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ABSTRACT 
 
Power system dynamic stability enhancement by unified power flow controller (UPFC)-based stabilizers is 
thoroughly investigated in this paper. This study presents singular value decomposition (SVD) based approach 
to assess and measure the controllability of the poorly damped electromechanical modes by different control 
signals of UPFC. The supplementary controller of UPFC to damping the low frequency oscillation in a weakly 
connected system is presented. Individual designs of the UPFC controller using adaptive improved particle 
swarm optimization hybrid with simulated annealing (AIPSO-SA) are discussed. In this paper, the UPFC based 
controllers' parameters are optimized over a wide range of operating conditions and system parameter 
uncertainties (multi point tuning) in order to have robust stabilizers. The effectiveness of proposed controller on 
enhancing dynamic stability is tested through eigen value analysis and time domain simulation. Also nonlinear 
and electrical simulation results show the validity and effectiveness of the proposed control schemes over a 
wide range of loading conditions. It is also observed that the proposed UPFC-based damping stabilizers enhance 
greatly the power system transient stability. Also the simulation results of coordinated design of stabilizer based 
on δSH and mSE is presented and discussed. 
 
Key words: Power System Stability, Low Frequency Oscillation Damping, Dynamic Modeling, UPFC,  
AIPSO-SA 

 

1. INTRODUCTION 

Today, power demand grows rapidly and expansion in 
transmission and generation is restricted with the 
limited availability of resource and the strict 
environmental constraints. Consequently, power 
systems are today much more loaded than before. This 
causes the power systems to be operated near their 
stability limits. In addition, interconnection between 
remotely located power systems gives rise to low 
frequency oscillations in the range of 0.1-0.3 Hz. If not 
well damped, these oscillations may keep growing in 
magnitude until loss of synchronism results [1]. 
 
Power system stabilizers (PSSs) have been used in the 
last few decades to serve the purpose of enhancing 
power system damping to low frequency oscillations. 
PSSs, which operate on the excitation system of 
generators, have proved to be efficient in performing 
their assigned tasks. However, PSSs may adversely 
affect on the voltage profile, may result in leading 
power factor, and may not be able to suppress 

oscillations caused by large disturbances, especially 
three phase faults [1]. 
 
FACTS devices have shown very promising results 
when used to improve power system steady-state 
performance. Through the modulation of bus voltage, 
phase shift between buses, and transmission line 
reactance, FACTS devices can cause a substantial 
increase in power transfer limits during steady-state. 
Because of the extremely fast control action associated 
with FACTS-device operations, they have been very 
promising candidates for utilization in the power system 
damping enhancement. 
 
Unified power flow controller (UPFC) can be used for 
power flow control, loop-flow control, load sharing 
among parallel corridors, enhancement of transient 
stability, mitigation of system oscillations and voltage 
(reactive power) regulation [2,3]. Performance analysis 
and control synthesis of UPFC require its steady-state 
and dynamic models. A two-source UPFC steady-state 
model including source impedances is suggested in [4]. 
Under the assumption that the power system is 
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symmetrical and operates under three-phase balanced 
conditions, a steady-state model, a small-signal 
linearized dynamic model and a state-space large-signal 
model of a UPFC developed in [5]. In 1999, Wang 
developed two UPFC models [6, 7] which have been 
linearized and incorporated into the Phillips-Heffron 
model. UPFC damping controller design can be found 
in [1, 8-12]. The supplementary controller can be 
applied to the shunt inverter through the modulation 
index of reference voltage signal or to the series inverter 
through modulation of power reference signal. In [1, 
12] the PSO algorithm is used for finding optimum 
parameters setting of UPFC controllers in order to 
power system oscillation damping in nominal loading 
condition.    
 
In this paper, singular value decomposition (SVD) is 
used to select the control signal which is most suitable 
for damping the electromechanical (EM) mode 
oscillations. A single machine infinite bus (SMIB) 
system equipped with a UPFC controller is used in this 
study. In This paper the damping controllers design is 

formulated as an optimization problem to be solved 
using AIPSO-SA. The aim of the optimization is to 
search for the optimum controller parameter settings 
that maximize the minimum damping ratio of the 
system in single and multi point tuning cases. Eigen 
value analysis and time domain simulation are used to 
assess the effectiveness of the proposed controllers to 
damp low frequency oscillations under different 
disturbances. 

2. MATHEMATICAL MODELLING 
 
Fig. 1 shows a SMIB power system with a UPFC [1]. 
The four input control signals to the UPFC are mSH, 
mSE, δSH, and δSE. Where, mSH and δSH, are the 
modulation index and phase angle of shunt converter 
output voltage and mSE and δSE are the modulation 
index and phase angle of series converter output 
voltage, respectively. The system data is given in the 
Appendix A. 

 

Fig. 1. SMIB power system equipped with UPFC 
 

POWER SYSTEM NON-LINEAR MODEL 
The dynamic model of the UPFC is required in order to 
study the effect of the UPFC for enhancing the small 
signal stability of the power system. By applying Park’s  
 

 
transformation and neglecting the resistance and 
transients of the exciting transformer (ET) and boosting 
transformer (BT), the UPFC can be modeled as [1, 4, 6, 
12, 13]: 

( )δδ SHcosjSHsinV dcmSHV SH +=
2

 (1) 

( )δδ SEcosjSEsinV dcmSEVSE +=
2

 (2) 

( ) ( )i SEq  SEcosiSEd  SEsin
cdc

mSE 
iSHqSHcosiSHd  SHsin

cdc

mSH 
dt

dVdc δδδδ +++=  4
3

 4
3  (3) 

 

Where, VEt, iSH, VBt, and iSE are the excitation voltage, excitation current, boosting voltage, and boosting current, 
respectively; Cdc and Vdc are the DC link capacitance and voltage, respectively. From Fig. 1 we have: 
 

TLiSHiSEiti ++= ,  Ett ViX tEjV t +=  

SHSHEEt VijXV += ,   bSEBVBtEt VijXVV ++=  

bTLTEt VijXV += ,        SESEBBt VijXV +=  

(4) 

 

The relations of excitation and boosting transformers parameters and line 2 currents can be written as: 
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Where, XE and XB are the ET and BT reactance, respectively; the reactance XqE, XdE, XBB, Xd1-Xd7, and Xq1- Xq7 are given 
in Appendix B. The non-linear model of the SMIB system of Fig. 1 is: 
 

( )1−= ωωδ b�  (11) 

( )( ) MDePmP /1−−−= ωω�  (12) 
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Where, tqtqtdtde iViVP += , 22
tqtdt VVV += , tqqtd ixV = , 

tddqtq ixEV '' −= , Pm and Pe are the input and output 
power, respectively; M and D the inertia constant and 
damping coefficient, respectively; ωb the synchronous 
speed; δ and ω the rotor angle and speed, respectively; 

'
qE , '

fdE , and Vt the generator internal, field and 

terminal voltages, respectively; '
dT 0  the open circuit 

field time constant; xd , 
'
dx , and xq the d-axis reactance, 

d-axis transient reactance, and q-axis reactance, 
respectively; KA and TA the exciter gain and time 
constant, respectively; Vref the reference voltage; and 
uPSS the PSS control signal. 

POWER SYSTEM LINEARIZED MODEL 
The non-linear dynamic equations can be linearized 
around an operating point condition. The linearized 
model of power system as shown in Fig. 1 is given as 
follows: 
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In state-space representation, the power system can be modeled as: 

BuAxx +=�  (20) 

 

Where, the state vector x, control vector u, state matrix A and input matrix B are: 
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The block diagram of the linearized dynamic model of 
the SMIB power system with UPFC is shown in Fig. 2 
[1]. In addition to the PSS input (uPSS), only one UPFC 
control input is considered in this Figure. 

UPFC CONTROLLERS 
The damping controller is designed to produce an 
electrical torque in phase with the speed deviation 
according to phase compensation method. The four 
control parameters of the UPFC (mSH, mSE, δSH or δSE) 
can be modulated in order to produce the damping 
torque. In order to maintain the power balance between 
the series and shunt converters, a DC voltage regulator 
must be incorporated. The DC voltage is controlled 
through modulating the phase angle of the ET voltage, 
δSH. In addition, to dispatch the power flow among 
transmission lines, a power flow controller is included. 

The power flow is controlled through modulation the 
amplitude of the BT voltage, mSE. 
 
In this paper δSH and mSE are modulated in order 
to damping controller design. The speed deviation 
dω is considered as the input to the damping 
controller. The structure of UPFC based damping 
controller is shown in Fig. 3 where u can be mSH, 
mSE, δSH or δSE. This controller may be considered 
as a lead lag compensator. However, an electrical 
torque in phase with the speed deviation is to be 
produced in order to improve damping of the 
system oscillations.  The parameters of the 
damping controller are obtained using AIPSO_SA 
algorithm. 

 

 
Fig. 2. Modified Heffron–Phillips linearized model [1] 
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Fig. 3-a. UPFC with lead-lag damping controller and DC voltage 

regulator. 

 
Fig. 3-b. UPFC with lead-lag damping controller and power flow 

controller. 
 

OBJECTIVE FUNCTION 
To select the best stabilizer parameters that enhance 
most the power system dynamic performance, the 
problem is formulated so as to optimize a selected 

objective function J subject to some inequality 
constraints, which are the maximum and minimum 
limits of each controller gain Ks and time constants T1–
T4. In this work, 
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Hence, the design problem can be formulated as maximize J Subject to: 
maxmin
sss KKK ≤≤       4321 ,,,i,TTT max

ii
min
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The proposed approach employs AIPSO-SA to search 
for the optimum parameter settings of the given 
controllers. 

3. PROPOSED ALGORITHMS 
 
In recent years, many optimization algorithms are 
introduced. Some of these algorithms are traditional 
optimization algorithms. Traditional optimization 
algorithms use exact methods to find the best solution. 
The idea is that if a problem can be solved, then the 
algorithm should find the global best solution. As the 
search space increases the cost of these algorithms 
increases. Therefore, when the search space complexity 
increases the exact algorithms can be slow to find 
global optimum.  
 

There are several stochastic algorithms. Particle swarm 
optimization (PSO) and simulated annealing (SA) are 
two efficient and well known stochastic algorithms. 

STANDARD PSO ALGORITHM 
The PSO is a population and fitness based algorithm 
like genetic algorithm. PSO algorithm can be depicted 
as follow [14-17]: 
 
Suppose that there are m particle in D-dimensional 
search space. The position of the ith particle is 
represented as Xi=[xi1, xi2,…, xiD]T, and its best position 
(the position giving the highest fitness value) found so 
far is recorded and represented as Pi=[pi1, pi2,…, piD]T. 
The best position found by swarm so far is also 
recorded and represented as           Pg=[pg1, pg2,…, pgD]T. 
During the iteration, the ith particle flies in the search 
space with the velocity Vi=[vi1, vi2,…, viD]T. Then, the 
velocity and position of the ith particle update with 
following equations: 

 

( ) ( ) ( )( ) ( )( )txPrandCtxPrandCtvWtv idgdidididid −∗∗+−∗∗+∗=+ 22111  (26) 

( ) ( ) ( )11 ++=+ tvtxtx ididid  (27) 
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Where, vid is the velocity of particle ith in dimension 
dth (is the particle position), W is the inertia weight 
factor, C1 and C2 are two positive constant parameters 
that are called acceleration coefficients. The rand1 and 
rand2 are the random functions in the range [0, 1], Pid is 
the best position of the ith particle in dimension dth and 
Pgd is the best position among all particles in the swarm.  

IMPROVED PSO ALGORITHM 
In PSO algorithm, if the particles converge too quickly, 
it will result in premature convergence and losing 
further search ability. Through studying the mechanism 
of the PSO algorithm, one can conclude that PSO 
algorithm search optimal solution by tracking two 
extrema Pi and Pg. so, during the search process, if Pg 
lies in the local optimum position, all particles will 
approach Pg very quickly. This will result in premature 
convergence. In order to solve this question, during the 
iteration, it must be avoided that Pg falls into local 
optimum position. In this paper, the scheme of selecting 
Pg is improved. During the iteration of IPSO algorithm, 
we don’t simply select the particle with the highest 
fitness as Pg, but select a particle from several particles 
with the highest fitness using roulette wheel method. 
Concretely, let the positions of the first L particle with 
highest fitness in particle swarm be Pg

1, Pg
2, … , Pg

L  
and their fitness be g1 , g2 , … , gL . According to 
roulette wheel selection method, the probability of Pg

i 
(i=1,2, … , L) that is selected as Pg is given in (28) [18, 
19]. 
 
Thus, the IPSO algorithm maintains the character of the 
basic algorithm. Also the IPSO algorithm searches 
optimal solution by tracking two extrema. However, 
when the best particle found by the swarm falls into 
local minima, other different particles maybe selected 
as Pg, and the particles will fly to other direction. Then, 
it is avoided that all particles approach the local optima 
very quickly, and the probability of premature 
converging to local optima is decreased. Although the 
selected particle is not the optimal particle, it is a 
suboptimal particle. This ensures that the particle 
swarm flies to a good direction. In IPSO algorithm, L is 
a very important value. If is too small, the roulette 

wheel selection method will have very little effect on 
this algorithm. On the other hand, if L is too large, the 
particle selected as Pg is perhaps a bad particle. This 
will affect the search ability of IPSO. In application, L 
is set as [m/10], where [x] means the largest integer do 
not exceed x. 

AIPSO-SA ALGORITHM 
Simulated Annealing (Metropolis et al. 1956, 
Kirkpatrick et al. 1983) [20] is a metastrategy local 
search method that attempts to avoid producing the poor 
local maximum inherent in the steepest ascent method. 
The main idea behind Simulated Annealing is an 
analogy with the way in which liquids freeze and 
crystallize. The simulated annealing algorithm aims to 
achieve a global optimum by slowly converging to a 
final solution, making downwards moves with 
occasional "upwards" moves (the probability of these 
occurring decreasing with the "temperature") and thus 
hopefully ending up in a global optimum. The most 
significant character of SA is the probabilistic jumping 
property, i.e. a worse solution has a probability to be 
accepted as the new solution. Moreover, by adjusting 
the temperature, such a jumping probability can be 
controlled.  
 
Slow convergence of PSO before providing an accurate 
solution is a drawback, closely related to its lack of any 
adaptive accelerators in the velocity updating formulae. 
In (27), C1 and C2 determine the step size of the 
particles movements through the Pid and Pgd, 
respectively. In the original PSO, these step sizes are 
constant and for the all particles are same. For doing 
more sensitive and faster movements, new step sizes 
can be modified, which they should accelerate the 
convergence rate. In each iteration, the value of 
objective function is a criterion that presents the relative 
improvement of this movement in respect to the 
previous iteration movement. Thus the difference 
between the values of objective function in the different 
iterations can select as the accelerators. Adding two 
additional coefficients to the original step sizes in (27), 
it causes to adaptive movements. Therefore, velocity 
updating formula can be obtained from (29). 

 

( )L1,2,...,i        ggO
L

j

jii == ∑
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Where, f (Pid(t)) is the best fitness function that is found 
by ith particle and f (Pgd(t)) is the best fitness function 
that is found by swarm up to now. Globally optimize an 
objective function in a given search domain consists in 
finding its global optimum without being trapped in any 
local optimum. When strongly multi-modal problems 
are being optimized, PSO algorithm usually suffers 
from the premature suboptimal convergence (simply 
premature convergence or stagnation) which occurs 
when some poor particles attract the swarm, due to a 
local optimum or bad initialization, preventing further 
exploration of the search space. According to [19], 

although PSO finds good solutions much faster than 
other evolutionary algorithms, it usually can not 
improve the quality of the solutions as the number of 
iterations is increased. The rational behind this problem 
is that particles converge to a single point, which is on 
the line between the global best and personal best 
positions. This point is not guaranteed to be even a local 
optimum. Another reason for this problem is the fast 
rate of information flow between particles, resulting in 
the creation of similar particles (with a loss in diversity) 
which increases the possibility of being trapped in local 
minima [20]. This feature prevents standard PSO from 
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being really of practical interest for a lot of applications. 
By combining AIPSO with SA algorithm, we can get a 
new hybrid optimization approach, called AIPSO-SA 
[21]. Using of jumping property of SA can help to more 
diversification that it guarantees the algorithm escapes 
from local optimum. As mentioned in section 4.2. SA 
accepts worse solutions with a probability of exp(−∆/T). 
When algorithm becomes trapped in a local optimum 
valley it can jump of valley with a probability leaded to 
more diversity. In fact, AIPSO-SA has rapid 
convergence but not premature convergence. In AIPSO-

SA algorithm, we name every point which is found by 
equation (30), the temporary point xid(p) (xid( p) = xid(t 
+1)). If xid( p) is better than xid(t), it will be accepted 
and if it is worse than xid(t), we will accept it with 
probability of exp(−∆/T) , (∆=f(xid(p))-f(xid(t))). This 
process is performed for all particles. When a temporary 
point rejected, that we name it a detoured particle xid(d), 
it is given back in the opposite direction of the previous 
movement. These descriptions are formulated by the 
following equations. 

 

{

⎩
⎨
⎧

=+
∗+=≥∆

=+∆
−=∆
+=

)d(x)t(x
)t(v)p(x)d(xthenIf

)p(x)t(xthenIf
))t(x(f))p(x(f

)t(v)t(x)p(x

idid
ididid

idid
idid

ididid

10
10

α
≺ (30)

Where, 

 
(31) 

 

Increasing the value of the inertia weight, W, will 
increase the speed of the particles resulting in more 
exploration (global search) and less exploitation (local 
search). On the other hand, decreasing the value of W 
will decrease the speed of the particle resulting in more 
exploitation and less exploration. Thus, an iteration-

dependent weight factor often outperforms a fixed 
factor. The most common functional form for this 
weight factor is linear, and changes with step i as 
follows: 
 

iter
N

WWWW
iter

minmax
max ×

−
−=  (32) 

 
Where, Niter is the maximum number of iterations 
(Niter=100), iter is number of iteration (iter=1, 2,..., Niter) 
and Wmax and Wmin are selected to be 0.9 and 0.1, 
respectively. 

4. SIMULATION RESULT 
 
In this section the simulation results of linearized model 
and non linear electrical model are presented.  

CONTROLLABILITY MEASURE  
The numerical values of matrices A and B are achieved 
by equations 23 and 24 are given in appendix C. To 
measure the controllability of the EM mode by a given 
input (control signal), the singular value decomposition 
(SVD) is employed [1]. The minimum singular value, 
σmin, of the matrix [λI–A bi] indicates the capability of 
the ith input to control the associated mode with the 
eigen value λ. Where bi is a column vector 
corresponding to the ith input.  Actually, the higher 
σmin, is concerned to the higher controllability of this 
mode by the considered input. Also, the controllability 
of the EM mode can be examined with all inputs (δSH, 
δSE, mSH and mSE) in order to identify the most effective 
one to control the mode. The minimum singular value, 
σmin, is estimated over a wide range of operating 
conditions. For SVD analysis, Pe ranges from 0.05 to 
1.4 pu and Qe = [-0.15, 0, 0.15]. At each loading 
condition, the system model is linearized, the EM mode 
is identified, and the SVD-based controllability measure 
is implemented. For comparison purposes, the 

minimum singular value for all inputs at Qe = -0.15, 0.0 
and 0.15 pu is shown in Figs. 4-a, b and c, respectively. 
From these figures, the following can be noticed: 
 

- EM mode controllability via δSH is always higher 
than other inputs. 

- It can be seen that the controllability of the 
electromechanical mode with all inputs increases with 
loading at lagging, leading and unity power factor. 

- All control signals except δSH suffer from low 
controllability to EM mode at low loading conditions. 

APPLICATION OF PROPOSED ALGORITHMS TO DESIGN 
PROCESS 
 
The PSO, IPSO, AIPSO-SA algorithm has been applied 
to search for the optimal parameter settings of all 
supplementary controllers so that the objective function 
is optimized. To assess the effectiveness of the 
proposed controllers, four different loading conditions 
are considered for eigen value analysis. These 
conditions are: 
 
1. Nominal loading (Pe, Qe) = (1.0, 0.015) pu. 
2. Light loading (Pe, Qe) = (0.3, 0.015) pu. 
3. Heavy loading (Pe, Qe) = (1.1, 0.40) pu. 
4. Leading power factor loading (Pe, Qe) = (1.1, 0.40) 
pu. 
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SINGLE POINT TUNING 

1. STABILIZER DESIGN 
In this section, the stabilizers are tuned with only the 
nominal loading condition. The final parameter settings 
of the supplementary controllers are given in Table 1. 
The convergence rates of the objective function for 
PSO, IPSO, AIPSO-SA algorithms are shown in Fig. 5. 
It is clear that the δSH-based controller improves greatly 
the system damping compared to other controllers. 

2. EIGEN VALUE ANALYSIS 
The system electromechanical mode eigen value and its 
damping ratio(ζ) with and without the proposed UPFC 
stabilizer inputs are given in Table 2 for nominal, light, 
heavy and leading power factor loading conditions, 
respectively. It is clear that the proposed stabilizers 
greatly improve the system stability. It is also clear that 
the mSH, δSE-based stabilizer have relatively poor 
capabilities to enhance the EM mode damping when the 
system operates at light, heavy and leading power factor 

loading conditions and mSE-based stabilizer have 
relatively poor capabilities to enhance the EM mode 
damping when the system operates at leading power 
factor loading condition. 

MULTIPLE POINT TUNING 
In this section, the UPFC-based controllers' parameters 
are optimized over a wide range of operating conditions 
and system parameter uncertainties in order to have 
robust stabilizers. Four loading conditions represent 
nominal, light, heavy, and leading power factor are 
considered. Each loading condition is considered 
without and with parameter uncertainties as given in 
Table 3. Each loading condition is considered in 1- 
without uncertainties, 2- 30% increase and 3- 30% 
decrease of line reactance, 4- 25% increase and 5- 25% 
decrease of machine inertia 6- 30% increase and 7- 30% 
decrease of field time constantT'

d 0
. Hence, the total 

number of points which considered for design process is 
28. 

 

 
Fig. 4. Minimum singular value with all stabilizers at    a) Qe = 0.15  b) Qe = 0.0  c) Qe =- 0.15 

 
Table 1. The optimal settings of the individual  controller 

PSO IPSO AIPSO-SA  
mSE mSH δSE δSH mSE mSH δSE δSH mSE mSH δSE δSH 

K
S 

-55.2079 -38.25 99.3072 -47.24 -100.0 -81.24 100.0000 -61.45 -50.10 -19.07 100.0000 -93.42 

T1 5.0000 1.2717 3.4107 1.0083 3.7329 1.2100 3.3041 2.1044 3.7704 2.4068 3.9761 1.0171 
T2 4.5692 3.1702 1.9179 2.0794 0.4728 0.0010 0.1718 1.2936 0.6363 0.0010 0.2818 3.4153 
T3 4.6494 0.3506 3.2665 3.4604 1.1912 0.2323 4.9425 0.9452 4.0309 0.1547 2.8015 4.1950 
T4 0.5100 0.0010 0.1270 2.1989 2.3188 4.9999 2.8054 2.4339 3.6947 2.1500 1.6396 4.1950 

 

 
Fig. 5. Objective function in single point tuning case of δSH, δSE, mSH and mSE-based stabilizers,  a) PSO   b) IPSO   c) IPSO-SA algorithm 

 
 

1. STABILIZER DESIGN 
The convergence rate of the objective function in multi 
point tuning case when δSH, δSE, mSH and mSE-based 
stabilizers are design individually is shown in Fig. 6. 
The final setting of the optimize parameters for the 
proposed stabilizers are given in Table 4. 

2. EIGEN VALUE ANALYSIS 
The system electromechanical mode eigen value and its 
damping ratio without and with the proposed stabilizers 
at nominal, light, heavy and leading power factor 
loading conditions are given in Table 5. It is clear that  

 
the proposed robust stabilizers are effective at all points 
considered. However, the values of ζ corresponding to 
the EM mode resulting from using δSH and mSE as 
control signals are much higher than those resulting 
from using mSH and δSE. This agrees with the SVD 
analysis carried out previously. 

3. NON-LINEAR TIME SIMULATION 
The system behavior due to the utilization of the 
proposed controllers under transient conditions has been  
tested by applying three large disturbances: 1) a 3-phase 
fault with 6-cycle duration is occurred at t =10 sec at the 
middle of Line 1 for all loading conditions, 2) a 3-phase 
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fault with 6-cycle duration occurred at t =10 sec at 
infinite bus for nominal loading condition, 3) 
connection a large load (P=400 MW, Q=400 MVA) in 
bus B1 at t=15sec. The system response is shown in 
figures 7, 8. The Fig. 7 represents deviation in rotor 
speed, load angle, generator output active power and 
power flow of line 1 when the damping controller is not 
installed. Rotor speed deviations are shown in Fig.8 (a-
d) for different loading condition when a three phase 
fault is accrued at middle of line 1. Also the load angle 

variations are presented in Fig.8 (e-h) in this case.  The 
variations of generator output power are shown in Fig.8 
(i-l). Figures 9 and 10 present the non linear simulation 
results when a three phase fault is occurred at infinite 
bus and a large load is connected to bus B1, 
respectively. It can be seen that δSH-based stabilizer 
provide an excellent damping characteristics and 
enhance the first swing stability at all loading 
conditions. 

 
Table 2.  Eigenvalues For ∆sh, ∆se, Msh And Mse Based Stabilizers (PSO, IPSO, AIPSO-SA) 

 Nominal Light Heavy Leading power factor 

System without UPFC 0.7669 ± 3.5160i 
ζ=-0.2131 

0.2687 ± 3.0104i 
ζ=-0.0889 

0.6934 ± 3.4953i 
ζ=-0.1945 

0.7238 ± 3.2797i 
ζ= -0.2155 

δSH -9.9266 ± 7.8959i 
ζ= 0.7826 

-0.4032 ±0.4236i 
ζ= 0.6894 

-0.5321±0.4212i 
ζ= 0.7832 

-0.8313±1.5441i 
ζ= 0.4741 

mSH -1.90 ± 4.80i 
ζ= 0.3646 

-0.40 ± 3.20i 
ζ= 0.1258 

-0.20 ± 4.80i 
ζ= 0.0371 

-0.0008 ±  0.0028i 
ζ= 0.2789 

δSE -0.6460 ± 4.0714i 
ζ= 0.1563 

0.2696 ±  3.1557i 
ζ= -0.0851 

1.0439 ± 4.5384i 
Ζ= -0.2242 

0.0242 ±   2.5657i 
ζ= -0.0094 

PSO 

mSE -1.2546 ± 1.7209i 
ζ= 0.5891 

-0.5465 ± 1.3516i 
ζ= 0.3749 

-2.2025 ± 4.2479i 
ζ= 0.4603 

0.3372 ± 2.3176i 
ζ= -0.1440 

δSH -1.2570 ± 0.5930i 
ζ= 0.8579 

-0.4342 ±  0.4114i 
ζ= 0.7259 

-0.6138 ±  0.4263i 
ζ= 0.8213 

-0.6537 ±  1.4817i 
ζ= 0.4037 

mSH -2.50 ± 4.30i 
ζ= 0.5082 

-0.5 ± 3.2i 
ζ= 0.1481 

-0.90 ± 4.90i 
ζ= 0.1857 

0.1593 ± 2.7275i 
ζ= 0.0583 

δSE -0.9081 ± 4.0596i 
ζ= 0.2183 

0.2943 ± 3.1707i 
ζ= -0.0924 

0.7332 ± 4.5754i 
Ζ= -0.1582 

-1.50 ± 2.80i 
ζ= 0.4668 

IPSO 

mSE -1.8960 ± 2.2306i 
ζ= 0.6476 

-0.8819 ± 1.5957i 
ζ= 0.4837 

-2.6407 ± 4.5727i 
ζ= 0.5001 

-0.1238 ± 2.5988i 
ζ= 0.0476 

δSH -1.1611 ± 0.1389i 
ζ= 0.9559 

-0.2698 ± 0.3684i 
ζ= 0.5909 

-0.4124 ± 0.3724i 
ζ= 0.7422 

-0.6537 ± 1.4817i 
ζ= 0.4037 

mSH -3.00 ± 3.40i 
ζ= 0.6582 

-0.490 ± 3.020i 
ζ= 0.1598 

-1.40 ± 4.30i 
ζ= 0.3062 

0.1593 ± 2.7275i 
ζ= 0.0583 

δSE -1.3787 ± 3.9810i 
ζ= 0.3265 

-0.490 ± 3.020i 
ζ= 0.1598 

0.3062 ± 4.5698i 
Ζ= -0.0669 

-1.50 ± 2.80i 
ζ= 0.4668 

AIPSO-
SA 

mSE -2.3806 ± 2.0865i 
ζ= 0.7512 

-0.8940 ± 1.6395i 
ζ= 0.4787 

-1.5772 ± 1.6101i 
ζ= 0.4471 

-0.1238 ± 2.5988i 
ζ= 0.0476 

 
 
 

Table 3. Loading conditions and parameter uncertainties 
Loading (P, Q) pu Condition Parameter uncertainties 
Nominal (1,   0.015) No parameter uncertainties 

Light (0.3,  0.015) 30% increase and decrease of line reactance X

Heavy (1.1,   0.4) 25% increase and decrease of machine inertia 
M 

Leading 
P.F. (0.7,   -0.3)

30% increase and decrease of field time 
constant T'

d 0
 

 
 

 
Fig. 6. Objective function in multi point tuning case  of δSH, δSE, mSH and mSE-based stabilizers,  a) PSO  b) IPSO c) IPSO-SA algorithm 

  
Table 4. The optimal settings of the individual controller in the multi point tuning case 

PSO IPSO AIPSO-SA  
mSE mSH δSE δSH mSE mSH δSE δSH mSE mSH δSE δSH 

KS 100.00 -13.09 -
100.00 

-
100.00 100.00 -9.727 -52.73 -

100.00 -100.00 -
80.9019 

-
57.6390 100.0000 

T1 5.0000 0.4045 2.9597 0.8936 5.0000 0.2260 5.0000 0.7338 3.6733 5.0000 3.2735 5.0000 
T2 1.8880 0.0010 0.7469 2.0305 2.4039 1.5550 0.8953 4.9916 1.5262 1.7377 4.4766 2.2018 
T3 5.0000 3.9733 3.4684 1.1362 5.0000 3.5024 4.5373 3.6700 0.7456 5.0000 0.1301 5.0000 
T4 2.1646 4.2177 3.5679 1.3958 2.4096 0.0010 3.5085 1.4830 4.9333 2.0592 0.0010 2.2019 
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COORDINATED DESIGN OF δSH, mSE BASED CONTROLLER 
In this section coordinated design of two stabilizers 
based on δSH and mSE is investigated. With applying the 
AIPSO-SA algorithm in the multi point tuning case the 
controller parameters based δSH and mSE is obtained. 
The final setting of the optimize parameters for the 
proposed stabilizer are given in Table 6. The 
convergence rate of the objective function in this case 
when δSH and mSE based stabilizers are designed 
coordinately is shown in Fig. 11. 
 
The system electromechanical mode eigen value and its 
damping ratio in the coordinated design of stabilizers at 
deferent loading conditions are given in Table 7.  

 
With comparing the results of this method and 
individual design of stabilizer, it is seen that in 
coordinated design the damping ratio of deferent 
loading conditions is increased. 
Simulation results of coordinated design are presented 
in Fig. 12. This figure shows variations of rotor speed, 
load angle, generator output active power and active 
power flow of line 1 in the nominal loading when a 5% 
step changing in the mechanical input power of 
generator (Pm) is occurred. From this figure it can be 
obtained that the coordinated designed controller has 
good performance and fast response in damping of low 
frequency oscillations caused by step changing in the 
mechanical input power of generator. 

 
Table 5. System eigen values for δSH, δSE, mSH and mSE based stabilizers in multi point tuning case (by PSO, IPSO, AIPSO-SA) 

 Nominal Light Heavy Leading power factor 

System without UPFC 0.9096 ± 3.2766i 
Ζ= -0.2675 

0.2670 ±  2.9444i 
Ζ= -0.0903 

0.8354 ± 3.2629i 
ζ= -0.2480 

0.8269 ± 3.0908i 
ζ= -0.2584 

δSH -2.1826 ± 2.2757i 
Ζ= 0.6922 

-0.2659 ±  0.3307i 
Ζ= 0.6266 

-2.5404 ±  2.4680i 
ζ= 0.7173 

-1.3854 ±  1.3439i 
ζ= 0.7178 

mSH -0.70 ±  3.20i 
Ζ= 0.2015 

-0.40 ± 3.20i 
Ζ= 0.1219 

-0.70 ± 4.10i 
ζ= 0.1700 

-0.30 ± 2.60i 
ζ= 0.1058 

δSE -1.2398 ±  6.4894i 
Ζ= 0.1877 

-0.1076 ± 2.9854i 
Ζ= 0.0360 

-0.7034 ±  5.9953i 
ζ= 0.1165 

-0.2659 ± 2.1849i 
ζ= 0.1208 

PSO 

mSE -0.5959 ± 0.7773i 
Ζ= 0.6084 

-0.5672 ± 0.7533i 
Ζ= 0.6015 

-0.5321 ± 0.7089i 
ζ= 0.6003 

-0.6612 ± 0.9207i 
ζ= 0.5833 

δSH -2.3838 ±  2.1191i 
Ζ= 0.7474 

-0.3346 ± 0.3432i 
Ζ= 0.6981 

-0.4460 ± 0.3797i 
ζ= 0.7614 

-9.6190 ±  6.7565i 
ζ= 0.8183 

mSH -3.20 ±  6.90i 
Ζ= 0.4168 

-0.60 ± 2.90i 
Ζ= 0.1934 

-2.90 ± 6.10i 
ζ= 0.4224 

-0.60 ± 2.10i 
ζ= 0.2637 

δSE -1.2424 ±  6.4692i 
Ζ= 0.1886 

-0.1100 ±  2.9836i 
Ζ= 0.0369 

-0.7055 ± 5.9804i 
ζ= 0.1172 

-0.2529 ± 2.1628i 
ζ= 0.1162 

IPSO 

mSE -10.2708 ± 10.7709i 
Ζ= 0.6901 

-10.2484 ±  7.9618i 
Ζ= 0.7897 

-10.2470 ± 10.7863i 
ζ= 0.6888 

-1.1787 ± 1.1985i 
ζ= 0.7012 

δSH -2.3730 ± 2.1124i 
Ζ= 0.7469 

-0.3311 ± 0.3402i 
Ζ= 0.6974 

-0.4419 ± 0.3745i 
ζ= 0.7629 

-9.6218 ± 6.7589i 
ζ= 0.8183 

mSH -4.530 ± 9.580i 
Ζ= 0.4273 

-1.120 ± 2.660i 
Ζ= 0.3871 

-0.0428 ± 0.0893i 
ζ= 0.4318 

-0.660 ± 1.270i 
ζ= 0.4600 

δSE -1.6097 ± 8.0558i 
Ζ= 0.1959 

-0.2728 ± 2.9730i 
Ζ= 0.0914 

-1.1788 ± 7.3010i 
ζ= 0.1594 

-0.2430 ± 1.7861i 
ζ= 0.1348 

AIPSO-
SA 

mSE -0.7793 ±0.7184i 
Ζ= 0.7353 

-0.7196 ± 0.6505i 
Ζ= 0.7418 

-0.6628 ± 0.6369i 
ζ= 0.7211 

-0.8826 ± 0.9682i 
ζ= 0.6737 

 

 
Fig 7. System response for a 6-cycle fault at middle of  line 1 (Without damping controller) 

a) Deviation in rotor speed (pu)    b) Load angle (deg)    c) Generator out put active power        d) Active power of line 1 (pu) 
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Fig 8. System response for a 6-cycle fault at middle of  line 1 for different loading conditions when damping controller is installed. 

 
 

Table 6. The optimal settings of coordinated controller in the multi point tuning case using AIPSO-SA 
 δSH mSE 

Ks -100.0000 100.00 
T1 0.1683 5.0000 
T2 0.0010 1.6939 
T3 0.2713 5.0000 
T4 3.9661 4.0368 

 

 

 

 
Fig 9. System response for a 6-cycle fault at infinite bus in nominal Loading 
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Fig 10. System response for a large load connecting at bus 1 
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Fig. 11. Variation of the objective function in multi point tuning case and coordinated design using     IPSO-SA algorithm 

 
Fig. 12. System response to 5% step changing in Pm using multi point tuning case and coordinated design based AIPSO-SA  

a) Rotor speed            b)Load angle       c)Generator output active power     d)Active power flow of line 1 
 
 
 

Table 7. The system electromechanical mode eigen value and its damping ratio in the coordinated design of 
stabilizers based aipso-sa 

 Nominal Light Heavy Leading power factor 
System without 

UPFC 
0.9096 ± 3.2766i 

Ζ= -0.2675 
0.2670 ±  2.9444i

ζ= -0.0903 
0.8354 ± 3.2629i 

ζ= -0.2480 
0.8269 ± 3.0908i 

ζ= -0.2584 
With UPFC Based 

AIPSO-SA 
-0.970 ±  0.590i 

ζ= 0.8547  
-0.510 ±  0.310i

ζ= 0.8547 
-0.260 ± 0.210i 

ζ= 0.7831 
  -0.690 ±  0.470i 

ζ= 0.8243 

2. CONCLUSION 
 
In this paper, SVD has been employed to evaluate the 
EM mode controllability to four UPFC control signals. 
It has been shown that the EM mode is most strongly 
controlled via δSH for a wide range of loading 
conditions. In addition, SVD analysis has illustrated that 
the EM mode is poorly controlled through mSH and δSE. 
The AIPSO-SA optimization technique has been 
proposed to design the UPFC controllers individually 
and δSH, mSE coordinately. PSO, IPSO and AIPSO-SA 
have been utilized to search for the optimal controller 
parameter settings that optimize a damping ratio based 
objective function. The presented simulation results 
show the robustness of designed controllers vice versa 
variation of operating conditions and system parameters 
uncertainties (multi point tuning). The presented results 
show clearly the superiority of the δSH-based stabilizer 
and proposed coordinated design approach in enhancing 
the low frequency oscillations damping. Also 
simulation results through non-linear power system 
model have proved the conclusions drawn from SVD 
analysis and show the effectiveness of proposed 
controller on enhancing dynamic stability. 
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APPENDIX A 

 
The test system parameters are: 
Machine: xd = 1; xq = 0.6; 30.x'

d = ; D = 0; M = 8.0; 04450 .T '
d = ; v = 1.05; ; f = 60 Hz 

Exciter: KA = 50; TA = 0.05; Efd_max = 7.3; Efd_min = -7.3; Transmission Line: xtE = 0.1; xBV = 0.6; 
UPFC: xE=0.1; xB=0.1; K=1; T=0.05; Cdc=3; Vdc=2; 

APPENDIX B 

 
The reactance’s of equations (5)-(10) are: 
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APPENDIX C 

 
Numerical value of matrices A and B, and initial value of power system currents and voltages are given in Tables 8-11.

 
a) Nominal Loading 

Table 8. Numerical value of matrices A and B, and initial value of power system currents and voltages in 
nominal loading condition 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−−
−

−
=

007302006001000
80482060025611000

0011001901501020100
00100119017004600
00000

....
....

....
....

B 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−

−−
−−−

=

03940026840026130
5930400207033308058

10990198304840003930
02450016960001680
0003770

...
....

....
...

A
 

iSE (pu) VEt (pu) Eq
’ (pu) it (pu) Vt (pu) 

0.4331+j0.2882 0.5872+j0.8524 j1.0465 0.4853+j08389 0.5033+j0.9009 
VSH (pu) VSE (pu) Vb (pu) iTL (pu) iSH (pu) 

0.6138+j0.8906 -0.0534+j0.0879 0.95+j0.288 0.4341+j0.2849 -0.382+j0.2657 
 
 
 
b) Light Loading 

Table 9. Numerical value of matrices A and B, and initial value of power system currents and voltages in light 
loading condition 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−

−−
−−
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029400293060004900
603704360775321000
00230017004802400
0019000650200008800
00000

....
....
....
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B
 

⎥
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−

−−
−−−

=

014000084003590
0732770020983760229720

12510198304840001720
00410005750002320
0003770

...
....

....
...

A 

iSE (pu) VEt (pu) Eq
’ (pu) it (pu) Vt (pu) 

0.2184+j0.1053 0.199+j1.0116 j1.0365 0.0624+j0.2843 0.1706+j1.0178 
VSH (pu) VSE (pu) Vb (pu) iTL (pu) iSH (pu) 

0.20+j1.0351 -0.1043+j0.1366 0.4191+0.907 0.0797+j0.1693 -0.2358+j0.0096 

 
c) Heavy Loading 

TABLE 10. NUMERICAL VALUE OF MATRICES A AND B, AND INITIAL VALUE OF POWER SYSTEM CURRENTS AND VOLTAGES IN 
HEAVY LOADING CONDITION 

⎥
⎥
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⎥
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⎤

⎢
⎢
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⎢
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=
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6128300201033410108766

1051019830484000400
0309001570001570
0003770

...
....

....
...

A 

iSE (pu) VEt (pu) Eq
’ (pu) it (pu) Vt (pu) 

0.4675+j0.3531 0.5434+j0.8382 j1.169 0.8269+j0.7762 0.4657+j0.9209 
VSH (pu) VSE (pu) Vb (pu) iTL (pu) iSH (pu) 

0.5525+j0.8495 -0.0428+j0.099 0.974+j0.224 0.4724+j0.3317 -0.113+j0.0915 

 
d) Leading power factor loading 

Table 11. Numerical value of matrices A and B, and initial value of power system currents and voltages in 
leading power factor loading condition 

⎥
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A
 

iSE (pu) VEt (pu) Eq
’ (pu) it (pu) Vt (pu) 

0.3243+j0.1965 0.5162+j0.9295 j0.9408 0.0282+j0.7374 0.4425+j0.9323 
VSH (pu) VSE (pu) Vb (pu) iTL (pu) iSH (pu) 

0.5458+j0.9883 -0.1029+j0.0230 0.835+j0.549 0.292+j0.2454 -0.5881+j0.2955 

 


