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ABSTRACT

Power system dynamic stability enhancement by unified power flow controller (UPFC)-based stabilizers is
thoroughly investigated in this paper. This study presents singular value decomposition (SVD) based approach
to assess and measure the controllability of the poorly damped electromechanical modes by different control
signals of UPFC. The supplementary controller of UPFC to damping the low frequency oscillation in a weakly
connected system is presented. Individual designs of the UPFC controller using adaptive improved particle
swarm optimization hybrid with simulated annealing (AIPSO-SA) are discussed. In this paper, the UPFC based
controllers' parameters are optimized over a wide range of operating conditions and system parameter
uncertainties (multi point tuning) in order to have robust stabilizers. The effectiveness of proposed controller on
enhancing dynamic stability is tested through eigen value analysis and time domain simulation. Also nonlinear
and electrical simulation results show the validity and effectiveness of the proposed control schemes over a
wide range of loading conditions. It is also observed that the proposed UPFC-based damping stabilizers enhance
greatly the power system transient stability. Also the simulation results of coordinated design of stabilizer based
on dsy and mgg is presented and discussed.
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1. INTRODUCTION

Today, power demand grows rapidly and expansion in
transmission and generation is restricted with the
limited availability of resource and the strict
environmental  constraints. Consequently, power
systems are today much more loaded than before. This
causes the power systems to be operated near their
stability limits. In addition, interconnection between
remotely located power systems gives rise to low
frequency oscillations in the range of 0.1-0.3 Hz. If not
well damped, these oscillations may keep growing in
magnitude until loss of synchronism results [1].

Power system stabilizers (PSSs) have been used in the
last few decades to serve the purpose of enhancing
power system damping to low frequency oscillations.
PSSs, which operate on the excitation system of
generators, have proved to be efficient in performing
their assigned tasks. However, PSSs may adversely
affect on the voltage profile, may result in leading
power factor, and may not be able to suppress
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oscillations caused by large disturbances, especially
three phase faults [1].

FACTS devices have shown very promising results
when used to improve power system steady-state
performance. Through the modulation of bus voltage,
phase shift between buses, and transmission line
reactance, FACTS devices can cause a substantial
increase in power transfer limits during steady-state.
Because of the extremely fast control action associated
with FACTS-device operations, they have been very
promising candidates for utilization in the power system
damping enhancement.

Unified power flow controller (UPFC) can be used for
power flow control, loop-flow control, load sharing
among parallel corridors, enhancement of transient
stability, mitigation of system oscillations and voltage
(reactive power) regulation [2,3]. Performance analysis
and control synthesis of UPFC require its steady-state
and dynamic models. A two-source UPFC steady-state
model including source impedances is suggested in [4].
Under the assumption that the power system is
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symmetrical and operates under three-phase balanced
conditions, a steady-state model, a small-signal
linearized dynamic model and a state-space large-signal
model of a UPFC developed in [5]. In 1999, Wang
developed two UPFC models [6, 7] which have been
linearized and incorporated into the Phillips-Heffron
model. UPFC damping controller design can be found
in [1, 8-12]. The supplementary controller can be
applied to the shunt inverter through the modulation
index of reference voltage signal or to the series inverter
through modulation of power reference signal. In [1,
12] the PSO algorithm is used for finding optimum
parameters setting of UPFC controllers in order to
power system oscillation damping in nominal loading
condition.

In this paper, singular value decomposition (SVD) is
used to select the control signal which is most suitable
for damping the electromechanical (EM) mode
oscillations. A single machine infinite bus (SMIB)
system equipped with a UPFC controller is used in this
study. In This paper the damping controllers design is
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formulated as an optimization problem to be solved
using AIPSO-SA. The aim of the optimization is to
search for the optimum controller parameter settings
that maximize the minimum damping ratio of the
system in single and multi point tuning cases. Eigen
value analysis and time domain simulation are used to
assess the effectiveness of the proposed controllers to
damp low frequency oscillations under different
disturbances.

2. MATHEMATICAL MODELLING

Fig. 1 shows a SMIB power system with a UPFC [1].
The four input control signals to the UPFC are mgy,
mgg, Osy, and Osp. Where, mgy and gy, are the
modulation index and phase angle of shunt converter
output voltage and mgg and s are the modulation
index and phase angle of series converter output
voltage, respectively. The system data is given in the
Appendix A.

U5 i X, Vb
) ! X, Line; L [ |
N i Liney Ly X
b L vscosH vsC—sE Y
B *Im o = vy BT B
E:. TV\.I'
T
M S,

Fig. 1. SMIB power system equipped with UPFC

POWER SYSTEM NON-LINEAR MODEL

The dynamic model of the UPFC is required in order to
study the effect of the UPFC for enhancing the small
signal stability of the power system. By applying Park’s

V . .
VSH = %dc(sm SSH +JcosSsH)
V . .
Ve = —mSEZ dc (szn SSE+ jcos 5SE)

dVdc 3 mSH

. . . 3msE
= SIS SH ISHA +€0S 8 SH iSHq)* 2
Cdc

dt dede

transformation and neglecting the resistance and
transients of the exciting transformer (ET) and boosting
transformer (BT), the UPFC can be modeled as [1, 4, 6,
12, 13]:

M
@

3)

(Sin OSE ISEd tCOSSSE i SEq)

Where, Vg, isy, Vp, and igg are the excitation voltage, excitation current, boosting voltage, and boosting current,
respectively; Cy. and V. are the DC link capacitance and voltage, respectively. From Fig. 1 we have:

’Tt:’SE“L’TSH“TTL’ Vie=JXEL+V

I7Et = jX pigy ‘”7511 > I7Ez = I7Bt + jX pyige ‘”71;

Vi, = jXrip +Vy,

“)

Ve = jX pisg + Vi

The relations of excitation and boosting transformers parameters and line 2 currents can be written as:
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Where, Xg and Xg are the ET and BT reactance, respectively; the reactance Xy, Xqg, Xgg, Xa1-Xa7, and Xg;- Xq7 are given
in Appendix B. The non-linear model of the SMIB system of Fig. 1 is:

5:wb(w—l)
w=(P, -P,-D(w-1))/ M

L

Efd = (KA(Vref _V+”pss)_Efd)/TA

. . 2 ) .
Where, P, =Vigiug +Vigiig» V; =|V,a +Via s Via =%qisg »

Vig :ELI 7x'ditd , Pm and P, are the input and output

power, respectively; M and D the inertia constant and
damping coefficient, respectively; @y the synchronous
speed; 6 and o the rotor angle and speed, respectively;

E;, E}d, and V, the generator internal, field and
terminal voltages, respectively; T, d’O the open circuit

.
field time constant; X4, X, , and X, the d-axis reactance,

Eq :(Efd —(xd _xdjid —Eq)/Tdo

(an
(12)

(13)

(14)

d-axis transient reactance, and g-axis reactance,
respectively; Ko and T, the exciter gain and time
constant, respectively; V. the reference voltage; and
upss the PSS control signal.

POWER SYSTEM LINEARIZED MODEL

The non-linear dynamic equations can be linearized
around an operating point condition. The linearized
model of power system as shown in Fig. 1 is given as
follows:

AS = w,Aw (15)
86 = (AP, - AP, - DA) (16)
M
., 1 , c
g = T RLEy fd d ~*a 1d
AE ( AE, +AE ;; +(x; —x, )Ai ) 17
Tyo
. 1
AE/d:T—(—AE/d+KA(AI/t,€,~—AI/, +Aum) (18)
A
AVdC = K7A5+K8AE; —KoAVy + K gyAmgy + K sy A0y + K g Amgy + K 555 A0 g (19)

In state-space representation, the power system can be modeled as:

x=Ax+ Bu

(20)

Where, the state vector X, control vector u, state matrix A and input matrix B are:
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The block diagram of the linearized dynamic model of The power flow is controlled through modulation the
the SMIB power system with UPFC is shown in Fig. 2 amplitude of the BT voltage, mgg.
[1]. In addition to the PSS input (upss), only one UPFC
control input is considered in this Figure. In this paper dsy and mgg are modulated in order
to damping controller design. The speed deviation
UPFC CONTROLLERS do is considered as the input to the damping
The damping controller is designed to produce an controller. The structure of UPFC based damping
electrical torque in phase with the speed deviation controller is shown in Fig. 3 where u can be mgy,
according to phase compensation method. The four mgg, dgy or dgg. This controller may be considered
control parameters of the UPFC (mgy, mgg, Ssu or k) as a lead lag compensator. However, an electrical

can be modulated in order to produce the damping
torque. In order to maintain the power balance between
the series and shunt converters, a DC voltage regulator
must be incorporated. The DC voltage is controlled

torque in phase with the speed deviation is to be
produced in order to improve damping of the
system oscillations.  The parameters of the

through modulating the phase angle of the ET voltage, damping controller are obtained using AIPSO_SA
dsu. In addition, to dispatch the power flow among algorithm.
transmission lines, a power flow controller is included.
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Fig. 2. Modified Heffron—Phillips linearized model [1]
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Fig. 3-b. UPFC with lead-lag damping controller and power flow
controller.

objective function J subject to some inequality

OBJECTIVE FUNCTION constraints, which are the maximum and minimum
To select the best stabilizer parameters that enhance limits of each controller gain K; and time constants T\—
most the power system dynamic performance, the T,. In this work,

problem is formulated so as to optimize a selected

J = min(¢,)
Real(ith  eigenvalue )

Si =
\/[Re al(ith eigenvalue)]2 + [Im((ith eigenvalue)]2 (25)

{; = is the damping ratio.

Hence, the design problem can be formulated as maximize J Subject to:
K™ <K <KM™ TMsT ST i=1234

K;nin =-100 K;nax =100 T;max — 5 T;min — 001

There are several stochastic algorithms. Particle swarm

The proposed approach employs AIPSO-SA to search optimization (PSO) and simulated annealing (SA) are
for the optimum parameter settings of the given two efficient and well known stochastic algorithms.
controllers.

STANDARD PSO ALGORITHM

3. PROPOSED ALGORITHMS The PSO is a population and fitness based algorithm

like genetic algorithm. PSO algorithm can be depicted

In recent years, many optimization algorithms are as follow [14-17]:

introduced. Some of these algorithms are traditional

optimization algorithms. Traditional optimization Suppose that there are m particle in D-dimensional
algorithms use exact methods to find the best solution. search space. The position of the ith particle is
The idea is that if a problem can be solved, then the represented as X=[Xi;, Xp,..., Xip]", and its best position
algorithm should find the global best solution. As the (the position giving the highest fitness value) found so
search space increases the cost of these algorithms far is recorded and represented as P=[pii, piz,-- - piD]T.
increases. Therefore, when the search space complexity The best position found by swarm so far is also
increases the exact algorithms can be slow to find recorded and represented as Pg=[pg1,pg2,...,pgD]T.
global optimum. During the iteration, the ith particle flies in the search

space with the velocity Vi=[vj, vi,..., V;D]T. Then, the
velocity and position of the ith particle update with
following equations:

v [t +1) =W vy, (6)+ C, *rand, *(Py —x,4(t))+ C, *rand, * (Pgd —Xiy (t)) (26)

Xig(t+1)=x,4(e)+ vy (+1) 27)
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Where, vy4 is the velocity of particle ith in dimension
dth (is the particle position), W is the inertia weight
factor, C; and C, are two positive constant parameters
that are called acceleration coefficients. The rand; and
rand, are the random functions in the range [0, 1], Py is
the best position of the ith particle in dimension dth and
P4 is the best position among all particles in the swarm.

IMPROVED PSO ALGORITHM

In PSO algorithm, if the particles converge too quickly,
it will result in premature convergence and losing
further search ability. Through studying the mechanism
of the PSO algorithm, one can conclude that PSO
algorithm search optimal solution by tracking two
extrema P; and P,. so, during the search process, if Pg
lies in the local optimum position, all particles will
approach P, very quickly. This will result in premature
convergence. In order to solve this question, during the
iteration, it must be avoided that P, falls into local
optimum position. In this paper, the scheme of selecting
P, is improved. During the iteration of IPSO algorithm,
we don’t simply select the particle with the highest
fitness as Py, but select a particle from several particles
with the highest fitness using roulette wheel method.
Concretely, let the positions of the first L particle with
highest fitness in particle swarm be Pgl, Pg2, e, PgL
and their fitness be g', g°, ... , g" . According to
roulette wheel selection method, the probability of P,'
(i=1,2, ..., L) that is selected as P, is given in (28) [18,
19].

Thus, the IPSO algorithm maintains the character of the
basic algorithm. Also the IPSO algorithm searches
optimal solution by tracking two extrema. However,
when the best particle found by the swarm falls into
local minima, other different particles maybe selected
as P, and the particles will fly to other direction. Then,
it is avoided that all particles approach the local optima
very quickly, and the probability of premature
converging to local optima is decreased. Although the
selected particle is not the optimal particle, it is a
suboptimal particle. This ensures that the particle
swarm flies to a good direction. In IPSO algorithm, L is
a very important value. If is too small, the roulette

Where, f (Piq(t)) is the best fitness function that is found
by ith particle and f (Py(t)) is the best fitness function
that is found by swarm up to now. Globally optimize an
objective function in a given search domain consists in
finding its global optimum without being trapped in any
local optimum. When strongly multi-modal problems
are being optimized, PSO algorithm usually suffers
from the premature suboptimal convergence (simply
premature convergence or stagnation) which occurs
when some poor particles attract the swarm, due to a
local optimum or bad initialization, preventing further
exploration of the search space. According to [19],

wheel selection method will have very little effect on
this algorithm. On the other hand, if L is too large, the
particle selected as P, is perhaps a bad particle. This
will affect the search ability of IPSO. In application, L
is set as [m/10], where [x] means the largest integer do
not exceed X.

AIPSO-SA ALGORITHM

Simulated Annealing (Metropolis et al. 1956,
Kirkpatrick et al. 1983) [20] is a metastrategy local
search method that attempts to avoid producing the poor
local maximum inherent in the steepest ascent method.
The main idea behind Simulated Annealing is an
analogy with the way in which liquids freeze and
crystallize. The simulated annealing algorithm aims to
achieve a global optimum by slowly converging to a
final solution, making downwards moves with
occasional "upwards" moves (the probability of these
occurring decreasing with the "temperature") and thus
hopefully ending up in a global optimum. The most
significant character of SA is the probabilistic jumping
property, i.e. a worse solution has a probability to be
accepted as the new solution. Moreover, by adjusting
the temperature, such a jumping probability can be
controlled.

Slow convergence of PSO before providing an accurate
solution is a drawback, closely related to its lack of any
adaptive accelerators in the velocity updating formulae.
In (27), C, and C, determine the step size of the
particles movements through the Pjy3 and Pg,
respectively. In the original PSO, these step sizes are
constant and for the all particles are same. For doing
more sensitive and faster movements, new step sizes
can be modified, which they should accelerate the
convergence rate. In each iteration, the value of
objective function is a criterion that presents the relative
improvement of this movement in respect to the
previous iteration movement. Thus the difference
between the values of objective function in the different
iterations can select as the accelerators. Adding two
additional coefficients to the original step sizes in (27),
it causes to adaptive movements. Therefore, velocity
updating formula can be obtained from (29).

(28)

although PSO finds good solutions much faster than
other evolutionary algorithms, it usually can not
improve the quality of the solutions as the number of
iterations is increased. The rational behind this problem
is that particles converge to a single point, which is on
the line between the global best and personal best
positions. This point is not guaranteed to be even a local
optimum. Another reason for this problem is the fast
rate of information flow between particles, resulting in
the creation of similar particles (with a loss in diversity)
which increases the possibility of being trapped in local
minima [20]. This feature prevents standard PSO from
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being really of practical interest for a lot of applications.
By combining AIPSO with SA algorithm, we can get a
new hybrid optimization approach, called AIPSO-SA
[21]. Using of jumping property of SA can help to more
diversification that it guarantees the algorithm escapes
from local optimum. As mentioned in section 4.2. SA
accepts worse solutions with a probability of exp(—A/T).
When algorithm becomes trapped in a local optimum
valley it can jump of valley with a probability leaded to
more diversity. In fact, AIPSO-SA has rapid
convergence but not premature convergence. In AIPSO-

Xig(P)=%q(1)+ vy (1)
A= f(xy(p))—f(x4(t))

797

SA algorithm, we name every point which is found by
equation (30), the temporary point x;4(p) (Xia( p) = Xia(t
+1)). If xi4( p) is better than X;4(t), it will be accepted
and if it is worse than xy(t), we will accept it with
probability of exp(—A/T) , (A=f(x;4(p))-f(x;a(t))). This
process is performed for all particles. When a temporary
point rejected, that we name it a detoured particle x;4(d),
it is given back in the opposite direction of the previous
movement. These descriptions are formulated by the
following equations.

If A<0 then xig(1+1)=xig(p) (30)
Xig(d)=Xig(p)+a*vy(t)
If A>0 then Xg(t+1)=x,(d)
Where,
+1 probability = =8/
" G1)

-1 other wise

Increasing the value of the inertia weight, W, will
increase the speed of the particles resulting in more
exploration (global search) and less exploitation (local
search). On the other hand, decreasing the value of W
will decrease the speed of the particle resulting in more
exploitation and less exploration. Thus, an iteration-

W opae =W i
W=W,, ——me_Tmin ey

iter

Where, Nj, is the maximum number of iterations
(Nie=100), iter is number of iteration (iter=1, 2,..., Nie,)
and W, and W,;, are selected to be 0.9 and 0.1,
respectively.

4.  SIMULATION RESULT

In this section the simulation results of linearized model
and non linear electrical model are presented.

CONTROLLABILITY MEASURE

The numerical values of matrices A and B are achieved
by equations 23 and 24 are given in appendix C. To
measure the controllability of the EM mode by a given
input (control signal), the singular value decomposition
(SVD) is employed [1]. The minimum singular value,
Omin, Of the matrix [AI-A b;] indicates the capability of
the ith input to control the associated mode with the
eigen value A. Where b; is a column vector
corresponding to the ith input. Actually, the higher
Omin, 18 concerned to the higher controllability of this
mode by the considered input. Also, the controllability
of the EM mode can be examined with all inputs (Ssy,
dsg, Mgy and mgg) in order to identify the most effective
one to control the mode. The minimum singular value,
Omin, 18 estimated over a wide range of operating
conditions. For SVD analysis, P, ranges from 0.05 to
1.4 pu and Qe = [-0.15, 0, 0.15]. At each loading
condition, the system model is linearized, the EM mode
is identified, and the SVD-based controllability measure
is implemented. For comparison purposes, the

dependent weight factor often outperforms a fixed
factor. The most common functional form for this
weight factor is linear, and changes with step i as
follows:

(32)

minimum singular value for all inputs at Qe =-0.15, 0.0
and 0.15 pu is shown in Figs. 4-a, b and c, respectively.
From these figures, the following can be noticed:

- EM mode controllability via dgy is always higher
than other inputs.

- It can be seen that the controllability of the
electromechanical mode with all inputs increases with
loading at lagging, leading and unity power factor.

- All control signals except dsy suffer from low
controllability to EM mode at low loading conditions.

APPLICATION OF PROPOSED ALGORITHMS TO DESIGN
PROCESS

The PSO, IPSO, AIPSO-SA algorithm has been applied
to search for the optimal parameter settings of all
supplementary controllers so that the objective function
is optimized. To assess the effectiveness of the
proposed controllers, four different loading conditions
are considered for eigen value analysis. These
conditions are:

1. Nominal loading (Pe, Qe) = (1.0, 0.015) pu.

2. Light loading (Pe, Qe) = (0.3, 0.015) pu.

3. Heavy loading (Pe, Qe) = (1.1, 0.40) pu.

4. Leading power factor loading (Pe, Qe) = (1.1, 0.40)

pu.
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SINGLE POINT TUNING

1. STABILIZER DESIGN

In this section, the stabilizers are tuned with only the
nominal loading condition. The final parameter settings
of the supplementary controllers are given in Table 1.
The convergence rates of the objective function for
PSO, IPSO, AIPSO-SA algorithms are shown in Fig. 5.
It is clear that the dsy-based controller improves greatly
the system damping compared to other controllers.

2. EIGEN VALUE ANALYSIS

The system electromechanical mode eigen value and its
damping ratio({) with and without the proposed UPFC
stabilizer inputs are given in Table 2 for nominal, light,
heavy and leading power factor loading conditions,
respectively. It is clear that the proposed stabilizers
greatly improve the system stability. It is also clear that
the mgy, Ogg-based stabilizer have relatively poor
capabilities to enhance the EM mode damping when the
system operates at light, heavy and leading power factor

(b)
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loading conditions and mgg-based stabilizer have
relatively poor capabilities to enhance the EM mode
damping when the system operates at leading power
factor loading condition.

MULTIPLE POINT TUNING

In this section, the UPFC-based controllers' parameters
are optimized over a wide range of operating conditions
and system parameter uncertainties in order to have
robust stabilizers. Four loading conditions represent
nominal, light, heavy, and leading power factor are
considered. Each loading condition is considered
without and with parameter uncertainties as given in
Table 3. Each loading condition is considered in 1-
without uncertainties, 2- 30% increase and 3- 30%
decrease of line reactance, 4- 25% increase and 5- 25%
decrease of machine inertia 6- 30% increase and 7- 30%
decrease of field time constant ' . Hence, the total

number of points which considered for design process is
28.

........... mSH
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0.06 - — - — 4

0.05 4
0.04 4
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Fig. 4. Minimum singular value with all stabilizers at

Table 1. The optimal settings of the individual controller
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Pe Pe

a) Qe =0.15 b) Qe =0.0 ¢) Qe =-0.15

1.4

1.6

PSO IPSO AIPSO-SA
Msg Msy sk dsn Mmsp Msy sk dsu Msp Msy sk dsn

K -55.2079 -38.25 99.3072 -47.24 -100.0 -81.24 100.0000 -61.45 -50.10 -19.07 100.0000 -93.42

s

T, 5.0000 1.2717 3.4107 1.0083 3.7329 1.2100 3.3041 2.1044  3.7704  2.4068 3.9761 1.0171
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Ts 4.6494 0.3506 3.2665 3.4604 1.1912 0.2323 4.9425 0.9452 4.0309 0.1547 2.8015 4.1950

Ty 0.5100 0.0010 0.1270 2.1989 2.3188 4.9999 2.8054 24339  3.6947  2.1500 1.6396 4.1950

. (2) ‘Damplng‘ Ratio O‘bjecllve I‘:unctlon L0 ‘ Dampm? Ratio O‘bjecllve F‘uncllon ‘ () Damping Ratio Objective function
1 osf 4 1
5 1 & osel- 1 5 1
£ 1B ol ]k
H ] e H ]
g § o2 1%
¢} g8 o g
02" 1
20 40 60 80 100 120 04 20 60 80 100 120 0 20 40 60 80 100

Generation

Generation Generation

Fig. 5. Objective function in single point tuning case of 3SH, 8SE, mSH and mSE-based stabilizers, a) PSO b) IPSO c¢) IPSO-SA algorithm

1. STABILIZER DESIGN

The convergence rate of the objective function in multi
point tuning case when gy, 0sg, msy and mgg-based
stabilizers are design individually is shown in Fig. 6.
The final setting of the optimize parameters for the
proposed stabilizers are given in Table 4.

2. EIGEN VALUE ANALYSIS

The system electromechanical mode eigen value and its
damping ratio without and with the proposed stabilizers
at nominal, light, heavy and leading power factor
loading conditions are given in Table 5. It is clear that

the proposed robust stabilizers are effective at all points
considered. However, the values of { corresponding to
the EM mode resulting from using gy and mgg as
control signals are much higher than those resulting
from using mgy and dgg. This agrees with the SVD
analysis carried out previously.

3. NON-LINEAR TIME SIMULATION

The system behavior due to the utilization of the
proposed controllers under transient conditions has been
tested by applying three large disturbances: 1) a 3-phase
fault with 6-cycle duration is occurred at t =10 sec at the
middle of Line 1 for all loading conditions, 2) a 3-phase
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fault with 6-cycle duration occurred at t =10 sec at
infinite bus for nominal loading condition, 3)
connection a large load (P=400 MW, Q=400 MVA) in
bus B1 at t=15sec. The system response is shown in
figures 7, 8. The Fig. 7 represents deviation in rotor
speed, load angle, generator output active power and
power flow of line 1 when the damping controller is not
installed. Rotor speed deviations are shown in Fig.8 (a-
d) for different loading condition when a three phase
fault is accrued at middle of line 1. Also the load angle

variations are presented in Fig.8 (e-h) in this case. The
variations of generator output power are shown in Fig.8
(i-1). Figures 9 and 10 present the non linear simulation
results when a three phase fault is occurred at infinite
bus and a large load is connected to bus BI,
respectively. It can be seen that dgy-based stabilizer
provide an excellent damping characteristics and
enhance the first swing stability at all loading
conditions.

Table 2. Eigenvalues For Ash, Ase, Msh And Mse Based Stabilizers (PSO, IPSO, AIPSO-SA)

Nominal Light Heavy Leading power factor
) 07669 £ 351601 0.2687 £ 3.0104 0.6934 £ 3.49531 07238 £3.27971
System without UPFC =-0.2131 £=-0.0889 =-0.1945 =-02155
o 29.9266 = 7.89591 204032 £0.42361 205321204212 083134154411
= 0.7826 = 0.6894 = 0.7832 = 0.4741
sk 21.90 4,801 20.40 £ 3.201 020 £ 4.80i ~0.0008 £ 0.00281
PSO = 0.3646 =0.1258 =0.0371 =0.2789
Ssn 20,6460 = 4.07141 0.2696 = 3.15571 1.0439 = 4 53841 00242 25657
=0.1563 (=-0.0851 7= 02242 = -0.0094
e 12546 + 172001 05465 + 135161 22005 +4.24791 03372231761
= 0.5891 =0.3749 = 0.4603 {=-0.1440
Son 12570 £ 0.5930i 04342 £ 041141 206138+ 042631 06537+ 143171
= 0.8579 = 0.7259 = 0.8213 = 0.4037
e .50 £4.301 052320 20.90 + 4.90i 0.1593 £ 2.72751
1PSO = 0.5082 = 0.1481 = 0.1857 = 0.0583
. 20.9081 = 4.05961 02943 £ 3.1707 07332 = 45754 71,50 £ 2.801
=0.2183 (= -0.0924 7--0.1582 = 0.4668
se 21,8960 + 2.23061 08819 £ 1.5957i 26407 £ 457271 20.1238 £ 2.59881
= 0.6476 = 0.4837 =0.5001 = 0.0476
Son 11611 +0.1389 202698 + 036841 04124 £ 03724 206537+ 148171
=0.9559 =0.5909 =0.7422 = 0.4037
s 3.00 £ 3.400 20490 £ 3.020i 140 £ 4301 0.1593 £ 2.72751
AIPSO- = 0.6582 =0.1598 =0.3062 = 0.0583
SA Sor 13787 + 3.9810i 20490 £ 3.0201 03062 + 4.56981 2150 £ 2.80i
= 0.3265 =0.1598 Z— -0.0669 = 0.4668
e 23806 = 2.08651 20.8940 + 1.63951 15772+ 16100 20.1238 £ 2.59881
=0.7512 = 0.4787 = 0.4471 = 0.0476

Table 3. Loading conditions and parameter uncertainties
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1
=+memem deltaSH

deltaSE

Loading | (P,Q)pu Condition Parameter uncertainties
Nominal | (1, 0.015) No parameter uncertainties
Light (0.3, 0.015)|30% increase and decrease of line reactance X
o ———
Heavy (.1, 04) 25% increase and declr\iase of machine inertia
; 30% increase and decrease of field time
Leading | (7 3 ’ ,
P.F. constant T
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Fig. 6. Objective function in multi point tuning case of dsy, dsg, msy and msg-based stabilizers, a) PSO b) IPSO c) IPSO-SA algorithm
Table 4. The optimal settings of the individual controller in the multi point tuning case
PSO 1PSO AIPSO-SA
mgg Mgy sk Osu mgg Mgy sk s mgg Mgy sk Osu
Ks | 100.00 | -13.09 100.00 | 100.00 100.00 | -9.727 | -52.73 100.00 -100.00 30.9019 | 57.6390 100.0000
T, | 5.0000 | 0.4045 | 2.9597 | 0.8936 | 5.0000 | 0.2260 | 5.0000 | 0.7338 | 3.6733 5.0000 3.2735 5.0000
T, | 1.8880 | 0.0010 | 0.7469 | 2.0305 | 2.4039 | 1.5550 | 0.8953 | 4.9916 1.5262 1.7377 4.4766 2.2018
T; | 5.0000 | 3.9733 | 3.4684 | 1.1362 | 5.0000 | 3.5024 | 4.5373 | 3.6700 | 0.7456 5.0000 0.1301 5.0000
T, | 2.1646 | 42177 | 3.5679 | 1.3958 | 2.4096 | 0.0010 | 3.5085 | 1.4830 | 4.9333 2.0592 0.0010 2.2019

120




Deviation in Rotor
Speed (pu)

800

COORDINATED DESIGN OF dsy, mgz BASED CONTROLLER

In this section coordinated design of two stabilizers
based on dsy and mgg is investigated. With applying the
AIPSO-SA algorithm in the multi point tuning case the
controller parameters based dsy and mgg is obtained.
The final setting of the optimize parameters for the
proposed stabilizer are given in Table 6. The
convergence rate of the objective function in this case
when Ogy and mgg based stabilizers are designed
coordinately is shown in Fig. 11.

The system electromechanical mode eigen value and its
damping ratio in the coordinated design of stabilizers at
deferent loading conditions are given in Table 7.
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With comparing the results of this method and
individual design of stabilizer, it is seen that in
coordinated design the damping ratio of deferent
loading conditions is increased.

Simulation results of coordinated design are presented
in Fig. 12. This figure shows variations of rotor speed,
load angle, generator output active power and active
power flow of line 1 in the nominal loading when a 5%
step changing in the mechanical input power of
generator (Pm) is occurred. From this figure it can be
obtained that the coordinated designed controller has
good performance and fast response in damping of low
frequency oscillations caused by step changing in the
mechanical input power of generator.

Table 5. System eigen values for dgu, Osg, msy and mgg based stabilizers in multi point tuning case (by PSO, IPSO, AIPSO-SA)

Nominal Light Heavy Leading power factor
System without UPFC 0.9096 + 3.2766i 0.2670 £ 2.9444i 0.8354 +3.2629i 0.8269 + 3.0908i
7=-0.2675 Z=-0.0903 (=-0.2480 (=-0.2584
dsn -2.1826 £2.2757i -0.2659 = 0.3307i -2.5404 + 2.4680i -1.3854 + 1.3439i
7=0.6922 Z=0.6266 =0.7173 =0.7178
Mgy -0.70 + 3.201 -0.40 + 3.201 -0.70 £4.10i -0.30 + 2.60i
PSO Z=0.2015 Z=0.1219 (=0.1700 (=0.1058
Osk -1.2398 + 6.4894i -0.1076 + 2.98541 -0.7034 + 5.9953i -0.2659 +2.1849i
7=0.1877 Z=10.0360 =0.1165 (=0.1208
mgg -0.5959 +£0.77731 -0.5672 +0.7533i -0.5321 +0.7089i -0.6612 +0.9207i
Z=0.6084 Z=0.6015 (=0.6003 =0.5833
dsn -2.3838 + 2.1191i -0.3346 = 0.3432i -0.4460 = 0.3797i -9.6190 + 6.7565i1
7=0.7474 Z=0.6981 (=0.7614 (=0.8183
Mgy -3.20 = 6.901 -0.60 £ 2.90i -2.90 £ 6.101 -0.60 £ 2.10i
IPSO Z=0.4168 7=10.1934 (=0.4224 (=0.2637
Osk -1.2424 + 6.4692i -0.1100 = 2.9836i -0.7055 + 5.98041 -0.2529 +2.1628i
7=0.1886 7= 0.0369 =0.1172 =0.1162
mgg 10.2708 + 10.7709i -10.2484 + 7.9618i -10.2470 + 10.7863i -1.1787 + 1.1985i
Z=0.6901 Z=10.7897 (=0.6888 (=0.7012
dsn -2.3730 £2.1124i -0.3311 £ 0.3402i -0.4419 £ 0.3745i1 -9.6218 £ 6.7589i
Z=0.7469 7=0.6974 (=0.7629 (=0.8183
Mgy -4.530 £ 9.580i -1.120 £+ 2.660i -0.0428 + 0.0893i -0.660 £ 1.270i
AIPSO- 7=0.4273 7=0.3871 (=0.4318 (= 0.4600
SA Ssk -1.6097 + 8.0558i -0.2728 +£2.9730i -1.1788 +7.3010i1 -0.2430 + 1.7861i
7=0.1959 7=0.0914 (=0.1594 (=0.1348
mgg -0.7793 +£0.7184i -0.7196 £ 0.65051 -0.6628 + 0.6369i -0.8826 + 0.9682i
Z=10.7353 7=0.7418 =0.7211 (=0.6737
001 () I (b , 15 1) 1 @
0.005 P25 jg, _ 5 _ 08
F g2 * 52 06
0 2 20 o} [
< 58 g8 o4
-0.005 % 15 % a 0.5 .§ 3 o
o
BT 15 20 10 12 12 15 18 20 1o 15 20 1o 15
Time (sec) Time (sec) Time (sec) Time (sec)

Fig 7. System response for a 6-cycle fault at middle of line 1 (Without damping controller)

a) Deviation in rotor speed (pu) b) Load angle (deg)

¢) Generator out put active power

d) Active power of line 1 (pu)
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Fig. 12. System response to 5% step changing in Pm using multi point tuning case and coordinated design based AIPSO-SA

a) Rotor speed b)Load angle

c)Generator output active power

d)Active power flow of line 1

Table 7. The system electromechanical mode eigen value and its damping ratio in the coordinated design of

stabilizers based aipso-sa

Nominal Light Heavy Leading power factor
System without | 0.9096 + 3.2766i | 0.2670 £ 2.9444i | 0.8354 £3.26291 | 0.8269 + 3.0908i
UPFC Z=-0.2675 =-0.0903 (=-0.2480 (=-0.2584
With UPFC Based| -0.970 £ 0.590i | -0.510 T 0.310i | -0.260 T 0.210i | -0.690 £ 0.470i
AIPSO-SA £=0.8547 (=0.8547 {=0.7831 = 0.8243
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Machine: x4 = 1; X4 = 0.6; x;, =0.3;D=0;M=38.0; Tdro =5.044;v=1.05;;f=60Hz
Exciter: K, =50; Ty = 0.05; Egy_max = 7.3; Egy_min = -7.3; Transmission Line: x = 0.1; xgy = 0.6;

UPFC: xg=0.1; x3=0.1; K=1; T=0.05; C4.=3; V4.=2;

APPENDIX B

The reactance’s of equations (5)-(10) are:

Xoyp =X+ X Xgp =X+ Xy, Xpp=Xp+Xpy

' 1 XX
Xdl:XE(1+(XtE+Xd)(XE+XT))’Xd2:XBBXd1+XEXdE’ Xpy=——(EE Xy ),
X X; X Xr
1 XX
Xpg=——( Xy~ Xp——L=E),
Xﬂ'Z T

1 1 X
Xjs=—(1+Xpp X 13)s Xy =—(1-Xppo—41 ), X
s XE( 88 Xu3 ) X7 XE( BB Xdz)

XEXqE
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E

Xp(1+

1
X ) Xgp=—— (X +Xg+

L X, =it x ﬁ)
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(Xp+X )N Xg+Xp)
Xg Xy

) Xyo = Xpp X1+ XpXyp»

XpX g 1
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APPENDIX C

Numerical value of matrices A and B, and initial value of power system currents and voltages are given in Tables 8-11.

a)

Nominal Loading

GU J Sci, 24(4):791-804 (2011)/ Ali AJAMI, Hamed ASADZADEH

Table 8. Numerical value of matrices A and B, and initial value of power system currents and voltages in

nominal loading condition

0 377 0 0 0 0 0 0 0 0
—-0.0168 0 -0.1696 0 —0.0245 0 —-0.046 0.17 0.0119 0.001
A=[-0.0393 0 —-0.484 0.1983 0.1099 B= 0 0.201 0.1501 0.019 -0.0011
58.80 0 —333.70 —-20.00 -304.59 —1000 -561.2 060 —-208 —4.80
—-0.2613 0 0.2684 0 -0.0394 0 —-0.10 -0.60 020 —0.0073
Vi(pu) i (pw) E (pw) Vi (pu) st (pu)
0.5033+j0.9009 0.4853+j08389 j1.0465 0.5872+j0.8524 0.4331+j0.2882
isn (pu) i (pu) Vi (pu) Vse (pu) Vsnu (pu)
-0.382+j0.2657 0.4341+j0.2849 0.95+j0.288 -0.0534+j0.0879 0.6138+j0.8906
b) Light Loading

Table 9. Numerical value of matrices A and B, and initial value of power system currents and voltages in light

loading condition

0 377 0 0 0 0 0 0 0 0
-0.0232 0 -0.0575 0 —0.0041 0 —-0.0088 0.20 0.0065 -0.0019
A=-00172 0 -0.484 0.1983 0.1251 B=l 0 024 0048 -0.017 —0.0023
20.2297 0 —376.98 —-20.00 —-277.073 -1000 -5327 7.60 4370 3.60
-0.359 0 0.084 0 —0.0140 0 —-0.049 -0.60 0.0293 -0.0294
Vi(pw) i (pu) Eq’ (pw) Vi (pw) ise (pu)
0.1706+1.0178 0.0624+j0.2843 71.0365 0.199+{1.0116 0.2184+0.1053
isu (pu) i (pu) Vb (pu) Vs (pw) Vsu (pw)
-0.2358+j0.0096 0.0797+j0.1693 0.4191+0.907 -0.1043+j0.1366 0.20+j1.0351
¢) Heavy Loading

TABLE 10. NUMERICAL VALUE OF MATRICES A AND B, AND INITIAL VALUE OF POWER SYSTEM CURRENTS AND VOLTAGES IN

HEAVY LOADING CONDITION

0 371 0 0 0 0 0 0 0 0
-0.0157 0 -0.157 0 —-0.0309 0 -0.10 020 00112 0.0015
A=|-0.040 O -0.484 0.1983 0.1051 B=| 0 020 010 002 -0.0009
66.1087 0 —341.103 -20.00 -283.61 —~1000 —-5666 -101 -289 45
-02242 0 0.2418 0 —-0.0339 0 —~010 —-060 020 —0.007
Vi(pu) i (pu) Ey (pu) Vi (pu) ise (pu)
0.4657+j0.9209 0.8269+j0.7762 j1.169 0.5434+j0.8382 0.4675+j0.3531
is (pu) it (pu) Vi (pu) Vse (pw) Vs (pu)
-0.113+j0.0915 0.4724+j0.3317 0.974+j0.224 -0.0428+j0.099 0.5525+j0.8495

d)

Leading power factor loading

Table 11. Numerical value of matrices A and B, and initial value of power system currents and voltages in
leading power factor loading condition

0 371

0

0

0 0 0 0 0 0
-0.0188 0 —0.1491 0 —-0.0105 0 —-0.198 0.20 0.0112 0.0015
A=[-0.0343 0 —0484 0.1983 0.1212 B=| 0 0.20 0.10 0.0048 -0.0022
41.1163 0 —34533 -20.00 -311.8537 —1000 —5639 1630 1540 5.1
-03236 0 0.2364 0 —-0.0383 0 —~0.10 —-0.60 010 -0.0144
Vi(pw) i (pu) Eg (pu) Ve (pu) ise (pu)
0.4425+j0.9323 0.0282+j0.7374 70.9408 0.5162+j0.9295 0.3243+j0.1965
isu (pu) i (pu) Vs (pu) Vse (pu) Vsu (pu)
-0.5881+j0.2955 0.292+j0.2454 0.835+j0.549 -0.1029+j0.0230 0.5458+j0.9883




