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ABSTRACT 

In this study, exchange rate forecasting is studied which plays a key role in free market systems. Official daily 
data of Central Bank of The Republic of Turkey (CBRT) are used for USD/TL ($/TL), EURO/TL (€/TL) and 
POUND/TL (£/TL) pars. Moving averages (MA) method, single exponential smoothing method, Holt’s method, 
Winter’s method and ARIMA models are applied to the each pars, Performance of the models are assessed with 
the performance criteria of mean absolute percentage error (MAPE), root mean square errors (RMSE) and mean 
square error (MAE). As a result of study, successfully application of the methods based on trend analysis is 
exhibited for exchange rates in Turkey. According to MAPE, RMSE and MAE criteria, the best results are 
obtained by Winter’s method which means that Winter’s method is the most appropriate method to forecast 
exchange rates for the given time interval in Turkey. 
 
Keywords: Exchange rate forecasting, Time series analysis, Box-Jenkins approach, ARIMA, time series 
analysis based techniques 

 
1. INTRODUCTION 
 
Forecasting financial time series such as stock prices or 
exchange rates is important to the investors and the 
government. A good forecasting of a financial time 
series requires strong domain knowledge and good 
analysis tools [1]. Economic vitality and inflation rate 
are highly affected by monetary policies. Financial 
players must be sure about the monetary policies in the 
country they act which is possible by understanding 
movements of exchange rates. The second reason why 
policy makers analyze foreign exchange rate market 
carefully is by the reason of that exchange rate is a 
financial asset and thus is potentially valuable source of 
timely information about economic and financial 
conditions. Therefore, by understanding the movement 
of exchange rate better, the policy makers will be able 
to extract the relevant information about the economic 
and financial conditions of the economy. This will 
enable them to design a better monetary policy for the 
future which will help them to achieve their desired 
objective of price stability and greater employment. 
Practically most of the countries have been managed by 
floating exchange rate system in which the central bank 
restricts the free movement of exchange rates. The 
interventions from central bank are needed to prevent 
undesirable or disruptive movements in the exchange 

rates which cause harm both internal and external sector 
of the economy. Similarly, firms or investors might 
wish to forecast exchange rates to make asset allocation 
decisions [2]. 

Exchange rate forecasting is an extensively discussed 
issue in the literature. Methods applied frequently in 
literature such as autoregressive (AR), autoregressive 
integrated moving averages (ARIMA), autoregressive 
conditional heteroskedasticity (ARCH) and generalized 
autoregressive conditional heteroskedasticity (GARCH) 
[1]. ARIMA which is known as Box-Jenkins approach 
at the same time is enhanced by Box-Jenkins [4] and 
applied successfully in many areas such as tourism 
demand [5-10], energy [8,11] and many others. 
Economic time series are not generally linear and their 
mean and variance change in time. To overcome this 
difficulty, ARCH [12] and GARCH [13] methods are 
developed which are also applied extensively in 
literature [1,14]. Baillie et al. [15] and Bollerslev & 
Wright [16] present that AR models show results better 
than some GARCH-based models. Furthermore, vector 
autoregressive (VAR) and artificial neural network 
(ANN) methods are applied for exchange rate 
forecasting studies in the literature [2,4,14,18,19]. 

In this paper, linear models such as MA, single 
exponential smoothing method, Holt’s method, 
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Winter’s method and ARIMA models are applied and 
forecasting performance of these methods are argued. 
This study is organized as introducing the used methods 
in second chapter, application of the methods to data in 
third chapter and in the last chapter arrived conclusions 
are discussed. 
 
2. FORECASTING METHODS  
 
It is possible to cluster extensively used forecasting 
methods in literature into four groups: 1) Causal 
Methods: regression analysis, causality analysis, vector 
autoregressive (VAR) methods, co-integration; 2) Non-
Causal / Extrapolative Methods: decomposition 
methods, exponential smoothing methods, Box-Jenkins 
approach (ARIMA models); 3) Alternative Time Series 
Prediction Methods: artificial neural network (ANN), 
fuzzy time series approaches; 4) Qualitative methods: 
Delphi method, subjective probability approach, and 
administrator judgment method.  

In this study, only non-casual methods, which can be 
said on the other hand as time series analysis based 
methods -also named as conventional methods- are 
applied to the data to exhibit that can be used 
successfully in exchange rate forecasting. In this 
section, forecasting methods used in the study are 
summarized. 
 
a. Moving Averages Method 
 
Prediction of future periods are obtained from mean of 
consecutive observations in moving averages method. 
Mathematical formulation of the method is; 
 
ܻ௧ାଵ =  ଵ


∑ ݔ  ܻ

௧
ୀ௧ିାଵ  (1) 

 
where; ܻ௧ାଵ is forecast value of the period (t+1), k is the 
degree of MA model.  For application of MA method, 
firstly data must be collected and there mustn’t be any 
missed observations in the series. Degree of MA model 
is determined in respect of the studying time series and 
to make forecasts of future periods by the estimated 
model. The most considerable point of this method is to 
determine the degree of the model. Furthermore, 
observations of at least k periods before the initial time 
must be recorded. 
 
b. Single Exponential Smoothing Method 
 
Single exponential smoothing method [20], is based on 
smoothing past observations with forecast values of that 
time. In other words, this method is based on 
multiplying each with particular weights. Here, 
mathematical formulation of single exponential 
smoothing method is given by Equation (2); 
 
 

ܻ௧ାଵ = ௧ܻ ߙ  + (1 − (ߙ ܻ௧  , 0 ≤ α ≤ 1 (2) 
 
where ܻ௧ାଵ is forecast value of the period (t+1), α is 
exponential smoothing constant, Yt is observation value 
in period t, ௧ܻ  is forecast value in period t. The most 
considerable point of this method is to determine 
exponential smoothing constant correctly. The single 
exponential smoothing method with α is expected to 
give the least residuals when applied to the data. The 
closer α is to 1, the closer ܻ௧ାଵ is to Yt and the closer α 
is to 0, the closer ܻ௧ାଵ is to ௧ܻ . Single exponential 
smoothing method is a method to be extensively used 
for time series not exhibiting trend and not distributing 
normally, and gives reliable results. ௧ܻ  has to be known 
to start the algorithm. 
 
c. Holt’s Method 
 
Holt’s linear exponential smoothing method [21] is 
designed to handle data with a well-defined trend and is 
also named as double exponential smoothing method. 
Holt’s method has two steps. First, level of the time 
series is estimated exponentially; second, trend of the 
time series is smoothed exponentially. In other words, 
whilst applying Holt’s method to time series, various 
exponential smoothing constants can be used for both 
level and trend. Thus a great flexibility is brought in and 
this is the main advantage of the model. Mathematical 
formulation of this method is given below: 
 
௧ܮ = ௧ܻ ߙ  + (1 − ௧ିଵܮ)(ߙ  + ௧ܶିଵ)  ,   0 ≤ ߙ ≤ 1  (3) 
 

௧ܶ = ௧ܮ) ߚ  (௧ିଵܮ − + (1 − ௧ܶିଵ  ,   0 (ߚ  ≤ ߚ ≤ 1 (4) 
 
ܻ௧ା = ௧ܮ  +  ݇ ௧ܶ  (5) 
 
where Lt is level operator in period t, α is exponential 
smoothing constant for level of the series, Yt is 
observation value in period t, Tt is trend operator in 
period t, β is exponential smoothing constant for trend 
of the series, k is the number of forecasts, and ܻ௧ା is 
forecast value of kth period after period t. Equation (3) 
and Equation (4) indicate Level and Trend exponential 
smoothing of Holt’s method, respectively. The final 
mathematical formulation is presented in Equation (5). 
The larger α and β values, produce fast changes; the 
smaller α and β values, produce lower changes in the 
model. To start the Holt’s method, Lt and Tt must be 
known. 
 
d. Winter’s Method 
 
Winter’s method is the extended form of Holt’s method. 
Model becomes sensitive to seasonal effects by adding 
seasonality operator, and seasonal component to Holt’s 
method. Equations of Winter’s method are given by 
Equations (6) through (9); 
 

 
L୲ =  α ଢ଼౪

ୗ౪ష౩
 + (1 −  α) (L୲ିଵ + T୲ିଵ)  ,   0 ≤ α ≤ 1  (6) 

 
T୲ =  β (L୲ −  L୲ିଵ) + (1 −  β) T୲ିଵ  ,   0 ≤ β ≤ 1 (7) 
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S୲ =  γ ଢ଼౪
౪

+ (1 −  γ) S୲ିୱ  ,   0 ≤ γ ≤ 1  (8) 
 
ܻ௧ା  =  (L୲ +  k T୲) S୲ିୱା୮  (9) 
 
where Lt is level operator in period t, α is exponential 
smoothing constant for level of the series, Yt is 
observation value in period t, Tt is trend operator in 
period t, β is exponential smoothing constant for trend 
of the series, St is seasonality operator, γ is seasonal 
exponential smoothing component, k is the number of 
forecasts and ܻ௧ା is forecast value of kth period after 
period t. Equations (6), (7), and (8) indicate Level, 
Trend and Seasonality equations of the series, 
respectively. The final mathematical formulation of 
Winter’s method is presented in Equation (9). More 
reliable and correct forecasts can be done by Winter’s 
method for series which exhibit seasonality. The most 
considerable advantage of Winter’s method is the 
capability to catch seasonality of series. 
 
e. Box-Jenkins Approach 
 
ARIMA models which is also known as Box-Jenkins 
approach [4] is based on AR and MA models [11,23-
29]. Whilst AR model is being used to note that present 
observation is depended on past observations, MA 
model is being used to note that present and past 
residuals compose a linear function [7]. General 
statement of these models is composed as 
ARIMA(p,d,q) where p indicates the degree of AR 
model, d indicates the degree of difference order and q 
indicates the degree of MA model. Mathematical 
formulations of AR(p), MA(q) and ARMA(p,q) models 
are presented in Equations (10), (11) and (12) 
respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Steps of Box-Jenkins approach [4] 
 
௧ܣ =  ∑ ߶ܣ௧ି ௧ߝ +


ୀଵ   (10) 

 
௧ܣ = ௧ߝ  − ∑ ௧ିߝߠ  

ୀଵ  (11) 

൫1 − ߶ଵܮ − ⋯ − ߶ܮ൯ܣ௧ = ܥ + ൫1 + ܮଵߠ − ⋯ −
 (12) ߤ(߶−…−1߶−1)=ܥ  , ݊,…,1=ݐ    ,ݐߝݍܮݍߠ
 
where At is observation value of point t, μ is mean of 
observations, ߶ are AR model parameters (i=1, … , p), 
  are MA model parameters (j=1, … , q), L is lagߠ
operator, ߝ௧  is residual of point t. Autoregressive 
moving average (ARMA) model is able to be used in 
stationary series. In a stationary time series, mean and 
variance is constant in time and auto-covariance 
between two lagged values in series is depended on 
degree of lag, while is not depended on time. In 
condition of existing of non-stationary time series, 
ARIMA(p,d,q) model is used which is generalized form 
of ARMA(p,d,q). As d is the difference operator, the 
formulation of ARIMA(p,d,q) for ൫1 − ߶ଵܮ − ⋯ −
 is given  ݊,... ,1=ݐ  ,ݐߝݍܮݍߠ−…−ܮ1ߠ+1+ܥ=ݐܣܮ߶
below; 
 
௧ܣ = ܥ + ߮ଵܣ௧ିଵ + ⋯ + ߮௧ିܣ௧ିିௗ + ௧ߝ + ௧ିଵߝଵߠ −
௧ିଶߝଶߠ −  ௧ି  (13)ߝߠ
 
In Box-Jenkins approach, three main steps to construct 
the model are shown in Figure 1. 
 
The advantages of the Box-Jenkins method involve 
extracting a great deal of information from the time 
series, and using a minimum number of parameters 
[7,30]. Furthermore, this approach is popular because it 
can handle stationary and non-stationary time series, 
both with and without seasonal elements [7,31,32]. The 
most considerable disadvantage of this approach is 
being assumed that residuals are normally distributed. 
 
3. AN APPLICATION FOR EXCHANGE RATES 
IN TURKEY 
 
Official daily data of Central Bank of Republic of 
Turkey (CBRT) between January 1, 2005 and August 8, 
2010 are used for USD/TL ($/TL), EURO/TL (€/TL) 
and POUND/TL (£/TL) pars in this study. MA, single 
exponential smoothing method, Holt’s method, 
Winter’s method and Box-Jenkins approach are applied 
to the each pars and performance of these methods are 
evaluated by mean absolute percentage error (MAPE), 
root mean square error (RMSE) and mean absolute 
percentage error (MAE) performance criteria. 
 
a. Implementation of Time Series Methods 
 
Daily observations of $/TL, €/TL and £/TL pars 
between January 1, 2005 and August 8, 2010 are shown 
in Figure 2. 

 

Postulation of general class of 
models 

Identifying model to be  
tentatively entertained 

Estimation of parameters in 
tentatively entertained model 

Diagnostic control (Is the 
model adequate?) 

Using the model 
for forecasting 

Yes No 
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Figure 2. Real observations of $/TL, €/TL and £/TL pars 

Various degrees of MA models and single exponential 
smoothing method; Holt’s method with various trend 
operators -γ- and the best level operator -α- calculated 
in single exponential smoothing method; Winter’s 
method with various seasonal operator -δ- and seasonal 
length -SL-, α and γ coefficients calculated in Holt’s 
method; and finally various ARIMA models are applied 
to time series of three pars. Minitab software is used in 
application of models. In Minitab software, β and γ 
coefficients in Equations (4), (7), and (8) are 
symbolized as γ, and δ, respectively. 

 
Many well-established methods, such as AR, ARMA 
and GARCH, have been successfully applied for 
financial forecasting [1,14]. When autocorrelation and 
partial autocorrelation functions of $/TL, €/TL and 
£/TL are investigated, it can be seen that each series 
theoretically represents as AR(1). However various 
ARIMA models are applied to the data. Figure.3-4 
show autocorrelation function and partial 
autocorrelation function of $/TL. Autocorrelation and 
partial autocorrelation functions of €/TL, and £/TL 
series are very similar to $/TL. Each series becomes 
non-stationary by taking first order differences. 
Stationary is tested with ADF test for each series. 
Accordingly, difference degree of each series is d=1. 
The most appropriate ARIMA model for $/TL, €/TL 
and £/TL are determined as ARIMA(2,1,2), 
ARIMA(2,1,2) and ARIMA(1,1,1), respectively. 

In recent years, non-statistical methods such as MAPE, 
RMSE and MAE are being used to evaluate forecast 
performance [33]. There is no universally preferred 
measure of estimation accuracy and forecasting experts 
often disagree on which measure should be used. Most 
commonly known measures of accuracy include mean 
error (ME), mean percentage error (MPE), mean 
absolute percentage error (MAPE) and root mean 
square error (RMSE). The ME and MPE measures are 
not very useful, because positive errors are canceled by 
negative errors, and the mean is always close to zero. 
The MAPE which is the basic measure generally is 
widely used [5]. Absolute error methods are more 
adequate than squared error methods according to Witt 
& Witt [34] and many other researchers. 
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Figure 3. Autocorrelation function of $/TL series 

 

 
Figure 4. Partial autocorrelation function of $/TL series 

In this paper, MAPE, RMSE and MAE performance 
criteria are used to evaluate the accuracy of models. The 
most considerable advantages of these methods 
extensively used in the literature can be noted as ease-
of-use, not spending much time to apply, found in most 
statistical softwares and wasting little memory in 
computers while running. 

To evaluate the accuracy of each model class, MAPE, 
RMSE and MAE criteria are used for each $/TL, €/TL 
and £/TL series. And then, the most appropriate model 
is chosen for each pars. The results of application of 
MAPE, RMSE and MAE criteria for $/TL, €/TL, and 
£/TL are tabulated in Table1-3, respectively. 
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Table 1. The performance criteria of models for $/TL 

    MAPE RMSE MAE 

Moving averages 

 MA(14) Model : 1.504090  0.032863  0.021600  

 MA(7) Model   : 1.165850  0.025298  0.016680  

 MA(5) Model   : 1.022830  0.022361  0.014620  

 MA(4) Model   :  0.935302  0.020445  0.013361  

 MA(3) Model   :  0.848101  0.018547  0.012105  

 MA(2) Model   :  0.756452  0.016583  0.010776  

* MA(1) Model   :  0.672630  0.014765  0.009572  

     
Single exponential smoothing method 

 α=0.2 1.124360 0.024495 0.016110 

 α=0.5 0.782759 0.017205 0.011166 

 α=0.7 0.708118 0.015556 0.010083 

* α=0.999 0.673778 0.014799 0.009587 

     
Holt's (double exponential smoothing) method  

 α=0.2 ; γ=0.2 1.136920  0.024698  0.016260  

 α=0.6 ; γ=0.1 0.749876  0.016492  0.010681  

 α=0.9 ; γ=0.2 0.715784  0.015524  0.010183  

 α=0.9 ; γ=0.1 0.697554  0.015199  0.009928  

* α=1.0 ; γ=0.005 0.675892  0.014832  0.009619  

     
Winter's method  

 α=1.0 ; γ=0.005 ; δ=0.5 ; SL=5 0.718404  0.015133  0.010186  

 α=1.0 ; γ=0.005 ; δ=0.2 ; SL=5 0.718404  0.015133  0.010186  

 α=1.0 ; γ=0.005 ; δ=0.9 ; SL=5 0.718404  0.015133  0.010186  

 α=1.0 ; γ=0.005 ; δ=0.001 ; SL=25 0.672125  0.014731  0.009559  

 α=1.0 ; γ=0.005 ; δ=0.001 ; SL=100 0.670922  0.014318  0.009520  

* α=1.0 ; γ=0.005 ; δ=0.001 ; SL=300 0.629090  0.013153  0.008910  

     
Box-Jenkins approach 

 ARIMA(1,1,0) 0.673299  0.014765  0.009581  

 ARIMA(0,1,1) 0.673299  0.014765  0.009581  

 ARIMA(1,1,1) 0.676424  0.014764  0.009583  

 ARIMA(2,1,1) 0.673783  0.014763  0.009588  

 ARIMA(1,1,2) 0.673835  0.014763  0.009589  

 ARIMA(2,1,0) 0.673574  0.014764  0.009585  

 ARIMA(0,1,2) 0.673556  0.014765  0.009584  

* ARIMA(2,1,2) 0.673158  0.014717  0.009585  
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Table 2. The performance criteria of models for €/TL 

    MAPE RMSE MAE 

Moving averages 

 MA(14) Model : 1.410860  0.038987  0.026940  

 MA(7) Model   : 1.063640  0.029833  0.020330  

 MA(5) Model   : 0.946437  0.026833  0.018102  

 MA(4) Model   : 0.879027  0.024515  0.016806  

 MA(3) Model   : 0.801476  0.022494  0.015305  

 MA(2) Model   : 0.722300  0.020273  0.013764  

* MA(1) Model   : 0.639410  0.018028  0.012169  

     
Single exponential smoothing method 

 α=0.2 1.044220 0.009055 0.019920 

 α=0.5 0.736415 0.020712 0.014049 

 α=0.7 0.671896 0.018894 0.012800 

* α=0.999 0.639248 0.018028 0.012166 

     
Holt's (double exponential smoothing) method 

 α=0.1 ; γ=0.9 1.656220  0.047117  0.031830  

 α=1.0 ; γ=1.0 0.910315  0.026268  0.017293  

 α=1.0 ; γ=0.9 0.868708  0.025100  0.016502  

 α=1.0 ; γ=0.5 0.749206  0.021587  0.014245  

 α=1.0 ; γ=0.2 0.686773  0.019748  0.013060  

* α=1.0 ; γ=0.005 0.649431  0.018708  0.012354  

     
Winter's method 

 α=1.0 ; γ=0.005 ; δ=0.2 ; SL=5 0.649541  0.018111  0.012349  

 α=1.0 ; γ=0.005 ; δ=0.5 ; SL=5 0.649541  0.018111  0.012349  

 α=1.0 ; γ=0.005 ; δ=0.001 ; SL=50 0.635872  0.017748  0.012101  

* α=1.0 ; γ=0.005 ; δ=0.001 ; SL=300 0.604349  0.016248  0.011482  

 α=1.0 ; γ=0.005 ; δ=1.0 ; SL=300 0.604349  0.016248  0.011482  

     
Box-Jenkins approach 

 ARIMA(1,1,0) 0.639033  0.018018  0.012162  

 ARIMA(0,1,1) 0.638989  0.180180  0.012161  

 ARIMA(1,1,1) 0.638590  0.018015  0.012154  

 ARIMA(2,1,1) 0.638278  0.018000  0.012148  

 ARIMA(1,1,2) 0.638292  0.017999  0.012147  

 ARIMA(2,1,0) 0.638292  0.018003  0.012149  

 ARIMA(0,1,2) 0.638294  0.018004  0.012149  

* ARIMA(2,1,2) 0.638182  0.017999  0.012146  
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Table 3. The performance criteria of models for £/TL 

    MAPE RMSE MAE 

Moving averages  

 MA(7) Model   : 1.129240  0.039497  0.028260  

 MA(5) Model   : 0.992537  0.034943  0.024487  

 MA(4) Model   :  0.919791  0.032373  0.023052  

 MA(3) Model   :  0.839430  0.029682  0.021044  

 MA(2) Model   :  0.752639  0.026758  0.018867  

* MA(1) Model   :  0.658949  0.023643  0.016540  

     
Single exponential smoothing method 

 α=0.2 1.098750 0.038859 0.027490 

 α=0.5 0.770431 0.027331 0.019324 

 α=0.7 0.699234 0.024880 0.017536 

* α=0.999 0.659179 0.023643 0.016546 

     
Holt's (double exponential smoothing) method 

 α=1.0 ; γ=0.7 0.810872  0.029189  0.020367  

 α=1.0 ; γ=0.5 0.757843  0.027295  0.019031  

 α=1.0 ; γ=0.2 0.696607  0.024980  0.017489  

* α=1.0 ; γ=0.005 0.660710  0.023707  0.016588  

     
Winter's method 

 α=1.0 ; γ=0.005 ; δ=0.2 ; SL=5 0.673927  0.023896  0.016911  

 α=1.0 ; γ=0.005 ; δ=0.7 ; SL=5 0.673927  0.023896  0.016911  

 α=1.0 ; γ=0.005 ; δ=0.1 ; SL=50 0.653738  0.023259  0.016930  

 α=1.0 ; γ=0.005 ; δ=0.001 ; SL=150 0.634086  0.022159  0.015874  

* α=1.0 ; γ=0.005 ; δ=0.001 ; SL=300 0.604068  0.021000  0.015110  

     
Box-Jenkins approach 

 ARIMA(1,1,0) 0.657555  0.023625  0.016507  

 ARIMA(0,1,1) 0.657506  0.023624  0.016507  

* ARIMA(1,1,1) 0.657444  0.023611  0.016505  

 ARIMA(2,1,1) 0.657671  0.023594  0.016512  

 ARIMA(1,1,2) 0.657465  0.023594  0.016507  

 ARIMA(2,1,0) 0.657765  0.023594  0.016514  

 ARIMA(0,1,2) 0.657785  0.023594  0.016514  

  ARIMA(2,1,2) 0.657462  0.023594  0.016507  

 

The most important advantage of MAPE criteria 
through others is to be meaningful by only itself 
because of expressing residuals with absolute values 
[35]. However, at least two of MAPE, RMSE, MAE or 
MSE criteria are generally used together by the reason 

of being non-statistical methods. These methods lack of 
statistical test capability, so cannot neither construct nor 
test hypothesis. Therefore MAPE, RMSE, MAE or 
MSE criteria do not have the capability of deciding 
about accuracy of models certainly and so they can only 
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be used for comparing models. The most appropriate 
model of each model class is signed with ‘*’ on the left 
top corner and the best MAPE, RMSE and MAE values 
are indicated in bold as it can be seen in Table.1-3. The 
best model for each par is Winter’s method with α=1.0, 
γ=0.005, δ=0.001 and SL=300 coefficients. 

Figure.5-7, real observation values, and fitted values of 
the most appropriate model for $/TL, €/TL and £/TL, 
respectively. 

 
Figure 5. The real observation values and fitted values of Winter’s method for $/TL. 

 
Figure 6. The real observation values and fitted values of Winter’s method for €/TL 
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Figure7. The real observation values and fitted values of Winter’s method for £/TL 

 

For $/TL par, the most appropriate MA model is 
MA(1), single exponential smoothing with the best α 
value of 0.999 is the most adequate in single 
exponential model cluster, Holt’s method with the 
values of α=1.0, and γ=0.005 gives the nearest results to 
real values, in Winter’s method the best α, γ and δ 
values are 1.0, 0.005 and 0.001 respectively. The most 
appropriate model for each $/TL, €/TL and £/TL par is 
Winter’s method with α, γ and δ values of 1.0, 0.005 
and 0.001 respectively. 
 
4. CONCLUSION 
 
In this study, official daily data of CBRT of $/TL, €/TL 
and £/TL pars between January 1, 2005 and August 8, 
2010 are investigated. The best model in MA model 
class is MA(1) which proves that the next future 
observation is not very far from the initial observation. 
Similarly, the best value of α coefficient in single 
exponential smoothing method is 0.999 for all pars 
which means that future observation is more similar to 
real value of last observation than forecast value of last 
observation. In Holt’s method, the best α value obtained 
from single exponential smoothing method is rounded 
to 1.0 and γ is investigated. In Winter’s method, α and γ 
values obtained from Holt’s method are constant and δ 
and SL are investigated. Changes of δ in Winter’s 
method does not cause any changes in performance 
criteria. Although this is an expected result because 
exchange rates do not include seasonal effects 
theoretically, increasing of SL gives better results in 
performance criteria. The best values of α, γ and δ are 
1.0, 0.005 and 0.001 respectively in Winter’s method 
which is the most appropriate model for each pars 
according to MAPE, RMSE and MAE performance 
criteria. Finally, ARIMA(1,1,0), ARIMA(0,1,1), 
ARIMA(1,1,1), ARIMA(2,1,1), ARIMA(1,1,2), 
ARIMA(2,1,0), ARIMA(0,1,2) and ARIMA(2,1,2) are 
applied to each series and ARIMA(2,1,2), 
ARIMA(2,1,2), and ARIMA(1,1,1) models are the most 
appropriate ARIMA models for $/TL, €/TL, and £/TL 

pars respectively. Winter’s method with the values of 
1.0, 0.005 and 0.001 for the coefficients α, γ and δ 
respectively overcomes all the other models and 
becomes the most appropriate model for each par.  
 
Lewis [36] labels the MAPE values under %10 as high 
accuracy and this classification is still valid. Whole the 
best models in their classification are even under MAPE 
value of %1 for each par and this result is highly 
noteworthy. These conclusions exhibit that models 
constructed with non-casual forecasting methods 
represents the series. High accuracy is obtained for each 
par although Preminger and Franck [37] exhibits that 
exchange rates are mostly unpredictable. This accuracy 
is obtained by the 5 years long daily observations, so it 
provides high reliability for future forecasts. For 
instance, great decrease of value of TL in the middle of 
2006 can be predicted by the applied models.  
 
Single exponential smoothing method is hard to use to 
forecast mid and long terms. Because this method 
involves real value of initial observation to forecast the 
next observation; so forecast horizon of this method is 1 
term. On the other hand, mid and long term forecasts 
can be done more accurately, and reliably by MA, 
Holt’s method, Winter’s method and ARIMA models. 
Forecast method is greatly related to forecast horizon, 
such that forecast method should be chosen by 
considering forecast horizon.  
 
Winter’s method overcomes the whole other methods 
and fitted values of Winter’s method for each par gives 
MAPE values under %1. So, maybe the most 
considerable result of this study is that Winter’s method 
is as useful as extensively used models like VAR, 
ARCH and GARCH for economic series.  
 
For future studies, seasonal ARIMA models and 
extensively being used non-parametric methods in 
literature like ANN and support vector regression 
(SVR) can be used for the data. Even, hybrid 
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approaches which combine parametric and non-
parametric methods can be applied for utilizing the 
advantages of both parametric and non-parametric 
approaches. Moreover, besides analyzing time series 
quantitatively, qualitative criteria such as preferences 
and tendencies of decision makers, environmentally 
conditions and speculations can be incorporated to the 
decision problem. 
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