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A SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR
LINEAR HYPERBOLIC PDE’S WITH HIGH FREQUENCIES

ŞUAYIP TOPRAKSEVEN

Abstract. The main purpose of this paper is to describe a space-time dis-
continuous Galerkin (DG) method based on an extended space-time approx-
imation space for the linear first order hyperbolic equation that contains a
high frequency component. We extend the space-time DG spaces of tensor-
product of polynomials by adding trigonometric functions in space and time
that capture the oscillatory behavior of the solution. We construct the method
by combining the basic framework of the space-time DG method with the ex-
tended finite element method. The basic principle of the method is integrating
the features of the partial differential equation with the standard space-time
spaces in the approximation. We present error analysis of the proposed space-
time DG method for the linear first order hyperbolic problems. We show that
the new space-time DG approximation has an improvement in the convergence
compared to the space-time DG schemes with tensor-product polynomials. Nu-
merical examples verify the theoretical findings and demonstrate the effects of
the proposed method.

1. Introduction

In computational acoustics, the medium frequency regime and multiscale wave
propagation governed by the wave equation have been gained a constant inter-
est in last decades. When multiscale wave propagation presents a high frequency
component, developing an effi cient numerical methods for these classes of prob-
lem is a challenging task. Some example of high frequency problems include the
high-intensity focused ultrasound (HIFU) treatment of cancer [1], coupled atomistic
continuum modeling in nanomaterials [2] and tunneling in quantum mechanics [3].
The reason for ineffi ciency of the existing methods is that the standard numerical
methods such as the finite element (FEM) or discontinuous Galerkin (DG) meth-
ods based on semi-discrete approach require a very fine mesh in the discretization
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in both space and time, and this leads to huge computational cost and makes the
numerical methods ineffi cient. Moreover, these methods based on semi-discrete
approach may not suitable for multiscale approximations in the temporal domain.
These issues on the standard numerical techniques have lead to high order methods
that solve wave propagation phenomena in the time domain. One promising ap-
proach that has gained considerable popularity is space-time approximation spaces
in which the time domain is also discretized. In these methods, two approaches
have been proposed during the last decades. The first approach is called the time
continuous space-time Galerkin methods (TCG) that do not require continuity in
time. This approach generalizes the semi-discrete discretization to time domain
with continuous time functions. The detailed explanations of such methods are
given in [4]. The drawback of these methods is high computational cost because
of discretization of whole domain. The second approach is based on space-time
discontinuous Galerkin methods that use standard polynomials spaces to discretize
the problem in space and time, while temporal domains are divided into time slab
and discontinuities and jumps are allowed in time. In each slab, TCG method is
applied and the next slab uses the information from the previous slab. This second
approach is more robust and effi cient than the first one. The wave equation can
be discretized by a space-time setting in two ways. One way is to discretize the
wave equation directly in a one field formulation with only one unknown as [5] and
[6] . The second way is to convert the second order equation to a system of first
order equations as done in [7] and [8]. Using this second formulation, a priori and
a posteriori error estimates have been proved in [9] using linear interpolation. This
approach clearly increases the unknowns in the resulting systems. Error estimates
to prove convergence of the methods have been derived by French [6] and Hughes
and Hulbert [5]. In the latter work, Galerkin least-squares stabilization terms are
added for convergence analysis. In [6], the weighted inner product is included for
the stability. A space-time DG method in which discontinuities and jumps are al-
lowed both in space and time have been developed in [10] and recently proposed in
[11] and [12] with discontinuous Petrov-Galerkin method in temporal domain for
linear hyperbolic systems. Furthermore, many applications require boundary move-
ment such as Stefan problems and water waves. In such problems, the mesh points
also move in order to capture boundary movement. These movements in mesh
points make the numerical scheme in effi cient or need more complicated numerical
discretization. In this case, it is natural to consider the space-time discontinuous
Galerkin approach. Analysis and survey of space-time DG method for hyperbolic
and parabolic conservation laws on time dependent domains are explained in details
in [13]. Recently, space-time methods have become popular for the time dependent
problems discussed in [14] and [15]. An application of this method to the compress-
ible Vaiver-Stokes equations is discussed in [17]. Space-time DG method for the
advection-diffusion equation has been given in details in [18] and [19]. This method
also has been successively applied to nonconservative hyperbolic PDEs as models
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for dispersed multiphase flows in [20]. Furthermore, space-time DG methods have
been proposed for the nonlinear water waves in [21] as well.
The medium or high frequency in wave propagation has been dealt with high

order numerical methods including the ultra-weak variational method [22] that is
a special case of the Trefftz-DG formulation for the wave equation [23] and the
discontinuous enrichment method [24]. In these methods, the approximation space
is enriched by the solution of the equation under consideration. In [24], the DG
space is extended by solutions of the homogeneous differential equation that capture
the high frequency in the solutions. In the same direction, an enriched space-time
FEM for the first-order hyperbolic systems with discontinuities in both space and
time has been studied by Chessa and Belytschko [25]. This enriched space-time
approach is based on the extended FEM studied in [26]. These methods are based
on the partition of unity approach developed in [27]. Motivated by these approaches,
in this paper we propose a high-order accurate space-time DG method that is well-
suited for first order linear hyperbolic problem with high frequency components.
We construct the extended space-time DG space by enriching space-time DG space
with the trigonometric functions in space and time. These trigonometric-function
spaces intuitively capture the high frequency solutions and should be used to the
highly oscillatory problems. This extended space time DG method is an extension
to an extended DG method presented in [28]. We will show global convergence in
error estimates. Our error analysis based on the DG method proposed by [29].
The outline of this paper is as follows: Section 2 describes the mathematical

analysis, formulations, and an introduction to a space-time DG method for scalar
hyperbolic linear equation with high-frequency components. The basic properties
of the proposed space-time DG method, the geometry of the space-time domain
and elements and the space-time formulation of the problem have been explained
and discussed and general solution form for linear hyperbolic equation with high
frequency components is also given in Section 2. In Section 3, we introduce pre-
liminaries and notations and recall some basic facts on DG methods for linear
hyperbolic equations. We present our extended DG method for linear hyperbolic
equation with high frequency components and our special interpolation operators
have been given in Section 4. Stability and error analysis are given in Section 5.
In Section 6 numerical example is given to show that our theoretical results agree
with numerical results. Finally we explain some conclusion and future direction in
Section 7.

2. Space-Time Formulation with Trigonometric Functions

The basic principle of an extended DG method is to enrich the DG space by
special functions that are, generally, the solution of homogeneous differential equa-
tion. The linear hyperbolic equation has the solution of the form h(x ± t) in one
dimension. In Section 2.2, we show that if the initial condition has a high fre-
quency component, then the homogeneous differential equation will also have a
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high frequency functions. This observation suggests that the enrichment shape
functions consist of the polynomials and the trigonometric functions in the space
E := span{sin(x ± t), cos(x ± t)}. A similar idea has been proposed for the wave
equation in [30] and Trefftz DG method in [23].

2.1. Problem Statement. In this paper, we consider a scalar hyperbolic equation
in an open domain Ω with boundary ∂Ω

Find U = U(x, t) so that{
LU(x, t) + c(x, t)U(x, t) = g(x, t) on QT , 0 < c0 ≤ c ≤ c1,
U(x, 0) = f(x).

(1)

Here, LU := ∂U
∂t +γ ∂U∂x , QT = Ω× (0, T ] and c0 and c1 are constants with γ ∈ (0, 1]

and U denotes a scalar quantity, and t represents time with T the final time. This
problem has been chosen purely for its simplicity. This analysis can be easily
extended to more general hyperbolic and scalar conservation law problems.
We propose a space-time DG method based on extended DG approximation

space for the equation (1). In this method, we directly consider the domainQT ⊂ R2

in which spatial and temporal variables are not distinguished and a point x̂ ∈ QT
has coordinates (x0, x1) with x0 = t representing a time variable and x = x1 space
variable. Thus, we define the space-time domain as the open domain QT ⊂ R2.
For space-time discretization, we need space-time slabs and elements. To do this,
we partition the time interval I = (0, T ] into an ordered time levels 0 = t0 <
t1 < · · · < tN = T . Let In = (tn, tn+1) so that I = ∪nIn with the time length
∆t = tn+1 − tn. Let Ω(tn) denote the space-time domain at the time level t = tn.
Then, we define space-time slabs as QnT = QT ∩ In. We divide further Ω(tn) into
non-overlapping spatial elements Kn and similarly we divide the spatial domain
Ω(tn+1) into elementsKn+1. We then connect the elementsKn andKn+1 to obtain
space-time element Kn by using linear interpolation in time. We also describe
the tessellation of the space-time slab Tnh = ∪nKn and all space-time elements
Th = ∪nTnh in QT . By ∂K we denote the boundary of the space-time element K.
These space-time elements can be mapped to reference element (square or rectangle)
by a suitable map, e.g., see [13] for construction of such a map. Figure 1 show a
sketch of the space-time slab in QT .
In this paper, we require c and g are slowly varying smooth functions with

bounded derivatives of many orders while f has the high frequency components.
For instance, if f(z) = cos(ωz), then the solution has the form of:

U(x, t) = S(x, t) +R(x, t) cos
(
ω(x− t)

)
, (2)

where the frequency ω is a large number in absolute value. We further assume the
functions S(x, t) and R(x, t) are slowly-varying functions of x and t in the sense
that they have many derivatives all of which have norms that are moderately sized
in space.
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Figure 1. Space-time slab in space-time domain QT . On the
right, the rectangular mesh is an example of structured discretiza-
tions in space and time.

We can assume that the forcing term g(x, t) has also frequency components and
we can show a similar solution form to (2). However, in this case extending the
DG space with trigonometric functions is not easy task since we should extend the
approximation space in all characteristic lines. For example, if we let g(x, t) =
sin(βx) + cos(ηt) with β, η >> 1, then the solution form looks like U(x, t) =
S1(x, t) sin(β(x − t)) + S2(x, t) cos(ηt) + R(x, t) cos(ω(x − t)) so that S1, S2 and
R do not have high frequency component. Therefore, enriching the space-time DG
space is not easy job in this simple example. As an application of this phenomena,
we consider high-intensity focused ultrasound (HIFU) treatment of cancer that uses
sound wave. Tumors in body tissues are destroyed when HIFU is focused onto them.
The initial condition in partial differential equation will generally help to determine
high frequency shape to destroy tumor. In Figure 2, high frequency components in
the initial condition determine acoustic pressure (high frequency shape) that heats
and destroys the tumor.
We define an interpolation based on the assumption (2) in the error analysis of

the proposed method. Hence, we prove this assumption in the next subsection.

2.2. General Form of the Solutions. In this section, we give the explicit solution
form of the following problem:

Find U = U(x, t) on R× [0, T ] so

∂U/∂t+ ∂U/∂x+ cU = g 0 < c0 ≤ c(x, t) ≤ c1,
with U(x, 0) = f(x).

(3)

The variable change to characteristic lines helps transform the PDE to an infinite
set of ODE’s. Let x = t+ x0 where x0 ∈ R and define

Ũ(t) = U(t+ x0, t).
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Figure 2. High frequency sound waves are concentrated on body
tissues and tumor heats up and dies.

Then, we find that
Ũ ′ = Ut + Ux = −cU + g,

or, with C̃(t) = c(t+ x0, t) and G̃(t) = g(t+ x0, t) we have

Ũ ′ + C̃Ũ = G̃ and Ũ(0) = f(x0).

We multiply this equation by an integrating factor µ̃ and find

µ̃(t) = exp

(∫ t

0

C̃(s) ds

)
⇒

(
µ̃(t)Ũ(t)

)′
= µ̃(t)G̃(t).

This first order linear BVP (in Ũ) can now be solved and we find that

Ũ(t) =
1

µ̃(t)

(
f(x0) +

∫ t

0

µ̃(s)G̃(s) ds

)
.

So, now we unwind the variable change to produce a solution for U . Note that
x0 = x− t and, thus, letting

I(x, t) = 1/µ̃(t) = exp

(
−
∫ t

0

c(s+ (x− t), s) ds
)
,

we have

U(x, t) = f(x− t)I(x, t) + I(x, t)

∫ t

0

I(x, s)g(s+ (x− t), s) ds.

If we now assume that g and c are slowly varying smooth functions with bounded
derivatives of many orders while f has the high frequency components; that is, say,

f(z) = cos(ωz) for ω >> 1,

then, we have
U(x, t) = S(x, t) +R(x, t) cos(ω(x− t)).

This proves the assumption (2).
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3. Preliminaries and Notations

The Sobolev space, Wm,p(K), for a domain K, consists of functions with m
derivatives in the Lp(K) norm. We will use the following notation for Sobolev
space semi-norms and norms for 1 ≤ p <∞

|v|m,p,K =

 ∑
|α|=m

‖Dαv‖pLp(K)

1/p

and ‖v‖m,p,K =

 ∑
|α|≤m

‖Dαv‖pLp(K)

1/p

,

(4)
and when p =∞

‖v‖m,∞,K =
∑
|α|≤m

‖Dαv‖L∞(K), (5)

where Dαv =
∂|α|v

∂xα11 . . . ∂xαnn
with |α| =

∑n
k=1 αk for αk ≥ 0, k = 1, . . . , n, and

xα = xα11 . . . xαnn and the standard Lebesgue space Lp(K) norms

‖v‖Lp(K) =
(∫

K

|v|p dx
)1/p

for 1 ≤ p <∞,

and
‖u‖L∞(K) = ess supx∈K |v(x)|.

For simplicity, we occasionally denote ‖.‖0,2,K by ‖.‖.
We will primarily be working with the Hilbert space Hm(K) = Wm,2(K).
Let Pr(K) be the space of polynomials with degree ≤ q in K. We also assume

there is an interpolation operator [[31], Theorem 4.4.4]

πh : W q+1,p(K)→ Pr(K)

for which

‖(I − πh)v‖`,p,K ≤ Chr−`‖v‖r,p,K , (0 ≤ ` ≤ r ≤ q + 1). (6)

and πhξ = ξ for ξ ∈ Pr(K). Moreover, if v ∈ C(Ω̄) then πhv is continuous on Ω̄ as
well.
The inverse inequality [[31], Theorem 4.5.11] for functions χ ∈ Pr(K) states that

there exists C > 0, which is independent of h, so that

‖χ‖`,p,K ≤ Chm−`+1/p−1/r‖χ‖m,r,K , m ≤ `, 1 ≤ p ≤ ∞, and 1 ≤ r ≤ ∞.
(7)

The arithmetic-geometric mean inequality states that for scalars a and b,

|ab| ≤ δa2 + Cδb
2, (8)

where Cδ = 1/(4δ) and δ > 0.
To be able to easily present our results and compare with previous works, we

follow the paper by C. Johnson and J. Pitkaranta [29]. Given a piecewise smooth
function v write vn(.) = v−(., nh) and the approximate solution u is computed
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successively on the strips Sn = {x ∈ Ω : (n − l)h < t < nh}, n = l, ..., N so that
‖un − Un‖ is the error on each time level t = nh.
Let nK = (nKx , n

K
t ) represent the outward pointing unit normal vector on ∂K

with space coordinate nKx and the time coordinate n
K
t . Let β := (1, γ) and ∂QT :=

Γ. The inflow boundary is defined

Γ_ := {x̂ ∈ Γ : nK · β < 0} = {(x, t) : x = 0 or t = 0}.

In an element K, its inflow boundary ∂K_ and its outflow ∂K+ = ∂K\∂K_ is
similarly defined by

∂K_ = {x ∈ ∂K : nK · β < 0},
∂K+ = {x ∈ ∂K : nK · β > 0}.

Space-time DG space is then defined as

Vh := {v ∈ L2(QT ) : v|K ∈ Pr(K), ∀K ∈ Th}. (9)

where Pr(K) denotes the space of polynomials of maximum degree at most r in
(x, t). Functions in Vh are allowed to be discontinuous at discrete time level. For
K ∈ Th, and a piecewise smooth function v, we define the jump operator by

[u](x) = lim
s→0+

(
u(x+ s)− u(x− s)

)
when x ∈ ∂K_ ⊂ E , interior faces, and [u](x) := u(x) when x ∈ Γ_ ∩ ∂K_. The
jump of v across ∂K_\Γ defined similarly by

[v]K := v+
K − v

−
K ,

where v+
K the trace of v on ∂K taken from within the element K and v−K is the

exterior trace of u. Note that the sign of the jump depends on the direction of the
flow. The average of a function u is defined by

{u} =
1

2
(u|K1

+ u|K2
) on ∂K1 ∩ ∂K2.

We define the equivalent space-time DGmethod for (1) by summing overK ∈ Th:
Find u ∈ Vh so that

a(u, v) = `(v), ∀v ∈ Vh, (10)

where
a(u, v) =

∑
K

(
(Lu+ cu, v)K −

〈
[u], v+

〉
∂K_

)
, (11)

and

`(v) = (g, v),
〈
u, v
〉
∂K

=

∫
∂K

|nK · β|uv ds. (12)

where β = (1, γ) and nK is the outward unit normal to ∂K.



SPACE-TIME XDG METHOD FOR HYPERBOLIC PROBLEMS 221

Figure 3. The order of the space-time elements on which u is computed.

Note that, for differentiable functions u and v, we have the following integration
by parts formula

(Lu, v)K = −(u,Lv)K +
〈
u, v
〉
∂K+
−
〈
u, v
〉
∂K_ .

Equivalently, using this formula we may write this as

a(u, v) =
∑
K

(−(u,Lv + cv)K −
〈
u−, [v]

〉
Γh

+
〈
u, v
〉

Γ+
, (13)

where Γh :=
(⋃

K ∂K
)
\Γ.

Now, we have the Galerkin orthogonality relation by replacing u by the exact
solution U in (11)

a(u− U, v) = 0, ∀v ∈ Vh. (14)

Let us recall the DG method for (1). Given a finite element partitioning Jh :=
{K} of QT , we look for a solution u defined on QT such that for all K ∈ Jh and
u|K ∈ Pr(K) so that∫

K

(Lu+ cu)vdx+

∫
∂K_

MK [u]Kv
+ ds = (g, v)K ∀v ∈ Pr(K), (15)

where MK := |nK .β|.
As shown in [29], u is uniquely determined by (15) and it is possible to compute

u successively on each K starting at the inflow boundary Γ_ where u is given.
Then it is possible to find the numerical solution u successively on one time level
after another computing space-time element by element by starting for each strip
on the left. The order of elements on which u will be computed is shown in Figure
3. Thus, given g and u− on inflow boundary, we can solve u locally in each K as
shown below. For detailed proof, we refer the reader to [29].
Below, we denote by C , a positive constant which may take different values on

different occurrences.

Lemma 1. [29] Assume that g ∈ L2(QT ) and f ∈ L2(Γ_) are given in (1). Then
u is determined by (15) and the following local stability holds for each K

‖u‖K + h
1
2 ‖u+‖∂K_ + h

1
2 ‖u−‖∂K+

≤ C{h‖g‖K + h
1
2 ‖MKu

−‖∂K_}.
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Let us introduce a norm |||.|||h for the error analysis :

|||u|||2h =
∑
K

h||Lu||2K + |u|2h.

|u|2h = ||u||2 +
1

2

〈
[u], [u]

〉
∂K_ +

1

2

〈
u−, u−

〉
Γ+
,

|||u|||2h =
∑
K

h||Lu||2K + |u|2h.

Then, we have the following a generalization of the Poincare-Friedrichs inequality
[31]:

∀w ∈ H1(K), ‖w‖0,2,QT
≤ C|||w|||h. (16)

4. Space-time Discontinuous Galerkin Discretization

In this section, we discuss the space-time DG method based on the extended
space-time approximation spaces and that combines the framework of space-time
DG with XFEM for the linear hyperbolic equation. We enrich the space-time DG
space by adding a range of Fourier-series components to handle the high-frequency
terms in the exact solution. As shown in Section 2.1, if the initial condition has only
one high frequency component, then the solution form given by (2). In the same
direction, if we assume that the initial condition has L high frequency components,
that is, f(z) =

∑L
`=1 cos(ω`z) with ω` >> 1, then we wil have the solution form of

U(x, t) = S(x, t) +

L∑
`=1

R(x, t) cos(ω`(x− t)). (17)

Thus, our "enriched space" Xr
h(QT ) consists of the functions of the form

Xr
h(QT ) = {ψ = s+

L∑
`=1

(a`cos(n`(x− t)) + b`sin(n`(x− t)))}, (18)

where n1, . . . , nL are integers and s as well as the ai’s and the bi’s are all elements
of the space-time DG space Vh (9). More precisely, these s, a` and b` functions are
tensor-product of piecewise discontinuous polynomials of degree at most r in x and
t variables. Note that these functions are allowed to be discontinuous at the nodal
points both in space and time and continuous in each element. This enriched space
provides good approximations to the solutions of (1) if the range of high frequencies
are known a priori.
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For a high-frequency component of (17), we have, by using a simple trigonometric
identities,

R(x, t)cos(ω`y) = R(x, t)cos(n`y + (ω` − n`)y)

= R(x, t) cos((ω` − n`)y) cos(n`y)−R(x, t) sin((ω` − n`)y) sin(n`y),

where y := x − t and n` is an integer and can be chosen between n0 and nL with
0 ≤ ω` − n` ≤ 1. The key idea is that the functions

α`(x, t) = R(x, t) cos((ω` − n`)(x− t)),
and

β`(x, t) = −R(x, t) sin((ω` − n`)(x− t))
oscillate slowly since their frequencies are small and can be well approximated by
functions in Vh.
We now directly approximate the form (2) using interpolation. Let

UA(x, t) = πhS(x, t)+

nL∑
`=n0

[(πhα`)(x, t)cos(n`(x− t)) + (πhβ`)(x, t)sin(n`(x− t))] .

(19)
Note that UA ∈ Xr

h(QT ) and we have

U(x, t)− UA(x, t) = (I − πh)S(x, t) +

n∑̀
`=n1

[
(I − πh)α`(x− t)cos(n`(x− t))

+ (I − πh)β`(x− t)sin(n`(x− t))
]
.

So, using (6), there is constant C, independent of h and ω`, we have

‖U − UA‖m,p,K ≤ Chr+1−mωmL , 0 ≤ m ≤ p ≤ r + 1. (20)

Also, since U is continuous, it follows that UA is continuous as well.
We remark that if U ∈ Pr(QT ), that is U is a polynomials, then our special

interpolation agrees with the interpolation operator πh so that in this case we have

UA = πhU. (21)

Furthermore, we have, by the trace inequality,

‖U − UA‖0,2,∂K ≤ Ch,r+
1
2 0 ≤ m ≤ 2 ≤ r + 1. (22)

To construct our space-time approximation solution on the extended space, we
perform the space-time discretization of the linear hyperbolic equation (1). Thus,
we define the space-time DG scheme : Find u ∈ Xr

h so that

a(u, v) = `(v) ∀v ∈ Xr
h. (23)

First, we show that the discrete problem (23) is stable from which the existence
and uniqueness of the problem follows. Then we prove the bilinear form a(., .) is
coercive and continuous. For short reference, we take MK = M .
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Lemma 2. The solution u to the problem (23) satisfies the following stability es-
timates

|||u|||2h ≤ C
(
‖g‖2 + ‖Mf‖2Γ_

)
. (24)

Proof. Taking v = u+ δLu when δ = Ch for some constant C in (23) we have, for
each K ∈ Th

a(u, u+ δLu) = (Lu+ cu, u+ δLu)−
∫
∂K_

[u]u+M ds = (g, u+ δLu)K . (25)

Now, using Green’s formula we have

2(Lu, u) =

∫
∂K+

(u−)2M ds−
∫
∂K_

(u+)2|M | ds,

and since c ≥ c0 > 0, we get

2aK(u, u+ δLu) ≥ 2δ(Lu,Lu)K + 2c0(u, u)K + (1 + δc0)
( ∫

∂K+

(u−)2M ds

−
∫
∂K_

(u+)2|M | ds
)

+ 2

∫
∂K_

[u]u+|M | ds.

Since every side of interior element boundary ∂K+ agrees with a side of ∂K ′_ for
an neighbour element K ′, we have∑

K

∫
∂K+

(u−)2M ds =
∑
K

∫
∂K_

(u−)2|M | ds+

∫
Γ+

(u−)2M ds+

∫
Γ_

(u−)2M ds,

(26)
and consequently if we take δ = Ch for some constant C with h ≤ 1 and using the
fact that 1 + Ch ≥ 1

2a(u, u+ ChLu) ≥ 2Ch
∑
K

(Lu,Lu)K + 2c0
∑
K

(u, u)K

+
∑
K

∫
∂K_

(
(u+)2 − 2u+u− + (u−)2

)
|M | ds

)
+

∫
Γ+

(u−)2M ds−
∫

Γ_
(u−)2|M | ds.

Thus we obtain

a(u, u+ ChLu) ≥ Ch
∑
K

‖Lu‖2 + c0‖u‖2 +
1

2

∑
K

∫
∂K_

[u]2|M | ds

+
1

2

∫
Γ+

(u−)2M ds− 1

2

∫
Γ_

(u−)2|M | ds. (27)

Now we estimate the right-hand side of (25). Applying the Cauchy-Schwarz and
the arithmetic-geometric inequalities we get

(g, u+ ChLu) ≤ ‖g‖2 +
1

4
‖u‖2 +

Ch

4

∑
K

‖Lu‖2K . (28)
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Using the fact that u_ = f on Γ_ and combining (27) and (28), the desired
result follows. �

In particular this estimate shows the uniqueness and existence of a solution to
(23)
Now we prove the improved stability estimate.

Lemma 3. The following improved stability holds for δ = Ch with suitable constant
C

a(u, u+ δLu) ≥ C
(
|||u|||2h −

∫
Γ_

(u−)2|M | ds
)
. (29)

Proof. From (27) and the definition of the norm (3) , the result easily follows. �

5. Error Analysis of the Space-time DG Method

We can now state and prove the basic global error estimate for our space-time
DG method (23).

Theorem 4. If u satisfies (23) and U satisfies (1), then we have the following
error estimate

|||e|||h ≤ Cωhr+
1
2 , (30)

where C does not depend on ω and h.

Proof. Let UA ∈ Xr
h be the special interpolation of U defined by (19). Let us write

η := U − UA, θ := u− UA, e = θ − η.

Using Lemma 3 with u = e and δ = Ch and the orthogonality property (14) with
v = θ and the fact that e_ = 0 on Γ_, we have

C|||e|||2h ≤ a(e, e+ ChLu) = a(e, e) + Cha(e,Lη) := T1 + T2. (31)

In order to bound T1, we first prove that

a(e, e) = |e|2h. (32)

By Green’s formula for each K

2(Le, e)K =

∫
∂K+

(e−)2M ds−
∫
∂K_

(e+)2|M | ds,

and thus

2a(e, e) =
∑
K

{∫
∂K+

(e−)2M ds−
∫
∂K_

(e+)2|M | ds

+ 2

∫
∂K_

(e+ − e−)e+|M | ds
}

+ 2‖e‖2.
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Now using the identity (26) with u = e along with the fact that e− = 0 on Γ_ we
obtain that

2a(e, e) =
∑
K

{∫
∂K_

(
(e+)2 − 2e+e− + (e−)2

)
|M | ds

}
+

∫
Γ+

(e−)2M ds+ 2‖e‖2,

which proves the result (32).
We next bound the term T2. To end this, we bound the bilinear form a(e,Lη).

So using the Cauchy-Schwarz and the arithmetic-geometric inequalities we have

a(e,Lη) =
∑
K

{(
Le+ ce,Lη)K −

∫
∂K_

[e]η+M ds
}

≤ 1

2

∑
K

‖Le‖2K +
1

2
‖Lη‖2 +

h−1

2
‖e‖2 +

h

2
‖Lη‖2

+
∑
K

( 1

4h

∫
∂K_

[e]2|M | ds+ h

∫
∂K_

η2|M | ds
)
,

thus we find that

Cha(e,Lη) ≤ h

2

∑
K

‖Le‖2K +
h

2
‖Lη‖2 +

1

2
‖e‖2 +

h2

4
‖Lη‖2

+
∑
K

(1

4

∫
∂K_

[e]2|M | ds+ h2

∫
∂K_

η2|M | ds
)
,

and

Cha(e,Lη) ≤ 1

2
|||e|||2h +

h

2
‖Lη‖2 +

h2

4
‖Lη‖2 +

∑
K

h2

∫
∂K_

η2|M | ds.

Using the bounds (20) and (22) and the fact that the number of elements is O(h−2)
we can bound the right hand-side by

Cha(e,Lη) ≤ 1

2
|||e|||2h +

h

2
Cω2h2r +

h2

4
Cω2h2r +

∑
K

h2Ch2r+1

≤ 1

2
|||e|||2h + Cω2h2r+1 + Cω2h2r+2 + Ch−2h2h2r+1

≤ 1

2
|||e|||2h + Cω2h2r+1. (33)

Finally inserting (32) and (33) into (31), it follows that

|||e|||2h ≤ Cω2h2r+1,

or
|||e|||h ≤ Cωhr+

1
2 .

This finishes the proof of the error estimate (30). �
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Remark 5. Typically, standard DG (without enrichment) with approximation uDG
would have (see, for example, ([7])

|||e|||2h ≤ Chr+
1
2 ‖U‖r+1,2,Q.

Since ‖U‖r+1,2,Q ∼ ωr+1 this error is dramatically larger than our error estimates
(30).

6. Numerical Results

In this section, we will demonstrate some numerical experiments to verify our
theoretical findings. Let us consider the scalar hyperbolic equation. We take QT =
Ω× (0, T ] = [0, 2π]× (0, T ] and the initial condition

u(x, 0) = sin(ωx), ω = 100.

We choose the boundary conditions so that the exact solution is given by

u(x, t) = sin(ω(x− t)).
In this example, the initial condition has only one high frequency component so
we take L = 1 and n1 ≈ ω. For simplicity, we consider here only structured
discretizations in space and time and choose h = 2−`, ` = 3, 4, 5, 6, 7 and we use
linear tensor-product polynomials, that is, r = 1. Thus we have 2 shape functions in
the (unenriched) space-time DG space, and we have 6 shape functions (2 unenriched
and 4 enriched) in the extended space-time DG space for the reference element
I2 = (0, 1) × (0, 1). Matrix integrals are all done on a reference element by using
10 Gauss-Lobatto points numerical integration. The most simple shape functions
of maximum degree r in the reference element can be given by

φ(η0, η1) = ηr00 η
r1
1 , r = r0 + r1.

These shape functions give better conditioned mass and stiffness matrices, and
make the computations relatively easier. Define the transformation

GnK : (0, 1)2 → Kn (34)

GnK(η0, η1) = (x, t),

where

(x, t) = (
1

2
(tn + tn+1)− 1

2
(tn − tn+1)η0,

1

2
(1− η0)ξ0 +

1

2
(1 + η0)ξ1)

with ξ0 and ξ1 are linear finite element shape functions that are the images of η1

to the elements Kn and Kn+1, respectively, by a suitable mapping. An example of
such a mapping, FnK can be given as

FnK : I2 → Kn

FnK(η1) =

8∑
k=1

xk(Kn)χk(η1),
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where xk(Kn) is the vertices of the element Kn and χ(η1) is the standard linear
finite element shape functions defined on I2. Thus, the space-time tessellation
consists of the union of all the partitioning of the space-time slabs. For more
detailed discussions of such mappings and other basis functions, see [13] and [14].
The numerical results are shown in Table 1 and Table 2. The observed convergence
rates (OCR) of the proposed method in L2 and the energy norms are given at
T = 1 and T = 2. The observed convergence rate R1 in L2 norm is computed by
the formula R1 = log(||e2h||/||eh||)/ log(2) and the observed convergence rate R2

in the energy norm is computed by the formula R2 = log(|||e2h|||h/|||eh|||h)/ log(2)
where eh = u − U is the error on the mesh. It is known that optimal convergence
is observed only by using suitable chosen meshes. The loss of order h1/2 in the
order of convergence of L2 norm is still under discussion, e.g., see [32]. In practice,
the optimal convergence hr+1 is achieved when polynomials of degree at most r
used even if there is no uniform requirement on the chosen meshes. See [33] for the
computational results for conforming triangulations for an example of this issue .
Thus, typically there is a gap of order h1/2 between computed convergence rate and
the optimal convergence rate in DG methods.

h ‖eh‖L2,T=1 R1 ‖eh‖L2,T=2 R1

1/8 0.2542 - 0.3653 -
1/16 0.7461e-1 1.739 1.070e-1 1.771
1/32 0.2193e-1 1.7664 0.288e-1 1.893
1/64 0.5993e-2 1.8715 0.768e-2 1.9068
1/128 0.1480e-2 2.0176 0.195e-2 1.9776

Table 1. The errors and the order of convergence of the space-
time DG for the first order polynomial approximation (r = 1) at
T = 1 and T = 2 in L2 norm.

h |||eh|||h,T=1 R2 |||eh|||h,T=2 R2

1/8 1.0532 - 1.2471 -
1/16 3.792e-1 1.473 4.584e-1 1.484
1/32 1.346e-1 1.494 1.563e-1 1.506
1/64 4.721e-2 1.511 5.491e-2 1.506
1/128 1.657e-2 1.510 1.943e-2 1.498

Table 2. The errors and the order of convergence of the space-
time DG for the first order polynomial approximation (r = 1) at
T = 1 and T = 2 in the energy norm.
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The results in Table 2 clearly indicate that the numerical results are in good
agreement with the theoretical findings and show that the proposed method con-
vergences with the expected (r+1/2)-th order of convergence when the polynomial
space of order r is used without any mesh refinement.

7. Conclusion

In this paper, we presented a space-time discontinuous Galerkin method for the
scalar hyperbolic problems that contain high frequency components. We extend
the space-time approximation space with trigonometric functions to capture the
oscillatory behavior of the solutions. We applied discontinuous Galerkin method-
ology in both space and time and derived a stable space-time DG scheme. Thus,
the method can be seen as a space-time framework of extended DG method. The
key feature of the method is that it uses the solutions of PDE under consideration.
Furthermore, the choice of DG space enriched by the solutions of the governing
differential equation enables an effi cient evaluation of integral terms. The proposed
method here performs well when compared to standard space-time DG method.
With conventional space-time DG method, one needs to refine the mesh size to get
an acceptable accuracy for high frequency component. This leads to the compu-
tational costs in each space-time slab for solving the resulting system. We showed
optimal a priori error estimates in a mesh dependent space-time DG norm. Ad-
ditionally, we gave a numerical experiments to verify the theoretical findings. An
extension of the analysis for an extended space-time solutions for the linear hyper-
bolic problems or conservation laws in two and three dimensional computational
domains will be considered in the future.
Acknowledgements: The author would like to thank the anonymous review-

ers for their valuable and constructive comments and suggestions that helped to
improve the manuscript.
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