considered for the analysis. 

The estimation methods for IRT models require an assumption regarding the ability distribution 
to enable estimation of the model parameters. The tradition is to assume a normal distribution 
for abilityfor estimating the model parameters. Generally, normality is a reasonable assumption 
for ability (Embretson & Reise, 2000). However, it is not unlikely for observed scores in 
educational and psychological measurement to be non-normal in reality (e.g., Cook, 1959; 
Lord, 1955; Micerri, 1989). Micerri (1989), in example, examined 440 raw-score distributions 
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from large-scale achievement and psychometric measures. Micerri (1989) found that, of the 
measures he investigated, 125 were moderately asymmetric (i.e., 28.4%), and 135 were 
extremely asymmetric (i.e., 30.7%). The non-normality in the observed scores may also indicate 
non-normality in the latent ability scores. It is because the observed raw scores and the latent 
ability scores from an IRT model are correlated (Fan, 1998; Stewart, 2012). 

There are two general methods for estimation of the parameters in IRT models. These are 
marginal maximum likelihood estimation (Bock & Aitkin, 1981) and Bayesian estimation 
methods. Both of these methods make prior assumptions regarding the ability distribution 
(Baker & Kim, 2004, de Ayala, 2009). In this study, Markov chain Monte Carlo (MCMC) 
estimation was used for estimation of the model parameters. MCMC is a Bayesian estimation 
technique that iteratively samples from the posterior distributions of the parameters to be 
estimated (Jackman, 2000). These samples are then used to obtain estimates of the parameters. 
Bayesian estimation methods require indication of a prior distribution for each parameter in the 
model that is intended to be estimated. The prior distribution for a parameter reflects the 
distributional assumptions regarding that parameter. Poor specification of the priors in Bayesian 
estimation may result in biased parameter estimates (e.g., Mislevy, 1986). Therefore, a 
sufficiently informative prior should be specified for each parameter in the model in order to 
obtain unbiased estimates of the parameters (Baker & Kim, 2004; Mislevy, 1986). A 
sufficiently informative prior provides information regarding the posterior distribution of the 
parameter to be estimated. The prior may be assumed to be from the same distribution family 
with the posterior distribution (e.g., conjugate prior).  

Assumptions with respect to ability distribution have been shown to have an effect on IRT 
parameter estimation, depending on the deviation from the actual ability distribution (Reise & 
Yu, 1990; Roberts, Donoghue, & Laughlin, 2002; Sass, Schmitt, & Walker, 2008; Sen, Cohen, 
& Kim, 2016; Seong, 1990; Stone, 1992). Item parameter estimates are more precise when the 
prior distribution for latent ability matches the true distribution of latent ability (Seong, 1990). 
The bias in item parameter estimates due to misspecification of actual ability distribution, on 
the other hand, often can be reduced by increasing sample size and test length (e.g., de Ayala 
& Sava-Bolesta, 1999; Kirisci, Hsu, & Yu, 2001, Reise & Yu, 1990; Roberts et al., 2002; Seong, 
1990; Stone, 1992). Thus, the effect of the prior distributional assumptions on parameter 
estimation should be considered with respect to the potentially confounding variables such as 
the sample size and the test length. 

The latent ability distribution in an IRT model can be estimated with an assumption of normality 
following the general applications in the literature. The true ability distribution, on the other 
hand, can be in another type such as the uniform distribution (e.g., Hambleton & Cook, 1983; 
Swaminathan, Hambleton, & Rogers, 2007). In that case, using a prior distribution that matches 
the true distribution of the latent ability may result in more accurate estimates of item and ability 
parameters in IRT models. In this study, the normal prior distribution for ability was 
investigated for its efficiency to result in reasonable estimates of item and ability parameters, 
especially when the true latent ability distribution was uniform. A simulation study was 
conducted to analyze student responses to items with a normal and a uniform underlying ability 
distribution. The analyses were done using a unidimensional IRT model for dichotomous items. 
The models used in this study were Rasch (Rasch, 1960), two-parameter logistic (2PL; 
Birnbaum, 1968), and three-parameter logistic (3PL; Birnbaum, 1968) IRT models. Uniform 
and normal distributions priors were used for the latent ability while analyzing student 
responses to items. Finally, item and ability parameter estimates from the models with a normal 
and a uniform prior distribution for the latent ability were compared to the generating item and 
ability parameters in order to determine the accuracy of item and ability parameter estimates. 
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2. METHOD 

2.1. Unidimensional Item Response Theory Models 

Unidimensional IRT models for dichotomous items (e.g., for multiple choice) are extensively 
used in educational measurement. These models include Rasch, 2PL and 3PL models. The 
names of 2PL and 3PL models vary depending on the number of item parameters in the model. 
Namely, the 2PL model has two item parameters that are item difficulty and item discrimination 
parameters. Similarly, the 3PL model includes three item parameters that are item difficulty, 
item discrimination and the item pseudo-guessing parameters. The 3PL model defines the 
probability that an examinee j with ability θ answers item i correctly (𝑃௜൫𝜃௝|𝑋 = 1൯) with the 
following equation: 

𝑃௜൫𝜃௝|𝑋 = 1൯ = 𝑐௜ + (1 − 𝑐௜)
1

1 + 𝑒ି௔೔൫ఏೕି௕೔൯
 , (1)

where 𝑏௜ is the item difficulty parameter for item 𝑖, 𝑎௜ is the item discrimination parameter for 
item 𝑖, and 𝑐௜ is the pseudo-guessing parameter for item 𝑖. Fixing the 𝑐௜ parameter in a 3PL 
model to zero results the 3PL model to reduce into a 2PL model. Thus, the probability that an 
examinee 𝑗 with ability 𝜃  answers item 𝑖 correctly in a 2PL model is: 

 𝑃௜൫𝜃௝|𝑥 = 1൯ =
1

1 + 𝑒ି௔೔൫ఏೕି௕೔൯
 . (2) 

Similary, fixing the 𝑐௜ parameter to zero and the a୧ parameter to one in a 3PL model yields a 
Rasch model. The Rasch model defines the probability that an examinee 𝑗 with ability 𝜃 
answers item 𝑖 correctly as: 

 𝑃௜൫𝜃௝|𝑥 = 1൯ =
1

1 + 𝑒ି൫ఏೕି௕೔൯
 . (3) 

2.2. The Simulation Design 

Binary student responses to test items were generated using the R (2016) software for the Rasch, 
2PL and 3PL models. The underlying latent ability distributions were simulated to follow either 
a standard normal distribution or a uniform distribution on the interval [-3, 3]. Two test lengths 
(15-item and 30-item) and two sample sizes (600 and 2,000) were generated. Twenty-five data 
sets were simulated for each simulation condition. Item parameters that are used to generate 
student responses to test items are given in Table 1. 
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Table 1. Item Parameter Estimates Used for Generating Student Responses. 

 Rasch 2PL 3PL 
 b b a b a c 
1 2.75 2.75 1.0 2.75 1.0 0.25 
2 2.50 2.50 1.0 2.50 1.0 0.25 
3 2.25 2.25 1.0 2.25 1.0 0.25 
4 2.00 2.00 1.0 2.00 1.0 0.25 
5 1.75 1.75 1.0 1.75 1.0 0.25 
6 1.50 1.50 1.5 1.50 1.5 0.15 
7 1.25 1.25 1.5 1.25 1.5 0.15 
8 1.00 1.00 1.5 1.00 1.5 0.15 
9 0.75 0.75 1.5 0.75 1.5 0.15 
10 0.50 0.50 1.5 0.50 1.5 0.15 
11 0.25 0.25 2.0 0.25 2.0 0.10 
12 0.00 0.00 2.0 0.00 2.0 0.10 
13 -0.25 -0.25 2.0 -0.25 2.0 0.10 
14 -0.50 -0.50 2.0 -0.50 2.0 0.10 
15 -0.75 -0.75 2.0 -0.75 2.0 0.10 

2.3. Estimation of the Parameters 

Estimation of the parameters was done by using the Markov Chain Monte Carlo (MCMC) 
method as implemented in the computer software OpenBUGS (Lunn, Spiegelhalter, Thomas, 
& Best, 2009). A burn-in period of 3,000 iterations was used with a total number of 30,000 
iterations for each model. Following priors were used for MCMC estimation of model 
parameters: 

𝑏௜ ~ Normal(0,1), 𝑖 = 1, … , 𝑛, 

                                          𝑎௜ ~ Normal(0,1) and 𝑎௜ > 0 , 𝑖 = 1, … , 𝑛,                                     (4) 

                                  𝑐௜ ~ Beta(5,17) and 0 < 𝑐௜ < 0.3,    𝑖 = 1, … , 𝑛.                                            

Following priors were used for estimation of ability parameter, depending on the prior 
assumptions regarding the ability: 

 
𝜃௝ ~ Normal(0,1), 𝑗 = 1, … , 𝑁, 

or                                                                                                                                              (5) 
𝜃௝ ~ Uniform(−4,4), 𝑗 = 1, … , 𝑁. 

The scale of ability is arbitrary in IRT estimation which is denoted as metric identification 
problem (de Ayala, 2009, p. 41; Baker & Kim, 2004). The metric of the ability requires to be 
identified to achieve comparable parameter estimates across different calibrations. In this study, 
the metric of the ability was identified using item centering method (de Ayala, 2009). That is, 
the mean of item difficulty parameter estimates were fixed to zero for estimation of each model. 
In addition, the scale of parameters from estimated models was placed on scale of the generating 
parameters by using mean and sigma equating method (Marco, 1977). 

2.4. Item Recovery Analyses 

Item recovery analyses were conducted to compare the generating parameters to the parameter 
estimates from the MCMC analyses with a normal prior and the MCMC analyses with a 
uniform prior. Accuracy indices and Pearson correlations were calculated for this purpose. The 
accuracy indices included mean bias, mean absolute error (MAE), mean-square error (MSE), 
and root-mean-square error (RMSE). The mean bias, MAE, MSE, RMSE and Pearson 
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correlation values were calculated across twenty-five replications for the 15-item and 600 
sample size condition, and for the 30-item and 2,000 sample size condition, individually, for 
each IRT model. As an example, the equations for calculating the accuracy indices and Pearson 
correlation for the item difficulty parameter (b) are given below: 

Bias൫𝑏෠൯ =
∑ ∑ ൫𝑏෠௜ − 𝑏෠௜௥൯௡

௜ୀଵ
ோ
௥ୀଵ

𝑅𝑥𝑛
,   (6) 

MAE(𝑏෠) =
∑ ∑ |𝑏෠௜ − 𝑏෠௜௥|௡

௜ୀଵ
ோ
௥ୀଵ

𝑅𝑥𝑛
,   (7) 

 

MSE(𝑏෠) =
∑ ∑ (𝑏෠௜ − 𝑏෠௜௥)ଶ௡

௜ୀଵ
ோ
௥ୀଵ

𝑅𝑥𝑛
, 

  (8) 

RMSE(𝑏෠) = ඨ
∑ ∑ (𝑏෠௜ − 𝑏෠௜௥)ଶ௡

௜ୀଵ
ோ
௥ୀଵ

𝑅𝑥𝑛
,   (9) 

Cor(𝑏෠, 𝑏) =
1

𝑅
෍ Cor(𝑏෠௜, 𝑏෠௜௥)

ோ

௥ୀଵ

,  (10) 

where (𝑏෠i) is the generating item difficulty parameter for item 𝑖, (𝑏෠ir) is the item difficulty 
parameter estimate for item 𝑖 from MCMC analyses with a uniform/normal prior from the rth 
replication, R is total number of replications which is 25, and n is the total number of items 
which is either 15 or 30. 

3. RESULT / FINDINGS 

The accuracy indices and the correlation coefficients are calculated for the item difficulty, item 
discrimination, item pseudo-guessing, and ability to quantify the item parameter recovery (see 
Appendix A, Tables A1-A4). Post-hoc comparisons were conducted for transformed MSE 
values using Tukey’s HSD procedure (see Table 2). Square-root or natural logarithm 
transformation was used for transformation of the MSE values in order to achieve normally 
distributed residuals. Cohen’s d values for the post-hoc comparisons are reported in Table 2. 
Cohen’s d values of 0.2, 0.5, and 0.8 indicate small, medium, and large effects, respectively 
(Cohen, 1988). Cohen’s d values of 0.8 and larger were considered to reveal a substantial 
difference in mean MSE values between the uniform and the normal priors for a given 
parameter from a particular model for a given number of the items and the sample size 
condition. 

Results did not indicate a difference in the mean MSE values between the normal and the 
uniform priors for the item difficulty parameter from the Rasch model, for both the 15-item and 
600 sample size and for the 30-item and 2,000 sample size conditions. There was not a constant 
pattern for differences in the mean MSE values between the uniform and the normal priors for 
the ability parameter from Rasch model. 

For the 15-item and 600 sample size conditiom, there was not a substantial difference in the 
mean MSE values between the uniform and the normal priors for estimation of the item 
difficulty and the item discrimination parameters using a 2PL model, when the actual 
distribution of the latent ability was uniform.  When the actual distribution of the latent ability 
was normal, the uniform prior yielded larger mean MSE value compared to the normal prior 
for both of the item difficulty and item discrimination parameters. For the 30-item and 2,000 
sample size condition, for both of the item difficulty and item discrimination parameters, the 
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normal prior yielded larger mean MSE value when the actual distribution of the latent ability 
was uniform. Similarly, the uniform prior yielded larger mean MSE value when the actual 
distribution of the latent ability was normal, for both of the item difficulty and item 
discrimination parameters. For estimation of the ability parameter using a 2PL model, the 
normal prior yielded larger mean MSE values compared to the uniform prior for all conditions. 

The analyses of the 15-items using a 3PL model for 600 sample size showed that, there was not 
a substantial difference in the mean MSE values between the uniform and the normal priors for 
the item difficulty and the item discrimination parameters, when the actual distribution of the 
latent ability was uniform. For the item pseudo-guessing parameter, the uniform prior yielded 
larger errors compared to the normal prior, when the actual latent ability distribution was 
uniform, for the 15-item and 600 sample size condition. Again for the 15-item and 600 sample 
size condition, the uniform prior yielded larger errors compared to the normal prior, when the 
actual latent ability distribution was normal, for estimation of the item difficulty, item 
discrimination and item pseudo-guessing parameters.  

For the 30-item and 2,000 sample size condition, the normal prior yielded larger mean MSE 
values compared to the uniform prior, for estimation of the item difficulty and item pseudo-
guessing parameters, when the actual latent ability distribution was uniform. For the item 
discrimination parameter, on the other hand, there was not a significant difference in the mean 
MSE values between the normal and uniform priors. Again for the 30-item and 2,000 sample 
size condition, the uniform prior yielded larger mean MSE values for the item difficulty, item 
discrimination, and item pseudo-guessing parameters, when the actual distribution of the latent 
ability was normal. For estimation of the ability parameter in the 3PL model, the normal prior 
yielded larger mean MSE values compared to the uniform prior, when the actual latent ability 
distribution was uniform. The effect sizes for the difference between the normal and uniform 
priors were medium to large (i.e., between 0.5 and 0.8) when the actual distribution was normal. 

Table 2.  Estimates of Cohen's d Values from Post-hoc Comparisons Using Tukey'd HSD Procedure for 
Transformed MSE Values 

      Rasch 2PL 3PL 

Condition 
Actual 
Dist.  

Prior 
Dist. 

b θ b a θ b a c θ 

15-item and 
600 sample 
size 
 

Uniform 
 

Normal – 
Uniform 
 

0.138                
U>N 

1.240   
U>N 

0.579  
N>U 

0.236  
U>N 

3.467   
N>U 

0.611  
N>U 

0.780  
U>N 

0.915  
U>N 

7.627   
N>U 

Normal 
 

Normal – 
Uniform 
 

0.026   
U>N 

0.455 
U>N 

1.243   
U>N 

2.819 
U>N 

7.526   
N>U 

2.299   
U>N 

5.090  
U>N 

2.319  
U>N 

0.756 
N>U 

30-item and 
2,000 
sample size 
 

Uniform 
 

Normal – 
Uniform 
 

0.245   
U>N 

3.809   
U>N 

0.999   
N>U 

1.314 
N>U 

3.197   
N>U 

2.240   
N>U 

0.281 
U>N 

1.466   
N>U 

6.022    
N>U 

Normal 
 

Normal – 
Uniform 
 

0.013   
U>N 

2.092 
N>U 

1.231 
U>N 

3.914  
U>N 

3.903   
N>U 

2.998   
U>N 

7.894   
U>N 

1.056   
U>N 

0.727  
U>N 

Note. 1) Dist: Distribution, N: Mean parameter estimates for the model with normal prior, U: Mean parameter estimates for the 
model with uniform prior, b: Item difficulty, a: Item discrimination, c: Item pseudo-guessing, θ: Ability 2) Large effect sizes 
(i.e., larger than .80) are shown in bold. 

4. DISCUSSION and CONCLUSION 

The primary purpose of using IRT models is to locate students on a continuous scale by 
estimating their ability (Baker, 2001). Thus, correct estimation of the ability parameters in an 
IRT model is critical for accountability. The purpose of this study was to investigate if the prior 
distribution assumption for ability has an effect on estimation of the ability parameters, 
especially when the true ability distribution is uniform. For this purpose, a simulation study was 
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conducted to compare a uniform and a normal prior distribution assumption for Bayesian 
estimation of the item and ability parameters in Rasch, 2PL and 3PL models. The simulation 
conditions included a short test with a small sample size, and a long test with a large sample 
size. Ability distributions were generated to follow either a normal or a uniform distribution; 
and the item responses were generated to fit either a Rasch, 2PL or a 3PL model. Twent-five 
data sets of item responses were generated for each combination of the simulation conditions. 
Each data set was analyzed using both a uniform and a normal prior, and the ability and item 
parameter estimates from both models were compared for their accuracy. 

Uniform and normal priors for ability yielded similar item parameter estimates for the Rasch 
model for each simulation conditions. The uniform and normal priors either resulted similar 
item parameter estimates, or the prior that does not match the true distribution resulted in better 
estimates of the ability parameter. That is, a uniform distribution prior yielded more accurate 
estimates of the ability parameter when the true distribution of ability was normal; and the 
normal prior resulted in more accurate ability parameter estimates when the true distribution of 
ability was uniform.  

For the 2PL model, the normal and the uniform distribution priors for ability either resulted in 
similar item difficulty and item discrimination parameter estimates, or the prior distribution that 
matches the true distribution of ability resulted in more accurate estimates of similar item 
difficulty and item discrimination parameters. For estimation of the ability parameters, the 
uniform distribution prior yielded more accurate estimates for each of the simulation condition 
independent of the true distribution of ability. 

The uniform and normal distribution priors for ability either resulted in similar item difficulty 
parameter estimates, or the prior that matches the true distribution of ability yielded more 
accurate item difficulty parameter estimates. Uniform and normal distribution priors resulted in 
similar item discrimination parameter estimates when the true distribution was uniform. Normal 
distribution prior yielded more accurate estimates of the item discrimination parameter when 
the true distribution of ability was normal. Similarly, the normal distribution prior yielded more 
accurate estimates of the item pseudo-guessing parameter for each of the simulation conditions 
except for the 30-item and 2,000 sample size condition, when the true distribution of ability 
was uniform. For this condition, the uniform distribution prior resulted in more accurate 
estimates of the item pseudo-guessing parameters. The uniform and normal distribution priors 
for ability yielded similar estimates of ability when the true distribution of ability was normal. 
When the true distribution of ability was uniform, on the other hand, the uniform distribution 
prior yielded more accurate estimates of the ability parameter.  

In summary, the results of this study suggest using a uniform distribution prior to achieve more 
accurate estimates of the ability parameter in the 2PL and 3PL models when the true distribution 
of ability is not known. The results contribute to the IRT literature as they suggest that using a 
uniform prior for ability may be more useful as opposed to the convention of using a normal 
prior for estimation of ability. The results did not indicate a guiding pattern for estimation of 
the ability parameter in the Rasch model. However, the results of this study are limited with the 
simulation conditions used in the study. A future study may include more alternatives for the 
test length and the sample size conditions. In addition, this study only investigated the effect of 
the prior distribution for ability on estimation of the parameters in IRT models. A future study 
may explore potential effects of the prior distributions for the item parameters on parameter 
estimation in IRT models. 
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6. APPENDIX 

Table A1. Accuracy Indices and Correlations for the 15-item and 600 Sample Size Condition when the 
Actual Latent Ability Distribution is Uniform 

 MRM 2PL 

 Item difficulty Ability Item difficulty 
Item 

discrimination 
Ability 

Prior Uniform Normal Uniform Normal Uniform Normal Uniform Normal Uniform Normal 

Bias 0.000 0.000 1.037 0.977 0.000 0.000 0.036 0.030 0.900 0.932 

MAE 0.083 0.086 1.078 1.011 0.073 0.080 0.124 0.114 0.916 0.949 

MSE 0.011 0.012 1.506 1.405 0.009 0.011 0.025 0.022 1.064 1.145 

RMSE 0.107 0.109 1.227 1.185 0.092 0.107 0.159 0.149 1.031 1.070 

Cor. 0.995 0.995 0.931 0.930 0.996 0.995 0.945 0.961 0.957 0.953 

 

Table A1 Continues. Accuracy Indices and Correlations for the 15-item and 600 Sample Size Condition 
when the Actual Latent Ability Distribution is Uniform 

 3PL 

 Item difficulty Item discrimination 
Item pseudo-

guessing 
Ability 

Prior Uniform Normal Uniform Normal Uniform Normal Uniform Normal 

Bias 0.000 0.000 -0.123 -0.151 0.001 -0.018 0.922 1.039 

MAE 0.124 0.136 0.234 0.205 0.035 0.030 0.978 1.059 

MSE 0.026 0.033 0.078 0.061 0.002 0.001 1.295 1.477 

RMSE 0.162 0.183 0.280 0.246 0.043 0.038 1.138 1.215 

Cor. 0.989 0.986 0.869 0.953 0.735 0.868 0.933 0.930 

 

Table A2. Accuracy Indices and Correlations for the 15-item and 600 Sample Size Condition when the 
Actual Latent Ability Distribution is Normal 

 MRM 2PL 

 Item difficulty Ability Item difficulty 
Item 

discrimination 
Ability 

Prior Uniform Normal 
Unifor

m 
Normal Uniform Normal 

Unifor
m 

Normal Uniform Normal 

Bias 0.000 0.000 0.848 0.901 0.000 0.000 -0.172 -0.047 0.862 0.978 

MAE 0.078 0.078 0.918 0.921 0.147 0.104 0.257 0.154 0.876 0.983 

MSE 0.010 0.010 1.144 1.110 0.033 0.021 0.099 0.038 0.969 1.145 

RMSE 0.099 0.099 1.069 1.054 0.182 0.145 0.314 0.195 0.985 1.070 

Cor. 0.996 0.996 0.833 0.835 0.986 0.991 0.790 0.900 0.900 0.908 
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Table A2 Continues. Accuracy Indices and Correlations for the 15-item and 600 Sample Size Condition 
when the Actual Latent Ability Distribution is Normal 

 3PL 
 Item difficulty Item discrimination Item pseudo-guessing Ability 

Prior Uniform Normal Uniform Normal Uniform Normal Uniform Normal 

Bias 0.000 0.000 -0.114 -0.150 0.020 0.001 0.967 1.062 

MAE 0.230 0.136 0.447 0.210 0.049 0.040 1.007 1.070 

MSE 0.075 0.035 0.288 0.061 0.004 0.002 1.389 1.407 

RMSE 0.274 0.187 0.537 0.247 0.061 0.048 1.179 1.186 

Cor. 0.968 0.985 0.226 0.913 0.432 0.656 0.868 0.875 

 

Table A3. Accuracy Indices and Correlations for the 30-item and 2,000 Sample Size Condition when 
the Actual Latent Ability Distribution is Uniform 

  MRM 2PL 

  Item difficulty Ability Item difficulty 
Item 

discrimination Ability 

Prior Uniform Normal Uniform Normal Uniform Normal Uniform Normal Uniform Normal 

Bias 0.000 0.000 1.136 1.000 0.000 0.000 -0.002 0.037 1.003 1.029 

MAE 0.048 0.050 1.145 1.005 0.046 0.057 0.063 0.079 1.006 1.034 

MSE 0.004 0.004 1.548 1.249 0.004 0.006 0.007 0.011 1.156 1.235 

RMSE 0.059 0.062 1.244 1.117 0.060 0.075 0.081 0.104 1.075 1.112 

Cor. 0.998 0.998 0.958 0.960 0.998 0.998 0.982 0.985 0.975 0.971 

 

Table A3 Continues: Accuracy Indices and Correlations for the 30-item and 2,000 Sample Size 
Condition when the Actual Latent Ability Distribution is Uniform 

 3PL 

 Item difficulty Item discrimination 
Item pseudo-

guessing 
Ability 

Prior Uniform Normal Uniform Normal Uniform Normal Uniform Normal 

Bias 0.000 0.000 -0.172 -0.036 -0.002 -0.019 0.987 1.043 

MAE 0.076 0.113 0.207 0.188 0.019 0.025 0.999 1.049 

MSE 0.010 0.023 0.059 0.052 0.001 0.001 1.222 1.357 

RMSE 0.099 0.153 0.242 0.229 0.025 0.033 1.106 1.165 

Cor. 0.996 0.990 0.928 0.973 0.919 0.910 0.958 0.953 
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Table A4. Accuracy Indices and Correlations for the 30-item and 2,000 Sample Size Condition when 
the Actual Latent Ability Distribution is Normal 

 MRM 2PL 

 Item difficulty Ability Item difficulty 
Item 

discrimination 
Ability 

Prior Uniform Normal Uniform Normal Uniform Normal Uniform Normal Uniform Normal 
Bias 0 0 0.838 0.945 0 0 -0.117 -0.014 0.945 1.003 
MAE 0.047 0.047 0.863 0.948 0.090 0.061 0.158 0.076 0.946 1.003 
MSE 0.003 0.003 0.935 1.071 0.013 0.009 0.037 0.009 1.023 1.115 
RMSE 0.059 0.059 0.967 1.035 0.115 0.093 0.191 0.095 1.011 1.056 
Cor. 0.999 0.999 0.904 0.906 0.994 0.996 0.956 0.976 0.935 0.944 

 

Table A4 Continues. Accuracy Indices and Correlations for the 30-item and 2,000 Sample Size 
Condition when the Actual Latent Ability Distribution is Normal 

 3PL 
 Item difficulty Item discrimination Item pseudo-guessing Ability 

Prior Uniform Normal Uniform Normal Uniform Normal Uniform Normal 
Bias 0.000 0.000 0.032 -0.032 0.025 0.005 0.932 0.968 
MAE 0.182 0.088 0.470 0.145 0.036 0.029 0.941 0.969 
MSE 0.047 0.016 0.364 0.034 0.002 0.001 1.101 1.087 

RMSE 0.216 0.126 0.604 0.185 0.043 0.038 1.049 1.043 
Cor. 0.980 0.993 -0.058 0.922 0.829 0.806 0.910 0.921 
 
 


