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ABSTRACT 
 
Data sets collected from industrial processes may have both a particular type of trend and correlation among 
adjacent observations (autocorrelation). Existing statistical control charts may individually cope with 
autocorrelated or trending data. Applying the Shewhart, EWMA, CUSUM, or GMA charts to the uncorrelated 
residuals of an appropriate time series model for a process is a primary method to deal with autocorrelated 
process data. In the relevant literature, there exists no study that shows how these charts’ performances change 
by the addition of a particular type of trend in autocorrelated data. In the present paper, average run lengths of 
these charts are computed; first, for autocorrelated data which does not include an increasing linear trend, and 
second, for autocorrelated data which includes an increasing linear trend. It is assumed that stationary AR(1) 
model and trend stationary first order autoregressive (trend AR(1) for short) model, respectively, are suitable 
models for the test data. ARL performances are compared within the charts and among the charts. Comparisons 
are made for different magnitudes of the process mean shift and various levels of autocorrelation. 
  
Keywords: statistical process control, autocorrelation, linear trend, trend AR(1). 

 

1.  INTRODUCTION 
Since the first control chart has been proposed by 
Shewhart in 1931, lots of charts have been developed 
and then improved to use for different process data. In 
its basics form, a control chart compares process 
observations with a pair of control limits. The standard 
assumptions that are usually cited in justifying the use 
of control charts are that the data generated by the in-
control process are normally and independently 
distributed by mean of µ  and standard deviation of σ  
[1]. However the independency assumption is not 
realistic in practice. The most frequently reported effect 
on control charts of violating such assumptions is the 
erroneous assignment of the control limits. In 1995, 
Alwan and Roberts showed that about 85% of a sample 
of 235 control chart applications displayed incorrect 
control limits [2]. More than half of these displacements 
were due to violation of the independence assumption, 
that is, due to serial correlation in the data. However, 
many processes such as those found in refinery 
operations, smelting operations, wood product 
manufacturing, waste-water processing and the 
operation of nuclear reactors have been shown to have 
autocorrelated observations.  
 

When there is significant autocorrelation in a process, 
traditional control charts with iid (independent and 
identically distributed) assumption will be ineffective. 
In addition to various control charts developed for 
monitoring autocorrelated processes, three general 
approaches are recommended; (i) fit ARIMA model to 
data then apply traditional control charts such as 
Shewhart, CUSUM, EWMA to process residuals, (ii) 
monitor the autocorrelated observations by modifying 
the standard control limits to account for the 
autocorrelation (iii) eliminate the autocorrelation by 
using an engineering controller [1]. 
 
When applying traditional charts to residuals, forecast 
errors, namely residuals, are assumed to be statistically 
uncorrelated. An appropriate time series model is fitted 
to the autocorrelated data and the residuals are plotted 
in a control chart. For this reason all of the well-known 
control schemes can be transformed to the residual 
control schemes. The main advantage of a residual chart 
is that it can be applied to any autocorrelated data 
whether the process is stationary or not. When the 
literature is reviewed for 1997-2010 year range, it is 
clearly observed that the following studies are 
remarkable. In 1997, Kramer & Schmid [3] discussed 
the application of the Shewhart chart to residuals of 
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AR(1) process and in the same year Reynolds & Lu [4] 
compared performances of two different types of 
EWMA control charts for residuals of AR(1) process. 
Yang & Makis [5] compared the performances of 
Shewhart, CUSUM, EWMA charts for the residuals of 
AR(1) process. Zhang [6] remarked that the detection 
capability of an x residual chart was poor for small 
mean shifts compared to the traditional x chart, EWMA, 
and CUSUM charts for AR(2) process. Two years later 
Lu & Reynolds [7] compared the performances of 
EWMA control chart based on the residuals from the 
forecast values of AR(1) process and EWMA control 
chart based on the original observations. Luceno & Box 
[8] studied the one-sided CUSUM chart. Rao et al. [9] 
focused on the integral equation approach for 
computing the ARL for CUSUM control charts for 
AR(1) process. They studied the ARL performance 
versus length of the sampling interval between 
consecutive observations for residuals of AR(1) 
process. Jiang et al. [10] proposed proportional integral 
derivative (PID) charts for residuals of ARMA(1,1) 
process. Kacker & Zhang [11] studied the run length 
performance of Shewhart x  for residuals of 
IMA( λ ,σ ) processes. Shu et al. [12] proposed a 
CUSUM-triggered Cuscore chart to reduce the 
mismatch between the detector and fault signature. A 
variation to the CUSUM-triggered Cuscore chart that 
uses a GLRT to estimate the mean shift time of 
occurrence is also discussed. They used ARMA(1,1) 
process to test the performance of proposed chart. It is 
shown that the triggered Cuscore chart performs better 
than the standard Cuscore chart and the residual-based 
CUSUM chart. Ben-Gal et al. [13] presented context-
based SPC (CSPC) methodology for state-dependent 
discrete-valued data generated by a finite memory 
source and tested the performance of this new modified 
chart for AR(1), AR(2), MA(1) processes. Snoussi et al. 
[14] studied on residuals for short run autocorrelated 
data of autocorrelated process. They compared the 
performances of Shewhart x , CUSUM, and EWMA 
control charts for residuals of AR(1) process. They also 
compared the performances of CUSUM and EWMA 
control charts with Q statistics (EWMA Q chart and 
CUSUM Q chart) for residuals of AR(1) process. Kim 
et al. [15] considered a CUSUM process as their 
monitoring statistic that is a bit different than that of 
Johnson & Bagshaw (1974), and they approximate this 
CUSUM process by a Brownian motion process. 
Noorossana & Vaghefi [16] investigated the effect of 
autocorrelation on performance of the MCUSUM 
control chart. Triantafyllopoulos [17] has developed a 
new multivariate control chart based on Bayes’ factors. 
This control chart is specifically aimed at multivariate 
autocorrelated and serially correlated processes and 
tested for AR(1) process. Yang & Yang [18] considered 
the problem of monitoring the mean of a quality 
characteristic x on the first process step and the mean of 
a quality characteristic y on the second process step, in 
which the observations x can be modeled as an AR(1) 
model and observations y can be modeled as a transfer 
function of x since the state of the second process step is 
dependent on the state of the first process step. To 
effectively distinguish and maintain the state of the two 
dependent process steps, the Shewhart control chart of 
residual and the cause selecting chart (CSC) are 

proposed. They showed that the proposed control charts 
are much better than the misused Hotelling T2 control 
chart and the individual shewhart chart. Ghourabi & 
Limam [19] proposed a new method of residual process 
control, the Pattern Chart and tested this new chart for 
AR(1) process and compared its ARL values with SCC 
chart. Costa & Claro [20] considered the double 
sampling (DS) x  control chart for monitoring 
processes in which the observations can be represented 
as ARMA(1,1) model. Zou et al. [21] suggested using a 
variable sampling scheme at fixed times (VSIFT) to 
enhance the efficiency of the x  control chart for the 
autocorrelated data. Two charts are under consideration, 
that is, the VSIFT x  and variable sampling rate with 
sampling at fixed times (VSRFT x ) charts. These two 
charts are called x -VSFT charts. The authors used 
AR(1) model as representative model for their study. 
An integration equation method combined with a 
Markov process model was developed to study the 
performance of these charts. Sheu & Lu [22] examined 
a GWMA with a time-varying control chart for 
monitoring the mean of a process based on AR(1) 
process and they compared ARL performance of 
GWMA and EWMA charts. Weiss & Testik [23] 
investigated the CUSUM control chart for monitoring 
autocorrelated processes of counts modeled by a 
Poisson integer-valued autoregressive model of order 1 
(Poisson INAR(1)). Knoth et al. [24] discussed the 
impact of autocorrelation on the probability of 
misleading signals (PMS) of simultaneous Shewhart 
and EWMA residual schemes for the mean and variance 
of a AR(1) process. 
 
Use of a residual chart has the advantage that it can be 
applied to any autocorrelated data even if the data from 
a nonstationary process. It needs time series modeling 
efforts [25]. Although the residual charts have some 
advantages by using them for autocorrelated processes, 
there are some problems due to the detection capability 
of the residual chart. Harris & Ross [26] recognized that 
the CUSUM control chart and EWMA control chart for 
the residuals from a first-order autoregressive (AR(1)) 
process may have poor capability to detect the process 
mean shift. Wardell et al. [27] showed that Shewhart 
charts are not completely robust to deviations from the 
assumption of process randomness; namely when 
observations are correlated. EWMA chart is very good 
at detecting small shifts, and performs well for large 
shifts at only the case when the autoregressive 
parameter is negative and the moving average 
parameter is positive. No other chart is obviously 
dominant under every condition. They showed that 
when the processes were positively autocorrelated (at 
the first lag), the residual chart did not perform very 
well. Zhang [28] also studied on detection capability of 
residual chart for autocorrelated data. In his study, 
Zhang defined a measure of the detection capability of 
the residual x-chart for the general stationary process 
and showed that the detection capability of a residual 
chart for AR(2) process was small compared to the 
detection capability of the x chart. One of the most 
important disadvantages of residual charts is that the 
time series modeling knowledge is needed for 
constructing the ARIMA model and some residual 
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charts which based on two valid time series models 
signal differently.  
 
In addition to autocorrelation, some types of industrial 
processes such as chemical processes also exhibit a 
particular kind of trend behavior. In chemical processes 
linear trend often occurs because of settling or 
separation of the components of a mixture. Such 
process data is usually modeled by a trend AR(1) 
model. Peroxide values of vegetable oil, cement 
production and etc. (see [29] and [30] for examples 
from industry) shows trend and also autocorrelation 
because of the nature of process. In such processes, 
there is varying (rather than a constant) average, and it 
is assumed that the values of the dependent variable are 
linearly (causally) related with the values of the 
independent variable. In this study, we want to compare 
performances of Shewhart, CUSUM, EWMA and GMA 
residual charts for trend AR(1) process. In the relevant 
literature, there exists no study that shows how these 
charts’ performances change by the addition of a 
particular type of trend in autocorrelated data. Average 
run length (ARL) is used as performance criterion. ARL 
is defined as the number of observations that must be 
plotted before a point indicates an out-of-control 
condition. For a desired chart when the process has no 
mean shift the ARL should be large, and when a mean 
shift occurs the ARL should be small to indicate the 
occurrence of the mean shift quickly [25]. In the present 
paper, average run lengths of these charts are computed; 
first, for autocorrelated data which does not include an 
increasing linear trend, and second, for autocorrelated 
data which includes an increasing linear trend. It is 
assumed that stationary AR(1) model and trend 
stationary first order autoregressive (trend AR(1) for 
short) model, respectively, are suitable models for the 
test data. ARL performances are compared within the 
charts and among the charts. Comparisons are made for 
different magnitudes of the process mean shift and 
various levels of autocorrelation. 
 
Rest of the paper is organized as follows. Next section 
describes required steps for constructing the residual 
charts under consideration. In Section 3, trend AR(1) 
model is described. Comparison between the residual 
charts’ performances for AR(1) and trend AR(1) 
processes  is given in Section 4. Conclusions are 
pointed out in Section 5.  

2. CONTROL CHARTS FOR RESIDUALS  
 
2.1. The Shewhart Chart  
The Shewhart x  and R  chart which is the basis for 
many control charts is very simple and easy to use. If xi 
are sample of size n, then the average of this sample is 
x  and we know that x  is normally distributed with 

mean µ  and standard deviation xσ , where 

/x nσ σ= . Then the best estimator of µ , the process 

average, is the grand average, say x . Then the center 
line (CL), upper control limit (UCL), and lower control 
limit (LCL) of the Shewhart x  and R  chart for the 3 
standard deviations from the center-line are given below 
in Equation (1-3) respectively [1]: 

3UCL x
n
σ

= +         (1) 

 CL x=                             (2) 

3LCL x
n
σ

= −         (3) 

Where  1 2( ... ) /mx x x x m= + + + , 

1 2( ... ) /nx x x x n= + + + , 
2

R
dσ =� , max minR x x= −  

and 1 2( ... ) /mR R R R m= + + + . 
If the production rate is too slow to allow sample sizes 
greater than one then individual measurements are used. 
For the control chart for individual measurements, the 
parameters are 

2

3 MRUCL x
d

= +                                                       (4) 

CL x=                                                                         (5) 

2

3 MRLCL x
d

= −                                                        (6) 

where MR  is the average moving range and MR is the 
range between consecutive observations [1]. 
 
If the observations are autocorrelated, the formulations 
are modified by using { }te  instead of { }tx . For 

residual charts, the residual te from a time series model 

of { }tx  is defined as   

i t te x x= − �                                                                    (7) 

where tx�  is the prediction of { }tx  from the time series 
model at time t. Various residual charts are constructed 
based on te  depending on the traditional charts used. 
For a Shewhart residual chart the chart is constructed by 
charting te  instead of { }tx . Also the CUSUM residual, 
EWMA residual and GMA residual charts are 
constructed by applying traditional CUSUM, EWMA 
and GMA charts respectively to { }te  [25].  
 
2.2 The CUSUM Chart  
The basic purpose of a CUSUM chart is to track the 
distance between the actual data point and the grand 
mean. Then, by keeping a cumulative sum of these 
distances, a change in the process mean can be 
determined, as this sum will continue getting larger or 
smaller. These cumulative sum statistics are called the 
upper cumulative sum ( tC+ ) and the lower cumulative 

sum ( tC− ). They are defined by Equation (8) and 
Equation (9): 

0 1max[0, ( ) ]t t tC x K Cµ+ +
−= − + +          (8) 

0 1max[0,( ) ]t t tC K x Cµ− +
−= − − +          (9) 

where 0µ  is the grand mean and K is the slack value 
which is often chosen about halfway between the target 

0µ  and the out-of-control value of the mean 1µ  that we 
are interested in detecting quickly [1]. So, if the shift is 
expressed in standard deviation units as 1 0µ µ δσ= +  

(or 1 0 /δ µ µ σ= − ), then K is one-half the magnitude 
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of the shift or ( ) ( )1 0/ 2 / 2K δσ µ µ= = − . It is 

important to select the right value for K, since a large 
value of K will allow for large shifts in the mean 
without detection, whereas a small value of K will 
increase the frequency of false alarms. Normally, K is 
selected to be equal to 0.5σ. 
 
The tabular CUSUM is designed by choosing values for 
the reference value K and the decision interval H. 
Define K kσ=  and H hσ= , where σ  is the standard 
deviation of the sample variable used in forming the 
CUSUM. Using h=4 or h=5 and k=1/2 will generally 
provide a CUSUM that has good ARL properties 
against a shift about 1σ  in the process mean [1]. 
 
For CUSUM residual chart, the residuals are calculated 
using Equation (7) where te  shows normal distribution 
with mean zero and with constant variance. Then, 
conventional CUSUM control chart can be applied to 
the residuals using the formulas given in Equation (8) 
and Equation (9). 
 
2.3 The EWMA chart  
Like CUSUM chart, EWMA is suitable for detecting 
small process shifts. EWMA chart uses smoothing 
constant. The smoothing constant λ  is that 0< λ ≤1 
[31]. The EWMA is a statistic for monitoring the 
process that averages the data in a way that gives less 
and less weight to data as they are further removed in 
time.  
 
By the choice of weighting factor λ , the EWMA 
control procedure can be made sensitive to a small or 
gradual drift in the process. The statistic that is 
calculated is [1]:  

1(1 )t t tz x zλ λ −= + −         (10) 
where tz  is the moving average at time t. 
 
The value of λ  can be between zero and one, but it 
must often chosen between 0.05 and 0.3. The initial 
value of z (i.e. z0) is set to the grand mean ( 0µ ) [1]. If 
the observations tx  are independent random variables 

with variance 2σ , then the variance of tz  will be 

2 2 21 (1 )
2t

t
z

λσ σ λ
λ

⎛ ⎞ ⎡ ⎤= − −⎜ ⎟ ⎣ ⎦−⎝ ⎠
                     (11) 

Therefore the EWMA control chart would be 
constructed by plotting tz  versus the time t (or sample 
number). The center line and control limits for the 
EWMA control chart are as follows: 

2
0 [1 (1 ) ]

(2 )
tUCL L λµ σ λ

λ
= + − −

−
       (12) 

0CL µ=            (13) 

2
0 [1 (1 ) ]

(2 )
tLCL L λµ σ λ

λ
= − − −

−
        (14) 

where L is the number of standard deviations from the 
center-line (width of the control limits). Lucas and 
Saccucci [32] give tables that help the user to select λ .  
 

2.4 The GMA chart  
The GMA chart is used by the purpose of detecting 
shifts in mean of the process quality data. GMA is a 
weighted average of all the prior observations (sample 
mean if using rational sub grouping, with sample sizes 
greater than one) on a process. The GMA chart is well-
suited for the purpose of early detection of small shifts, 
simply by setting the smoothing constant to smaller 
values. The statistics plotted on the GMA control chart, 
when it is used to monitor sample averages, is given in 
Equation (10). In order to use (10) for tracking the 
average value of the real time residuals, the estimated 
average of the real-time residuals for the first window is 
replaced with process observations. The estimate of the 
standard deviation of the statistic plotted on the chart is 
simply 2/R d , L is the width of the control limits, in 
units of standard deviations of the statistic we plot on 
the chart. The control limits for the GMA are 

[ ]1/ 2
2( / ) / (2 )UCL e L R d λ λ= + −         (15)                                    

[ ]1/ 2
2( / ) / (2 )LCL e L R d λ λ= − −                (16) 

where e  is the center line for the chart [33].  
 
2.5 Computation of the Average Run Lengths 
(ARLs) 
The ARL of the Shewhart charts can be found from: 

(1 / )ARL p=                                      (17) 
where p is the probability of exceeding the control 
limits by any sample point. Thus, if the process is in 
control ARL0= (1 /α ) where α is the probability of 
type I error, but if it is out of control, ARL1 = (1 / (1 - 
β )). The probability of not detecting this shift on the 
first subsequent sample or the β  risk is 
 

0 0( ) ( )
/ /

UCL k LCL k
n n

µ σ µ σβ
σ σ
− + − +⎡ ⎤ ⎡ ⎤=Φ −Φ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
                (18) 

where Φ  denotes the standard normal cumulative 
distribution function [1].  
 
Several techniques can be used to calculate the ARL of 
a CUSUM. For a one sided CUSUM (that is, tC+  or 

tC− ) with parameters h and k, Siegmund’s 
approximation is  

2

exp( 2 ) 2 1
2
b bARL − ∆ + ∆ −

=
∆

                        (19) 

for 0∆ ≠ , where * kδ∆ = −  for the upper one-sided 
CUSUM tC+ , * kδ∆ = −  for the lower one-sided 

CUSUM tC− , 1.166b h= + , and *
1 0( ) /δ µ µ σ= − . If 

0∆ = , one can use 2ARL b= . The quantity *δ  
represents the shift in the mean, in the units of σ , for 
which the ARL is to be calculated. Therefore, if * 0δ = , 
we would calculate 0ARL  from Equation (19) , while if 

* 0δ ≠ , we would calculate the value of 1ARL  

corresponding to a shift of size *δ . To obtain the ARL 
of two-sided CUSUM from the ARLs of the two one-
sided statistics, say ARL+  and ARL− , the following 
formula given in Equation (20) is used [1]. 
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1 1 1
ARL ARL ARL+ −= +                                     (20) 

There are two main approaches for computing ARL for 
an EWMA sequence. The first approach is based on the 
fact that ARL must satisfy the Fredholm integral 
equation (see [34]). The second approach is based on 
the flexible and relatively easy to use Markov chain 
approach, originally proposed by Brook and Evans in 
1972 [35]. We used second approach to calculate the 
ARLs of EWMA and GMA control schemes. This 
procedure involves dividing the interval between LCL 
and UCL into 2 1p m= +  subintervals of width 2δ , 
where ( ) / (2 )UCL LCL pδ = − . When the number of 
subintervals p is sufficiently large the finite approach 
provides an effective method that allows ARL to be 
effectively evaluated.   The EWMA statistic ( tz ) is said 
to be in transient state j at time t if 

j t jH z Hδ δ− < < +  for ,..., 1,0, 1,...,j m m= − − + +  

where jH  represents the midpoint of the jth 
subinterval. The EWMA statistic is in the absorbing 
state if [ , ]tz LCL UCL∉ . An approximation for ARL is 
given by 

TARL d Qg�                                                           (21) 
where d is the (p, 1) initial probability vector, 

1( )Q I P −= −  is the fundamental (p, p) matrix, P is the 
(p, p) transition-probabilities matrix and g=I is a (p, 1) 
vector of 1s. The initial probability vector d contains the 
probabilities that the statistic tz  starts in a given state. 
The transition probability matrix P contains the one-
step transition probabilities. The generic element ijp  of 

P represents the probability that the statistic tz  goes 
from state i to state j in one step. This probability can be 
calculated by 

(1 ) (1 )j i j i
ij

H H H H
p

δ λ δ λ
λ λ

+ − − − − −⎛ ⎞ ⎛ ⎞
=Φ −Φ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
    (22) 

 
3. THE PROCESS MODEL 
  
An autoregressive process of lag 1, AR(1), is the 
representative model for autocorrelated processes. In an 
AR(1) process, the current observation is correlated 
with its previous observation. Past studies emphasize 
the role of AR(1) processes in process control [36]. An 
AR(1) model can be expressed as follows:  

1t t tx xξ φ ε−= + +                                           (23) 
where t is the time of sampling, tx  is the sample value 
at time t, ξ  is the constant, φ  is the autoregressive 
coefficient ( 1 1)φ− < < , and tε  is the independent 
random error term (common cause variation) at time t 
following 2(0, )N εσ . Let tX with an increasing linear 
trend (trend AR(1) process) is represented by: 

t tX x dt= +                                                               (24) 
where d is the trend slope in terms of t, and tX  with a 
shift or jump is given by: 

t tZ X µδ= +                                                            (25) 

where µδ  is the magnitude of upward mean shift. In 
this study, our aim is to compare the performances of 

residual charts for an upward shift in the mean of { }tZ . 
ARL measure is used for comparison.  
 
To illustrate how these charts signal, we easily 
computerized design procedures of the charts with 
MATLAB 7.4.0, and applied them to a sample of 
N=500 observations generated by using Equation (25). 
Design of the charts for this sample data was completed 
in less than 1s of CPU time on a personal computer 
(AMD turion, 1.79 GHZ, 2.87 GB Ram). To model 
assignable causes, a sustained shift of magnitude µδ  is 

induced in the mean of tZ  in Equation (25) starting at 
the initial start-up of the system.  
 
4. COMPARISON OF CONTROL CHARTS FOR 
RESIDUALS  
  
In this article, we will compare the performances of 
Shewhart individual chart for residuals, Shewhart x  
and R chart for residuals, CUSUM residual, EWMA 
residual, and GMA residual control charts for trend 
AR(1) process for a wide range of possible shifts and 
autocorrelation coefficients. At the rest of the paper, we 
will use Shewhart individual chart, Shewhart x  and R 
chart, CUSUM chart, EWMA chart, and GMA chart 
expressions for short, to represent these charts for 
residuals. In this section, we evaluate ARL 
performances of the charts using the following design 
parameters: 0ξ = , 1 10x = , ~ (0,1)Nε , N=500, and 
d=0.2.  To investigate the performance, we generated 
data sets using Equation (25), and employed a wide 
range of possible shifts and autocorrelation coefficients. 
Each data set involves 500 observations. The 
considered shift magnitudes (in the unit of eσ ) and 
autocorrelation coefficients are µδ = 0.0, 0.5, 1.0, 1.5, 

2.0, 2.5, 3.0, and φ = ∓ 0.95, ∓ 0.75, ∓ 0.475, ∓ 0.25, 
0, respectively. For the sake of simplicity, we classified 
shift magnitudes in three groups as small ( µδ = 0.5 eσ , 

1.0 eσ ), moderate ( µδ = 1.5 eσ , 2.0 eσ ), large ( µδ = 

2.5 eσ , 3.0 eσ ), and autocorrelation coefficients as 
weak (φ = ∓ 0.25), moderate (φ = ∓ 0.475, ∓ 0.75) 
and strong (φ = ∓ 0.95). For each case considered, 1000 
independent replications were performed. ARL 
calculations are performed by using the formulas given 
in Section 2.5 through process observations obtained by 
simulation experiments. Simulation results are 
explained in detail below.  
 
The ARLs for the EWMA chart and GMA chart with 

0.05λ =  are obtained from process observations 
through simulations for step mean shifts of 0.0, 0.5, 1.0, 
1.5, 2.0, 2.5, 3.0 in the unit of eσ , where eσ  is the 

standard deviation of { }te . For the Shewhart, EWMA 

and GMA charts, the control limits Lσ  are adjusted to 
have the in-control ARL close to 370, which 
corresponds to the in-control ARL of the 3-sigma 
Shewhart chart applied to an iid sequence with a normal 
distribution. For the EWMA and GMA charts L=2.5 is 
chosen for 0.05λ =  to have the in-control ARL close 
to 370 [32]. For the Shewhart chart L=3 is chosen to 
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have the in-control ARL close to 370 [1]. For the 
CUSUM chart, k and h are set to 0.5 and 4.77, 
respectively, to have the in-control ARL close to 370 
for φ = ∓ 0.95, ∓ 0.75, ∓ 0.475, ∓ 0.25, 0. Hawkins 
[37] gives tables to select k and h for Two-Sided 
Tabular CUSUM chart to have in-control ARL close to 
370. The ARL values of these residual charts for trend 
AR(1) process were calculated by using the 
formulations given in Section (2.5) through process 
observations obtained from simulation experiments. 

The ARL values are listed in Table 1 for 0φ ≥  and 
Table 2 for 0φ < . To investigate the performance of the 
residual charts for stationary AR(1) process, we 
generated data sets using Equation (25) with design 
parameter d=0. ARL values of the residual charts for 
stationary AR(1) process are also calculated by using 
the formulations given in Section (2.5) through 
simulation experiments, and results are listed in Table 1 
and Table 2 in parenthesis.  The comparison mechanism 
is displayed in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 1. Comparison mechanism. 
 

 

 

 

 

 

 

Generate Trend AR(1) model: 

1t t tX x dtξ φ ε−= + + +  

where 1,...,t N=  

GMA  EWMA Shewhart 
Individual 

Compare the ARL performances of residual control 
charts for trend AR(1) model 

Shewhart   
x and R 

0ξ = , 1 10x = , ~ (0,1)Nε , N=500, d=0.2 

φ = ∓ 0.95, ∓ 0.75, ∓ 0.475, ∓ 0.25, 0 

Generate AR(1) model: 
1t t tx xξ φ ε−= + +  

where 1,...,t N=  

Generate shifted process data for Trend 
AR(1) model: 

t tZ X µδ= +  where d=0.2 

 

Calculate the ARL values of residual 
control charts for an upward shift in the 
mean. 

µδ = (0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) eσ  

 

CUSUM 

Compare the ARL performances of residual control 
charts for AR(1) model 

Generate shifted process data for 
AR(1) model 

t tZ X µδ= +  where d=0 

Examine the change in performances between stationary AR(1) and trend AR(1) processes 
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Table 1. ARLs for trend AR(1) and AR(1) processes ( 0φ ≥ ) 

φ  
Mean 
Shift GMA  EWMA  

Shewhart 
Individual   Shewhart x and R  CUSUM  

0.95 0.0 390.175 (365.001)  343.951 (376.312) 370.445 (370.445) 370.445 (370.445) 371.482 (370.481) 
 0.5 264.952 (271.680) 230.328 (253.694) 357.949 (357.420) 335.857 (334.756) 308.136 (308.013) 
 1.0 140.454 (128.373) 124.045 (117.552) 324.896 (323.111) 260.194 (259.183) 200.186 (200.016) 
 1.5 80.244 (73.883) 70.682 (59.056) 279.589 (270.628) 185.196 (185.180) 122.406 (122.346) 
 2.0 51.449 (48.308) 46.661 (48.891) 234.103 (230.063) 127.854 (126.899) 76.800 (76.671) 
 2.5 35.908 (23.677) 34.219 (35.111) 191.249 (186.769) 88.079 (88.051) 50.781 (49.991) 
 3.0 28.186 (21.131) 26.386 (26.986) 154.430 (150.040) 61.286 (61.272) 35.544 (34.864) 
       
0.75 0.0 390.170 (390.156) 324.999 (359.322) 370.445 (370.445) 370.445 (370.445) 371.482 (371.322) 
 0.5 124.825 (115.326) 102.705 (104.579) 313.045 (315.144) 237.385 (237.494) 173.908 (173.711) 
 1.0 44.624 (42.356) 37.783 (38.183) 208.912 (213.183) 103.132 (102.193) 60.122 (60.022) 
 1.5 23.988 (23.180) 22.655 (22.901) 128.255 (132.516) 45.392 (45.311) 27.276 (26.132) 
 2.0 16.312 (16.120) 15.439 (15.692) 78.282 (81.690) 21.762 (20.982) 15.811 (14.122) 
 2.5 12.479 (11.991) 11.695 (11.576) 44.234 (46.804) 11.439 (10.946) 10.758 (10.159) 
 3.0 9.786 (9.628) 9.245 (9.261) 31.323 (33.156) 6.582 (6.171) 8.072 (7.692) 
       
0.475 0.0 390.170 (365.001) 363.200 (376.312) 370.445 (370.445) 370.445 (370.445) 371.482 (370.220) 
 0.5 57.624 (41.341) 54.594 (57.336) 252.661 (248.930) 148.750 (147.983) 92.216 (92.116) 
 1.0 22.060 (20.806) 21.149 (22.873) 119.302 (115.080) 40.651 (39.961) 24.893 (24.293) 
 1.5 12.969 (12.313) 12.442 (12.394) 55.644 (52.834) 13.607 (13.537) 11.859 (11.359) 
 2.0 9.168 (8.741) 8.743 (8.794) 27.726 (26.051) 5.707 (4.893) 7.525 (6.945) 
 2.5 7.057 (6.800) 6.891 (6.839) 14.915 (13.918) 2.956 (2.343) 5.480 (4.886) 
 3.0 5.803 (5.588) 5.601 (5.619) 8.662 (8.056) 1.853 (1.652) 4.303 (3.902) 
       
0.25 0.0 390.173 (390.156) 349.604 (359.322) 370.445 (370.445) 370.445 (370.445) 371.482 (369.883) 
 0.5 43.747 (40.716) 38.267 (37.378) 205.192 (209.490) 99.811 (98.976) 58.005 (57.935) 
 1.0 16.120 (15.213) 15.009 (15.253) 75.421 (78.755) 20.644 (20.342) 15.277 (14.822) 
 1.5 9.600 (9.401) 9.034 (9.003) 29.817 (31.581) 6.210 (6.112) 7.843 (7.443) 
 2.0 6.893 (6.779) 6.620 (6.610) 13.388 (14.293) 2.671 (2.321) 5.213 (5.011) 
 2.5 5.438 (5.336) 5.226 (5.225) 6.833 (7.315) 1.571 (1.172) 3.897 (3.342) 
 3.0 4.551 (4.468) 4.329 (4.338) 3.941 (4.211) 1.182 (1.173) 3.110 (3.012) 
       
0.0 0.0 390.170 (365.001) 368.792 (376.312) 370.445 (370.445) 370.445 (370.445) 371.482 (370.882) 
 0.5 28.124 (28.998) 26.636 (26.885) 153.893 (149.511) 60.959 (60.732) 35.358 (35.325) 
 1.0 11.284 (10.782) 10.798 (10.852) 38.816 (41.028) 9.824 (9.123) 9.909 (9.899) 
 1.5 7.058 (6.771) 6.854 (6.810) 14.747 (13.761) 2.924 (2.314) 5.451 (5.432) 
 2.0 5.108 (4.986) 4.995 (5.013) 6.210 (5.774) 1.479 (1.453) 3.744 (3.721) 
 2.5 4.137 (3.984) 4.016 (4.005) 3.198 (2.988) 1.103 (1.102) 2.850 (2.834) 
 3.0 3.489 (3.350) 3.382 (3.431) 1.978 (1.869) 1.015 (1.011) 2.300 (2.213) 
       

 
For trend AR(1) process, as can be seen in Table 1, it is 
clear that when process exhibit weak positive 
autocorrelation the EWMA and GMA charts perform 
equally well for small shifts while CUSUM and 
Shewhart x  and R perform better for moderate to large 
shift. For moderate positive autocorrelation, EWMA and 
GMA charts perform almost the same and better than 
other charts for small mean shifts, while they perform 
similar with CUSUM chart for moderate shifts. For large 
shifts, CUSUM and Shewhart x  and R charts perform 
better. When a strong positive autocorrelation exist in 
process data, the EWMA and GMA charts perform better 

than other charts for small to large mean shifts while the 
EWMA, GMA and the CUSUM charts perform better 
than the Shewhart type control charts for large shifts. 
Shewhart individual chart performs worst for strong 
positive autocorrelation and Shewhart x  and R chart 
performs well when it is compared with Shewhart 
individual chart. It must be noted that the performance of 
CUSUM, EWMA and GMA charts are almost the same 
and these charts perform better than the Shewhart type 
charts in detecting small shifts for 0φ > . Overall 
performance of the Shewhart individual chart is not 
good. 
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Table 2. ARLs for trend AR(1) and AR(1) processes ( 0φ < ) 

φ  
Mean 
Shift GMA  EWMA  

Shewhart 
Individual  Shewhart x and R  CUSUM  

-0.25 0.0 390.177 (390.156) 349.623 (359.322) 370.445 (370.445) 370.445 (370.445) 371.482 (371.482) 
 0.5 20.186 (19.398) 19.326 (19.475) 105.422 (109.389) 33.628 (33.513) 21.474 (21.371) 
 1.0 8.558 (8.435) 8.098 (8.097) 22.567 (23.980) 4.528 (3.928) 6.729 (6.526) 
 1.5 5.465 (5.334) 5.232 (5.210) 6.855 (7.339) 1.574 (1.264) 3.902 (3.552) 
 2.0 4.089 (3.997) 3.873 (3.885) 2.921 (3.110) 1.077 (1.056) 2.744 (2.732) 
 2.5 3.298 (3.239) 3.141 (3.154) 1.679 (1.762) 1.005 (1.004) 2.115 (2.105) 
 3.0 2.802 (2.748) 2.672 (2.672) 1.230 (1.267) 1.000 (1.000) 1.720 (1.687) 
       
-0.475 0.0 390.170 (365.001) 363.958 (376.312) 370.445 (370.445) 370.445 (370.445) 371.482 (371.474) 
 0.5 14.217 (14.730) 13.648 (13.492) 64.389 (61.304) 16.584 (15.896) 13.323 (13.122) 
 1.0 6.301 (6.007) 6.056 (6.041) 10.637 (9.903) 2.182 (2.072) 4.702 (4.612) 
 1.5 4.123 (3.965) 4.003 (3.986) 3.152 (2.946) 1.098 (1.079) 2.833 (2.723) 
 2.0 3.136 (3.032) 3.051 (3.046) 1.557 (1.486) 1.003 (1.002) 2.026 (2.011) 
 2.5 2.553 (2.454) 2.468 (2.467) 1.129 (1.105) 1.000 (1.000) 1.576 (1.569) 
 3.0 2.141 (2.091) 2.107 (2.097) 1.021 (1.015) 1.000 (1.000) 1.290 (1.289) 
       
-0.75 0.0 390.172 (390.156) 344.842 (359.322) 370.445 (370.445) 370.445 (370.445) 371.482 (371.384) 
 0.5 8.270 (8.084) 7.898 (7.879) 21.125 (22.465) 4.216 (4.187) 6.502 (6.401) 
 1.0 3.982 (3.921) 3.785 (3.767) 2.734 (2.908) 1.062 (1.059) 2.667 (2.363) 
 1.5 2.738 (2.686) 2.562 (2.560) 1.194 (1.227) 1.000 (1.000) 1.675 (1.545) 
 2.0 2.091 (2.076) 2.048 (2.047) 1.011 (1.015) 1.000 (1.000) 1.221 (1.112) 
 2.5 1.989 (1.946) 1.929 (1.929) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 
 3.0 1.690 (1.627) 1.537 (1.537) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 
       
-0.95 0.0 390.170 (365.001) 368.285 (376.312) 370.445 (370.445) 370.445 (370.445) 371.482 (371.482) 
 0.5 3.356 (3.312) 3.261 (3.329) 1.808 (1.714) 1.008 (1.005) 2.198 (2.088) 
 1.0 1.998 (1.962) 1.964 (1.966) 1.001 (1.000) 1.000 (1.000) 1.021 (1.035) 
 1.5 1.146 (1.081) 1.090 (1.088) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 
 2.0 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 
 2.5 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 
 3.0 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 
       

 

From Table 2 we observe that, for small shifts, the 
Shewhart individual chart is the worst performer for 
weak and moderate negative autocorrelation. For large 
mean shifts, all charts perform well. For weak 
autocorrelation and for small shifts, the EWMA, GMA 
and CUSUM charts are the best performers. CUSUM 
and Shewhart type charts perform equally well for 
moderate to strong autocorrelation. For small shifts, 
overall performance of the residual charts, except 
Shewhart individual chart, is good. For strong negative 

autocorrelation, the Shewhart chart performs little better 
than the all. Overall performance of the Shewhart type 
charts and CUSUM chart for negative autocorrelation 
are little better than the all for moderate to large shifts. 
It is well known that negative autocorrelation does not 
affect ARL0 performance badly and the results given in 
Table 1 and Table 2 support this statement. For each 
autocorrelation-shift combination, the best performed 
charts are given in Tables 3-4 in a descending order of 
ARL performance.   
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Table 3. Best performed control charts for trend AR (1) process ( 0φ ≥ ) 

          φ  
µδ  

Strong 
Positive 

Moderate 
Positive 

Weak 
Positive 

Uncorrelated 

Small 
EWMA  
 

GMA  

EWMA  
 

GMA  

EWMA  
 

GMA  

EWMA  
 

GMA  
 

CUSUM  
     

Moderate 
EWMA  
 

GMA  

CUSUM  
 

Shewhart x  and R  

Shewhart x  and R  
 

CUSUM  
Shewhart x  and R  
 

     

Large 
EWMA  
 

GMA  
 

CUSUM  

Shewhart x  and R  
 

CUSUM  
 

Shewhart x  and R  
 

CUSUM  

Shewhart x  and R  
 

Shewhart individual  

 
Table 4. Best performed control charts for trend AR (1) process ( 0φ < ) 

          φ  
µδ  

Strong 
Negative 

Moderate 
Negative 

Weak 
Negative 

Small  

Shewhart x  and R  

 

Shewhart individual  
 

CUSUM  
 

CUSUM  
 

Shewhart x  and R 
 

EWMA  
 

GMA  

CUSUM  
 

EWMA  
 

GMA  
 

 
    
Moderate Shewhart x  and R  

 

Shewhart individual  
 

CUSUM  
 

EWMA  
 

GMA  

Shewhart x  and R  
 

Shewhart individual  
 

CUSUM  
 

Shewhart x  and R  
 

CUSUM  
 

    
Large Shewhart x  and R  

 

Shewhart individual  
 

CUSUM  
 

EWMA  
 

GMA 

Shewhart x  and R  
 

Shewhart individual  
 

CUSUM  
 

Shewhart x  and R 
 

Shewhart individual  
 

CUSUM 
 

 
The comparisons given in Table 3 and Table 4 show 
that when strong positive autocorrelation exist in trend 
AR(1) process, EWMA, GMA, and CUSUM charts 
perform better than the Shewhart individual chart. The 
Shewhart individual chart performs best in case of 
negative autocorrelation for large shifts. On the 
contrary, in case of small and moderate shifts, Shewhart 
individual chart performs worst for positive 
autocorrelation. The comparison also shows that the 
CUSUM, EWMA and GMA charts perform almost 
similar.  
 
On the other hand, if we examine the change in 
performances between stationary AR(1) and trend 
AR(1) processes, observing Tables 1-2, it is seen that 
for strong positive autocorrelation while Shewhart x  
and R, and CUSUM charts keep their performances, 
GMA, EWMA and Shewhart individual charts perform 
worse in trend AR(1) process. For small shifts and 
moderate positive autocorrelation for trend AR(1) 

process, while Shewhart individual and EWMA charts 
perform better, GMA chart performs worse compared to 
their performance in AR(1) process. For weak positive 
autocorrelation and weak negative autocorrelation, 
Shewhart individual chart performs better for small 
shifts. For other cases, there are no significant changes 
at ARL performances.  
 
5. CONCLUSION 
 
A widely accepted strategy for monitoring 
autocorrelated processes is to use residuals, 
uncorrelated random variables, of time series. In this 
study, Shewhart individual, Shewhart x and R, EWMA, 
CUSUM, and GMA charts were applied to residuals of 
AR(1) and trend AR(1) process, and their ARLs for two 
type of processes are calculated by using the formulas 
given in Section (2.5) through simulation experiments. 
First, sensitivities of the charts to several magnitudes of 



338 GU  J  Sci., 24(2):329-339 (2011)/ Aslan Deniz KARAOGLAN1,♠, Gunhan Mirac BAYHAN2 

 

mean shifts of trend AR(1) process are evaluated. Then, 
the charts’ performances in two processes are 
compared. The aim was to observe how the 
performance of the charts are change by addition of an 
increasing linear trend in AR(1) process. The most 
conspicuous observations are i) for small shifts and 
moderate positive autocorrelation, Shewhart individual 
and EWMA charts perform better for trend AR(1) 
process ii) only the Shewhart x  and R and CUSUM 
charts’ performances are the same for  trend AR(1) and 
AR(1) process. For future research, this study could be 
extended for autocorrelated data with decreasing trend.  
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