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Abstract  

This study proposes a genetic algorithm (GA) based model to generate examination schedules such that they 
focus on students’ success in addition to satisfying the hard constraints required for feasibility. The model is 
based on the idea that the student success is positively related to the adequate preparation and resting time among 
exams. Therefore, the main objective of this study is to maximize time length among exams (i.e., paper spread) 
considering the difficulties of exams. Two different genetic algorithm models were developed to optimize paper 
spread. In the first genetic algorithm model, a high penalty approach was used to eliminate infeasible solutions 
throughout generations. The second genetic algorithm model controls whether or not each chromosome joining 
the population satisfies the hard constraints. To evaluate the models, a set of experiments have been designed 
and studied using the data collected from the College of Engineering in Pamukkale University. 
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1. INTRODUCTION 

Timetabling has attracted the attention of the 
operational research and artificial intelligence research 
communities for more than 40 years. Perhaps the most 
widely studied class of timetabling problem is 
educational timetabling [1]. Timetabling problems are 
NP-complete in their general form, regarding their 
computational complexity, meaning that the difficulty 
to find a solution rises exponentially to their size and a 
deterministic algorithm, giving an optimal solution in 
polynomial time, cannot be found. University 
timetabling is a significant administrative issue that 
arises in academic institutions. The general term 
university timetabling typically refers to both university 
course and examination timetabling which are different 
in nature. In this study, we focus on examination 
timetabling problem which is a difficult and lengthy 
task for which universities devote a large amount of 
human and material resources. In some institutions, 
administrators approve the final timetable if exams are 
scheduled without any major conflicts in the available  

 
 
 
time period. It is widely accepted that exams are a part 
of learning process; therefore it is required to pay 
attention to other issues related to scheduling exams. In 
this study, we specifically focus on students’ success 
when scheduling exams in addition to several hard 
constraints required for feasibility of the suggested 
schedule. Student success is positively related to the 
adequate preparation and resting time among exams. 
One of the desirable attributes of real-life examination 
timetabling solutions is the maximization of paper 
spread [2], which is a measure of the amount of study 
time that each student has among examinations. We 
extend this to include the idea that the amount of study 
time required by the students among examinations is 
positively related to the difficulty of exams. Therefore, 
the main objective of this study is to maximize paper 
spread (i.e., time length among exams) considering the 
difficulties of exams for better success rates of students. 
Two different genetic algorithm (GA) models were 
developed for this purpose. In the first GA model, a 
high penalty approach is used to get rid of infeasible 
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solutions throughout generations. The second GA 
model controls whether or not each chromosome 
joining the population satisfies the hard constraints. If 
the hard constraints are not satisfied, conflicts are 
removed from the chromosome with an embedded 
repair function. If repair fails, the chromosome is 
destroyed. The second method forces the genetic 
algorithm to search only in the feasible solution space. 
Comparative simulation results for both solution 
approaches are presented. The results show the effects 
of repair function and high penalty cost usage in solving 
NP-complete problems using GA based approaches and 
contribute to GA application literature.  
 
The rest of this paper is organized as follows: The 
following section provides an overview of previous 
studies related to examination timetabling. Section 3 
describes the problem under study and related 
constraints. Section 4 presents the proposed GA 
methods. Experimental design and computational 
results are given in section 5. Finally, in section 6 
conclusions are presented. 
 

2. LITERATURE REVIEW 

In the literature, there has been a wide investigation of 
automated timetabling approaches in the domain of 
examination timetabling with various methodologies 
based on artificial intelligence and operational research 
techniques in order to produce better and feasible 
timetables. Qu et al. [3] provides an up to date overview 
of search methodologies and automated system 
development for examination timetabling. This section 
provides a survey of related work in the literature and 
clarifies the contribution of the proposed model. 
 
A scheduling problem is simply to assign a set of tasks 
to a set of sources under a set of constraints. In an 
uncapacitated examination timetabling problem, exams 
represent tasks and time slots represent sources. 
Constraints are examined in two categories as hard and 
soft constraints. Hard constraints have to be assured in 
order to obtain feasible solutions. It is almost 
impossible to satisfy all of the soft constraints yet the 
quality of the solution is increased with the number of 
soft constraints satisfied. Therefore, choosing soft 
constraints wisely according to a certain goal becomes 
important. An example for a hard constraint in 
uncapacitated examination timetabling problem is 
considered to be “scheduling two exams with common 
students into the same time slot”. Occurrence of this 
condition is “a conflict” and causes infeasibility in the 
solution obtained. On the other hand, one of the soft 
constraints, defined by Carter et al. [4], is concerned 
with spreading out the exams over a timetable so that 
students will not have to take exams that are too close to 
each other. The objective is to assign exams into 
timeslots while minimizing the cost of the violations of 
the hard and soft constraints. This is widely used in 
examination timetabling research to measure the 
solution quality. This measure is called “conflict 
density” and given in equation (1). 
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where N is the number of exams and ijβ
 
is a decision 

variable assuming value of 1 if exam i and exam j have 
at least one student in common while assuming value 0 
otherwise. 

 
There has been a wide investigation of different 
methods to minimize the cost on the violations of the 
constraint stated above using various techniques such as 
cased based heuristic selection [5], large neighborhood 
search approach [6], graph based heuristic [1], the great 
deluge metaheuristic [7] and fuzzy methodologies and 
heuristic orderings [8]. heuristic combinations [9], a 
random iterative graph based hyper-heuristic [10], 
variable neighborhood search and its hybridization with 
a genetic algorithm [11] and genetic algorithms by 
inducing solutions [12]. Gogos et al. [13] proposed a 
multi stage algorithmic process including hill climbing, 
simulated annealing, heuristics, metaheuristics and 
exact methods for the solution of examination 
timetabling problem considering the soft constraint 
provided by conflict density given in equation (1) to 
measure the final timetable quality in addition to hard 
constraints required for the feasibility provided by their 
proposed methods. 
 
Exact methods and heuristic approaches have been 
widely applied to solve real-world timetabling problems 
as case studies in different universities considering 
specific constraints. Foulds and Johnson [14] designed a 
decision support system to construct university 
timetables considering specific circumstances to New 
Zealand University which detects if a room is double-
booked, allocated to a course that exceeds the room 
capacity or a course is allocated to the same time slot. 
Dimopoulou and Miliotis [15] designed and 
implemented a computer network based timetabling 
system to aid the construction of a university course 
timetable at Athens University of Economics and 
Business. Dimopoulou and Miliotis [16] improved their 
previous system. Burke and Petrovic [17] described a 
method for decomposing large real-world timetabling 
problems and presented an approach that considers 
timetabling problems as multi-criteria decision 
problems. Room capacities, proximity of exams, time 
and order of exams have been considered as satisfaction 
criteria for the objective. Burke and Newall [18] 
adapted heuristic ordering based method to solve 
examination timetabling problem by minimizing the 
conflicts weighted descending by available periods 
among exams considering capacity constraints. 
 
Integer programming formulation is very popular for 
timetabling problems since presenting candidate 
solutions fits easily and efficiently. Daskalaki et al. [19] 
presented a 0–1 integer programming formulation of the 
university timetabling problem with the objective 
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function that aims the satisfaction of expressed 
preferences regarding teaching periods, days of the 
week, and classrooms for specified courses. Daskalaki 
and Birbas [20] proposed a two-stage relaxation 
procedure that solves the integer programming 
formulation of a university timetabling problem with 
the objective function of minimizing penalty costs to 
drive the final solutions to better timetables. Avella and 
Vasil'Ev [21] applied branch and cut algorithm using 
integer programming formulation to maximize the 
satisfaction of teachers under a wide range of 
constraints for the solution of university course 
timetabling problem. MirHassani [22] presented a 0–1 
integer programming formulation of the university 
timetabling problem and solved the real timetabling 
problem at Shahrood University of Technology 
considering the number of sessions necessary for a 
course as a hard constraint. Having one day off between 
two sessions of each course is considered as a soft 
constraint. The objective function of this model sets to 
minimize the infeasibility of the soft constraint and also 
penalize the redundant and non-preferred times. It is 
also stated that by changing the penalty functions it was 
possible to change the computation time, meaning that 
the optimization process may be guided faster to the 
optimal solution. MirHassani [2] pointed out the 
maximization of paper spread, which is a measure of 
the amount of study time that each student has between 
examinations as one of the most significant desirable 
attributes of real-life examination timetabling solutions. 
Al-Yakoob and Sherali [23] proposed a mixed-integer 
programming approach that aims to enhance existing 
manual approaches by minimizing class conflicts 
considering specific constraints of the university. Head 
and Shaban [24] proposed a heuristic approach to build 
the schedule and place the students into rooms 
simultaneously. 
 
Multi-objective optimization approaches mostly focus 
on minimizing the timetable length while 
simultaneously optimizing the spread of examinations. 
van den Broek et al. [25] solved a real-world 
timetabling problem at the Department of Industrial 
Design of the TU Eindhoven with the objective to 
assign courses as high as possible on preference lists 
and to have students spread as equally as possible over 
the sections. Birbas et al. [26] aimed to satisfy the 
teachers’ preferences, assign core courses towards the 
beginning of each day, balance the sum of teaching and 
idle periods in addition to hard constraints required for 
feasibility. Kahar and Kendall [27] developed a 
heuristic solution approach for capacitated examination 
timetabling problem given the constraints at University 
Malaysia Pahang in addition to generally used 
constraints and compared the results of their 
university’s current software solutions. Sarin et al. [28] 
applied Benders’ partitioning approach using integer 
programming formulation to minimize the total distance 
that faculty members have to travel from their offices to 
the classrooms where the courses are scheduled to sole 
university timetabling problem at College of 
Engineering of Virginia Tech University. Rudová et al. 
[29] solved complex university timetabling at Purdue 
University using generic iterative forward search, 
branch and bound algorithm considering rooms, room 
equipments, instructors availability and time precedence 

between classes. Wang et al. [30] designed and 
implemented a decision support system includes a 
greedy heuristic to create initial schedules and a 
variable bilinearization and decomposition technique 
that allows the improver module to improve the initial 
timetabling solutions 0-1 linear programming 
formulation at United States Military Academy/West 
Point with the objective function that attempts to 
minimize the total number of makeup exams due to 
short time period availability. 
 
Metaheuristics and hybrid combinations have been 
applied to solve examination timetabling problems. 
Smith et al. [31] modified neural networks approach to 
solve school timetabling problems and compared with 
results obtained using the greedy search, simulated 
annealing and tabu search. Genetic algorithms have 
been the most studied evolutionary algorithms in terms 
of exam timetabling research. Dave Corne [32] 
investigated direct and indirect approaches of genetic 
algorithms in terms of search space, speed of the 
algorithm and quality of the solution. Naji Azimi [33] 
used a direct approach by integrating a high penalty 
model to satisfy hard constraints and applied genetic 
algorithms, simulated annealing, tabu search and ant 
colony system techniques and hybrid combinations of 
these approaches to examination timetabling problem 
considering a similar objective to the general density 
function given in equation (1). Ross et al. [34] stated the 
weakness of the use of direct coding in genetic 
algorithms. Erben [35] proposed a grouping genetic 
algorithm using a swap mutation operator to exchange 
the positions of two randomly chosen groups in the 
chromosome and a greedy algorithm to satisfy capacity 
constraints to solve graph coloring problems that 
correspond to modeling the exam timetabling problem 
with only hard constraints. Wong et al. [36] applied 
fitness based evaluation counting consecutive night and 
next day morning exams provided by binary tournament 
selection operator, uniform crossover operator, random 
mutation operator with heuristic repair and a reinsertion 
operator. Sheibani [37] tried to maximize the interval 
between exam subjects using genetic algorithms with 
the minimum number of clashes. Wong et al. [38] 
proposed a hybrid multi-objective evolutionary 
algorithm in which crossover is replaced by two local 
search operators. Côté et al. [39] applied a multi 
objective evolutionary algorithm to simultaneously 
minimize timetable length and proximity cost. Santiago-
Mozos et al. [40] presented the application of a two-
phase heuristic evolutionary algorithm to obtain 
personalized timetables in a Spanish university as a case 
study using the objective function to minimize the total 
number of non-assigned subjects and make obtained 
timetables as compact as possible satisfying the 
maximum number of student preferences. Chiarandini 
et al. [41] proposed a hybrid metaheuristics algorithm 
including heuristics, tabu search, variable neighborhood 
descent and simulated annealing approaches to solve 
university course timetabling problem. Ülker et al. [42] 
applied genetic algorithms using linear linkage 
encoding representation with greedy partition crossover, 
lowest index first crossover and lowest index max 
crossover operators. Beligiannis et al. [43] developed an 
adaptive algorithm based on evolutionary computation 
techniques in order to solve high school timetabling 
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problem in Greece using the objective function to 
minimize the total cost of idle hours for all teachers and 
maximize the satisfaction of teachers. Pongcharoen et 
al. [44] developed a stochastic optimization timetabling 
tool for university course timetabling using genetic 
algorithms and simulated annealing, included a repair 
process, which ensures that all infeasible timetables are 
rectified in order to prevent clashes and determine 
rooms with the sufficient seating capacity. Mumford 
[45] presented candidate solutions to a multi-objective 
memetic algorithm as orderings of examinations and a 
greedy algorithm to construct violation free timetables 
from permutation sequences of exams for solving 
examination timetabling problem. Cheong et al. [46] 
proposed a multi objective evolutionary algorithm 
including genetic algorithms and a hill climber local 
search operator to minimize the number of clashes and 
timetable length considering capacity constraints. De 
Causmaecker et al. [47] suggested a decomposed 
metaheuristics approach.  
 
As presented above, the timetabling literature is quite 
rich and each new insight into the problem is considered 
to be a contribution to the related reseach field. We 
contribute to the literature by extending the 
MirHassani’s [2] maximization of paper spread idea by 
considering the difficulty of each exam which is 
positively linked to the required amount of study time 
according to our main focus of students’ success. 
Taking difficulties of exams into account requires more 
complex GA structures. We used two different GA 
modeling approaches and compared them. A conflict 
formulization similar to equation (1) has been used 
including three types of exam clashing (i.e., two exams 
in the same time slot, two exams on the same day and 
two exams on two consecutive days). 

3. PROBLEM DEFINITION and FORMULATION 

Variables used in the definition and formulation of the 
examination timetabling problem are given as follows: 
N is the number of exams, iE  is an exam where 

}{1, ,i N∈ … , D is the number of days, T is the 

given number of available timeslots, it  specifies the 

assigned time slot for iE  where Tti ≤≤1 . idc  

specifies the difficulty coefficient for iE  where 

[ ]10,..,1=idc  and integer. The value of 10 
represents the most difficult exam, the value of 1 
represents the easiest one, ( )ij N NC c ×=  is a conflict 

matrix where each element denoted by ijc  is the 

number of students taking iE and jE , ita is 1 if iE is 

allocated to it , 0 otherwise, ( )ij N NS s ×= is the 

shared exam matrix where each element is denoted by 1 
if iE and jE are shared exams, 0 otherwise, and finally 

L is the seating capacity for each period. 

Hard and soft constraints considered in this problem can 
be written as follows: 

i. No student can sit in more than one exam at 
the same time. 
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ii. All of the planned exams must be scheduled 
among the available time slots. 

1 it T≤ ≤ for every iE  where 

}{1, ,  i N∈ …  
(3) 

iii. Every exam can only be scheduled once in 
any timetable. 

1
1

T
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t
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=
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where }{1, ,  i N∈ …   (4) 

iv. All of the shared exams of different 
departments have to be scheduled at the same 
time. 

1 1
( ) 0

N N

ij i j
i j

s t t
= =

⋅ − =∑∑  (5) 

v. The maximum amount of time between exams 
as much as possible among available time 
slots is necessary. This soft constraint is 
formulated into equation (8).  

vi. Difficult exams should be assigned to 
considerably far time slots than easier exams 
according to each other’s position. This soft 
constraint is formulated into equation (8). 

vii. There must be sufficient seats for every exam 
scheduled in the time period. 

 

  
 
 
 
 
 
Constraints i, ii, and iii are generally accepted hard 
constraints for uncapacitated examination timetabling 
problems. By applying these constraints, all exams of 
each student are assigned to different time slots in the 
available time period. Constraint iv is a hard constraint 
suitable for the case of College of Engineering at 
Pamukkale University (PAUCOE). In this case, a 
lecturer teaching the same course in different 
departments requires the exam to be scheduled to a time 

1

N
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i

a c L
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where { }1,...,t T=  (6) 
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slot so that all students can take the exam at the same 
time. This means that exams for more than one course 
need to be scheduled in the same time slot. We name 
this type of exams as “shared exams”. In order to 
increase the quality of the feasible solution, MirHassani 
[2] presented the soft constraint v to maximize the 
paper spread which is a measure of the amount of study 
time that each student has among examinations. By the 
help of paper spread, students will have more time to 
study or to relax among exams. In this study, we focus 
on the thought that difficult exams require more study 
and resting time than easier exams. Therefore it is also 
required to consider the difficulties of exams during the 
construction of paper spread which brings out the 
modified soft constraint given in constraint vi. When 
the final schedule is obtained by satisfying this soft 
constraint as much as possible, students will be able to 
get enough study and resting time among difficult 
exams. The capacity constraint is also a hard constraint 
to be satisfied for each period (i.e., constraint vii).  
 
We now formulate the objective function for the 
proposed GA models as follows: 
 

1
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          (8) 
 
Equation (8) presents a proximity value assigned to two 
corresponding exams inspired by Carter et al. [4]. For 
example, if it is accepted that there are four possible 
time slots for each exam in a day, then the proximity 
values associated with two corresponding exams may 
take the values of 1000, 8, 4, 2, 1 or 0 depending on the 
proximity to each other. In this equation, the cost of 
violating this hard constraint is fixed to 1000 as Naji 
Azimi [33] did to avoid infeasible solutions through 
generations so that candidate solutions satisfy the 
constraint i.  

4. THE PROPOSED GENETIC ALGORITHMS 

Genetic Algorithms (GA) are based on an analogy of 
biological evolution, in which the fitness of an 
individual determines its ability to survive and 
reproduce [48]. Each individual which represents a 

candidate solution in the population is repeatedly 
evaluated by genetic operators such as crossover and 
mutation. In this evaluation process, survival of each 
individual is determined according to a fitness function. 
Bad individuals, i.e., low qualified solutions, are 
destroyed through generations. This “survival of the 
fittest principle” is the idea behind GA [49]. When the 
ending criteria are satisfied, the chromosome that has 
the best gene combination at the last generation 
represents the best solution for the problem. 
 
In order to solve the exam timetabling problem defined 
in Section 3, a GA based model has been designed and 
implemented and detailed in the following subsections. 
 

4.1. Gene encoding 

It is well known that timetabling problems falls into the 
NP-Complete class of combinatorial optimization 
problems. When the problem size increases, the solution 
space is exponentially increased and an optimal solution 
in polynomial time cannot be found. Therefore, it is 
necessary to use alternative methods in order to reach 
(near) optimal solutions faster. Metaheuristics such as 
GAs seem to be particularly suited for this task because 
they process a set of solutions in parallel, possibly 
exploiting similarities of solutions by recombination 
that provides an alternative to traditional optimization 
techniques to locate optimum solutions in complex 
landscapes [12, 35, 38, 39, 46]. 
 
In order to apply a GA to a particular problem, an 
internal representation for the solution space is required. 
The choice of this structure is one of the most critical 
aspects for the success of the GA operators for the 
problem. As explained in sections 2 and 3, in our study, 
different from the related literature, the case of “shared 
exams” need to be taken into account when determining 
the GA structure. This is a common requirement in 
government universities in Turkey. For example, Exams 
of Calculus 101 offered in all departments should be 
scheduled at the same time slot. As it is demonstrated in 
Figure 1, unlike Cheong et al. [46] each gene of a 
chromosome represents the assigned time slot for the 
related exam. The selection of the chromosome 
encoding focused on the following concern. A 
chromosome shall occupy as small space as possible in 
relevance with the information it encodes and to be easy 
to preserve as many characteristics of the timetable 
concerning hard constraints as possible during the 
reproduction processes. Shared exam slots are placed as 
the first chain in the chromosome structure and then 
other non-shared exams of each department are added 
to the structure respectively. Shared and other exams’ 
gene combinations form an individual in the GA.
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Figure 1. The chromosome representation of a candidate solution to PAUCOE exam timetabling problem 

 
The integer interval of gene values is determined by 
available time slots in a day and available days in the 
schedule. If we assume that there are 4 different time 
slots available each day at a 9 days exam period (as in 
the case of Pamukkale University), 36 possible time slot  
 

 
assignments exist. Therefore, gene values may take 
integer values between [1, 36]. 
 
In Figure 2, time slot assignments are demonstrated for 
t time slots available each day at a D days’ period.

 
 

 
 

Figure 2. Symbolic representation of t time slots available each day of a D days period 

 

4.2 Chromosome initialization 

The creation of the initial population has an importance 
regarding diversity. In this problem formulation, all 
exams which belong to a term have to be scheduled at 
different time slots, so chromosomes that form the 
initial population have to be adjusted to take different 
gene values in chains that represent terms. If two or 
more genes have same values in a chain, direct violation 
of hard constraints occur.  For this reason, during the 
creation of the initial population, randomization process 
is modified to block conflicts by assuring different gene 
values. By this modification, there will not be any 
conflicts on chain basis. However, there may still be  

 
other conflicts because of the interactions among other 
chains. In order to remove these conflicts, fitness 
function selection structure or a special repair function 
is used. Detailed information can be found in the 
following subsections.  
 

4.3 Fitness function 

The fitness function is one of the most important parts 
of the GA, because it decodes the chromosome into 
timetable and calculates a fitness value of each 
chromosome that points out how well it solves the 
problem under study. 
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In our problem, the fitness is formed in order to 
maximize students’ success. There are many students 
who share the same exam schedule at each term. Instead 
of checking each student’s schedule separately in the 
database, we preferred to group students based on 
chains and shared exams. Thus, subchains and their 
connected shared exams represent a group of students 
who have the same exam schedule. 
 
As it is demonstrated in Figure 3, the fourth subchain 
includes exams that belong to a subgroup of students. 
With the appropriate query on shared chain that is 
automatically executed by the system, it is found out 
that S2 and S4 are shared exams which also belong to 

this group of students. Thus, S2 and S4 exams are added 
to the fourth subchain as E5 and E6. In some cases, 
students are obligated to retake exams from previous 
terms. All exams that student subgroups are responsible 
for are added to the assignment array and fitness value 
is calculated. Details of these different cases are given 
in section 4.5. Each exam has a time slot and a 
difficulty coefficient. Difficulty coefficients of each 
exam are obtained on a scale between 1 and 10, integer 
values, by conducting surveys with students and also 
considering European Credit Transfer System (ECTS) 
credits of each course. Basically, the greater coefficient 
represents the more difficult exam on the schedule. 

 

 
Figure 3. Assignment array of all exams for a subchain 
 
4.4. Genetic Operators 

Beligiannis et al.[43] used linear ranking selection and 
Erben [35], Wong et al. [36], Côté et al. [39], Cheong et 
al. [46], Pillay and Banzhaf [12] used tournament 
selection operator in order to create the intermediate 
population (mating pool) for reproduction. Among the 
different types of selection procedures existing, we have 
chosen the one known as roulette wheel [11, 33, 40, 44, 
48, 50], in which the probability of an individual to be 
selected for the next generation depends on its current 
fitness value. Before applying genetic operators, each 
individual in the population is sorted according to their 
fitness values and the individuals that have values 
greater than a specified average fitness value are put 
into a mating pool. New fitness values of individuals 
are calculated according to equation (9). Then, the 
individuals with negative fitness values are removed 
from mating pool for the current iteration of GA and the 
problem is converted to a maximization problem from a 
minimization problem. 
 
The variables used in equation 9 are described as 
follows: nF  is the new fitness value of the current 

chromosome; aF  is the average fitness value of the 

current population; co : 0,1,2 or 3, sd  is the standard 

deviation of the current population; and oF  is the old 
fitness value of the current individual. 
 

   n a oF F co sd F= + × −  
(9) 

 
In equation 9, when co = 0, the individuals with fitness 
values below the average are taking out of the mating 
pool. The individual with the least fitness value in 
general population has the greatest fitness value in the 
mating pool by this transformation. Individuals with 
their new fitness values in the mating pool become 
ready to enter roulette wheel process. The greater 
fitness value means the bigger part of the roulette wheel 
is occupied by that individual. Thus, better 
chromosomes have a greater chance to be selected. 
Roulette wheel selects the first individual as a mate, and 
the next one afterwards. No individual is allowed to 
mate itself, because variation to better or worse is 
expected during crossover. This selection procedure is 
continued until the required number of mates for 
crossover is reached. 
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4.4.1 Crossover operator 

Naji Azimi [33] applied one and two point crossover 
operator, Terashima-Marin et al. [51] applied clique-
based crossover operator, Santiago-Mozos et al. [40] 
applied partially matched crossover operator, Ülker et 
al. [42] applied greedy partition crossover and lower 
index first-max crossover operators, Pongcharoen et al. 
[44] applied one, two point and position based 
crossover operators, Puente et al. [50] introduced a 
specific multi point crossover operator that can only 
work exchanging information between entire work 
weeks to solve timetabling problems by GA. 
Beligiannis et al. [43] and Pillay and Banzhaf [12] did 
not use any crossover operator at all because of their 
experimental results have shown that crossover in this 
specific problem and chromosome encoding does not 
contribute satisfactorily, while it adds too much 

complexity and time delay. In this algorithm, we have 
used a modified uniform crossover operator which has 
been experimented to give satisfying results in Erben 
[35] and Wong et al. [36] for the solution of timetabling 
problems in GA.  New individuals created by crossover 
operation, called children, should satisfy the same 
constraints as previous individuals, called parents. 
Genes that are associated with zero value of randomly 
created binary chain are copied from the first parent. 
The remaining genes of the first child are copied from 
the second parent from the second parent starting from 
the first gene. If there are similar genes in second 
parent’s chromosome, these genes are jumped over 
from copying to the child in order to prevent conflicts in 
the chain of the new chromosome. Crossover operation 
is demonstrated as an example in Figure 4. 

 

 
Figure 4. A creation of a child with uniform crossover 

 
4.4.2. Mutation operator 

Côté et al. [39] used uniform mutation operator, 
Erben[35], Santiago-Mozos et al. [40], Cheong et al. 
[46], Puente et al. [50], Pillay and Banzhaf [9] used 
swap mutation operator, Beligiannis et al. [43] created a 
mutation operator that swap and randomize, 
Pongcharoen et al. [44] used a day shift change 
mutation operator. Since diversity cannot be obtained 
by crossover operation, a mutation operator is necessary 
for the variation of chromosomes in the population. For 

the chromosome structure under implementation, swap 
mutation operator is not able to provide full diversity as 
it only interchanges the values inside the chromosome. 
We selected and modified the random replacement 
mutation operator [33, 36] to use in GA. It is 
demonstrated in Figure 5 as an example that randomly 
selected gene is replaced with a new value in the 
selected chromosome. This new value cannot be same 
as one of the values in the belonging chain, so these 
gene values are removed from the pool of gene values. 
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Figure 5. Mutation in a chain of selected chromosome 

 

Mutation is a very sensitive operator that may quickly 
create better candidates and slow down the whole 
operation. That’s why it is required to pay much more 
attention to this component. The question here is how 
much diversity is more appropriate for the problem 
under study. In order to answer this question, a new 
parameter is added to the set of experiments called 
mutation tactic. This parameter decides to replace 1, 2 
or 4 genes at a time.  
 

4.5 Embedded repair function to remove 
infeasibilities 

High penalty cost [33] which is added to fitness value 
for hard constraints, described in section 3, aims to 
prevent infeasible chromosomes to survive at next 
generations. During experiments with high penalty cost 
model, it has been seen that this idea works well to get 
rid of infeasible solutions. However, we got the sense of 
GA performance may have been affected worse due to 
letting infeasible chromosomes to be occupied in 
general population even though they are not going to be 
eventually selected [32]. Thus, we came up with an 
alternative model that assures feasible chromosomes in 

general population called repair function model. This 
repair technique is commonly used to block hard 
constraints for GA [12, 36, 39, 42, 44, 46, 50]; so we 
designed a special repair algorithm for the problem 
under study and embedded it to the GA. 
 
Chromosome repair operation is executed regarding the 
information of related shared exams and also whether or 
not each exam is taken from upper and lower terms. In 
the example given in Figure 6, it is assumed that O1 
exam is a shared exam belonging to xth chain. Before 
repair operation, xth chain has the genes with values 4, 
19, 1 and 2, respectively. S1 exam is accepted as a 
defect and the time slot of 4 is going to be unloaded 
because O1 exam already requires that time slot. Thus, 
“shared exam and chain” conflict is prevented. One of 
the possible time slots is selected randomly and 
assigned to the xth chain’s empty gene. This process is 
very similar to mutation operation described in the 
previous subsection. Other related chain value 
adjustments are done with the same logic by checking 
the data matrix of shared exams. 
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Figure 6. Query for shared exams and repair process 
 
In the example given in Figure 7, it is assumed that A1 
exam is both taken from one and two upper terms. Since 
A1 exam belongs to the xth chain, chains (x+1) and 
(x+2) should be checked. In (x+1)th chain, there is no 
conflict; but exam C1 in chain (x+2) is assigned to the  
 

same time slot of A1. Therefore, A1 exam is labeled as a 
defect and the time slot for A1 has to be replaced. The 
new time slot should be determined so that the time slot 
will be different that the values in chains x, (x+1) and 
(x+2). 
 

 
Figure 7. Scan upper chains and repair 
 
 

First, each gene in the chromosome is checked for 
shared exams, lower and upper terms conflicts. If any 
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conflicts are met, repair process is applied for that gene. 
When the repair process is applied from first gene to the 
last one, any change in the chromosome that has been 
done is recorded because the following changes may 
interact with previous changes. Therefore, a 
replacement is done considering any possible conflict to 
ensure the solution is feasible. 

4.6 Chromosome selection and flow of the proposed 
GA  

The pseudo code for general flow of the proposed GA is 
given in Table 1. 

Table 1. Pseudo code for general flow of the proposed algorithm 
 
SET initial population size to double of population size 
SET number of offspring to crossover rate times population size 
SET elite size to elitism rate times population size 
CALL generate initial population with initial population size RETURNING initial population 
SET number of mutants to chromosome length times mutation rate times population size 
FOR each chromosome in the initial population 

CALL determine fitness value with input variables RETURNING fitness value and conflict matrix 
END FOR 
SORT fitness values of each chromosome in initial population in descending order. 
DETERMINE general population from initial population 
SET trial to zero. 
REPEAT 

CALL create mating pool with standard division coefficient RETURNING Pool 
IF Pool has not enough chromosomes THEN 

RETURN 
ELSE 

CONTINUE 
END IF 
CALL crosswhom with Pool and number of offspring RETURNING Mating Set 
CALL crossover with Population, Mating Set RETURNING Offspring 
CASE mutation tactic OF 

1: CALL mutate 1 gene with Population, number of mutants, maximum time slot RETURNING Mutants 
2: CALL mutate 2 genes with Population, number of mutants, maximum time slot RETURNING Mutants 
4: CALL mutate 4 genes with Population, number of mutants, maximum time slot RETURNING Mutants 

END CASE 
CALL select best of chromosomes with Population, Offspring, Mutants, Elites RETURNING Population 

UNTIL trial < number of generation  
 

 
Children created by crossover operator, mutants created 
by mutation operator and the general population are 
inserted into the selection process. Best of these 
chromosomes are passed onto the next generation, the 
rest is destroyed. In order to save some of better 
individuals in the general population, elites are directly 
transferred to the next generation without any 
modification. The only difference between high penalty 
cost model and the repair model is the integration of the 
repair function in the creation of initial population and 
after the creation of new children and mutants. Since  

 
high penalty cost is redundant when repair process is 
applied, it was not necessary to modify fitness 
formulation. Selection of new generation and the 
general flow of repair model are demonstrated in Figure 
8. This loop is continued until two ending criteria: (1) 
Upper limit of number of generations is reached; (2) 
Improvement rate of the fitness value through ten 
generations is satisfied. The experimental results and 
analysis for both models are given in section 5. 
 
 

 
Figure 8. Selection of new generation with repair function model 
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4.7 Allocating exams to rooms 
 
Although the room allocation is not in the focus of our 
study, for the sake of completeness we developed a 
simple heuristic to assign exams into rooms. Every 
room is considered to be identical except their seating 
capacities.  After the final timetable is constructed by 
GA, a simple heuristic is applied to assign exams to 
rooms for each period without allowing double-
booking. When the seating capacity of one room is not 
enough, two or more rooms are combined as one. The 
heuristic creates every possible combination of rooms, 
called virtual rooms, and allocate where necessary. If 
the room assigning heuristic fails because of the 
capacity limit given in constraint vii, it checks for other 
solutions in the database with same or approximate 
fitness values. If it no allocation can be made, the 
heuristic automatically calls the GA again with the best 
known parameters by taking some of the feasible good 
solutions as initial population in order to come up with 
a solution for which the room allocation can be made.  

 
5. EXPERIMENTAL RESULTS and ANALYSIS 
 
We have tested our proposed algorithms on data sets 
collected from the College of Engineering of 
Pamukkale University. We have investigated the effects 
of GA parameters and operators, compared the 
algorithms’ performance and time complexity. The 
design of each experiment, the results and analyses are 
provided in the following subsections. 

5.1 Investigation on the GA parameters and 
operators 

The experimental factors and levels considered in 
experiments are shown in Table 2. Population size (ps), 
elitism rate (er), crossover rate (cr), mutation rate (mr), 
mutation tactic (mt) and standard deviation coefficient 
(co) are the factors that are used to investigate GA 
performance. 
 

Table 2. GA experimental factors and its levels 
 Levels 

# Name Low Medium High 
1 ps 20 40 80 
2 er 0.1 0.2 - 
3 cr 0.3 0.6 0.9 
4 mr 0.01 0.05 0.1 
5 mt 1 2 4 

Fa
ct

or
s 

6 co 0 3 - 
 
In order to carry out a full factorial experimental 
analysis with the factors and levels provided in Table 2, 
1620 experiments are totally required with 5 
replications for each experiment set. Replication is 
necessary, because randomness may eventually cause 
different performance. For one experiment with our 
data set, high penalty cost model required 
approximately 10 minutes and repair function model 
required average of 25 minutes to complete on a 
Pentium IV 1.80 GHz Intel processor. A full factorial 
analysis would take approximately 40 days of 
computing time. This is just too long. So we preferred 
to modify Taguchi’s 27L  experimental design table 
which is well suited to experimental factors and levels 
for selected parameters. Modification of Taguchi’s 27L

 
table is necessary because in the original table there are 
13 factors yet in our case there are 6 factors. Final 
experiment sets are shown in Table 3 after removing 
unnecessary columns and applying appropriate dummy 
treatment where necessary in order to get the general 
idea of factor affecting the GA model. Therefore 135 
experiments are executed for each proposed GA 
models. 
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Table 3. Experiment Sets 
 

Experiment ps er cr mr mt co 

1 20 0.1 0.3 0.01 1 0 

2 20 0.1 0.3 0.01 2 3 

3 20 0.1 0.3 0.01 4 3 

4 20 0.2 0.6 0.05 1 0 

5 20 0.2 0.6 0.05 2 3 

6 20 0.2 0.6 0.05 4 3 

7 20 0.2 0.9 0.1 1 0 

8 20 0.2 0.9 0.1 2 3 

9 20 0.2 0.9 0.1 4 3 

10 40 0.1 0.6 0.1 1 3 

11 40 0.1 0.6 0.1 2 3 

12 40 0.1 0.6 0.1 4 0 

13 40 0.2 0.9 0.01 1 3 

14 40 0.2 0.9 0.01 2 3 

15 40 0.2 0.9 0.01 4 0 

16 40 0.2 0.3 0.05 1 3 

17 40 0.2 0.3 0.05 2 3 

18 40 0.2 0.3 0.05 4 0 

19 80 0.1 0.9 0.05 1 3 

20 80 0.1 0.9 0.05 2 0 

21 80 0.1 0.9 0.05 4 3 

22 80 0.2 0.3 0.1 1 3 

23 80 0.2 0.3 0.1 2 0 

24 80 0.2 0.3 0.1 4 3 

25 80 0.2 0.6 0.01 1 3 

26 80 0.2 0.6 0.01 2 0 

27 80 0.2 0.6 0.01 4 3 
 
 
Experimental results for high penalty cost model are 
shown in Table 4 and in Table 5 for the repair function 
model in ascending order according to average fitness 
values and standard deviations of last generation 
respectively. aLF  is the average of fitness values in 

the last generation, sdLF  is the standard deviation of 

fitness values in the last generation, cput  is CPU time 

in seconds during the total operation of each experiment 
and aG  represents average generation number 
executed during the operation of designed models. 10th 
and 22nd experiment sets appear to provide best results 
regarding average fitness values, standard deviation, 
CPU time and number of generations for both models 
designed. 

 

Table 4. Experiment Sets Results with high penalty cost 
model 
 

High penalty cost model 

Experiment # aLF  sdLF cput  aG  

10 4344 58 1084 200 

22 4345 30 2749 205 

19 4354 35 1635 260 

25 4387 65 858 426 

16 4399 69 680 270 

13 4412 59 359 324 

17 4415 70 963 639 

11 4419 36 1065 387 

23 4435 79 1718 284 

7 4455 68 304 129 

4 4471 65 196 159 

8 4526 54 333 248 

20 4527 126 537 148 

5 4563 68 271 339 

14 4774 132 273 289 

2 4859 134 171 454 

26 4907 178 271 163 

1 4974 158 103 224 

24 5131 307 1606 473 

21 5260 270 535 205 

9 5633 199 157 173 

27 5711 406 449 298 

6 5964 376 117 200 

18 6134 359 152 142 

3 6257 605 117 349 

12 6432 478 165 96 

15 7520 884 71 83 
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Table 5. Experiment Sets Results with repair function 
model 

Repair Function Model 

Experiment # aLF  sdLF cput  aG  

10 2217 16 2529 140 
22 2218 20 6564 160 
17 2231 27 2687 596 
19 2236 15 3683 188 
23 2236 30 4264 223 
25 2238 16 1625 343 
13 2246 35 728 278 
11 2246 42 2937 326 
16 2268 32 1503 178 
8 2276 59 941 210 
7 2291 56 849 101 
5 2292 35 555 234 
20 2310 58 1261 120 
4 2322 51 449 107 
2 2403 116 289 413 
14 2429 43 403 209 
1 2491 85 153 144 
26 2493 53 349 104 
21 2570 81 1262 192 
24 2578 140 4633 465 
27 2582 106 616 233 
9 2714 242 340 128 
12 2752 163 374 73 
6 2792 135 304 206 
18 2957 214 324 120 
3 2984 148 128 243 
15 3191 188 105 64 

 
5.2. Complexity and performance of the algorithms 
 
Detailed experiment results for five different trials of 
10th experiment set are shown in Table 6 and Table 7 
for high penalty cost and repair function model, 
respectively. bFF  is the best fitness value in the first 

generation; bLF  is the last fitness value in the last 

generation; cput  is the CPU time during the algorithm’s 

operation and G  is the number of generations. A 
conflict matrix is used to calculate and explain the 
meaning of each fitness value. We considered five 
different types of exam clashing for students: 1CT : two 

exams are offered in the same time slot; 2CT  : two 
exams are offered on two consecutive time slots on the 
same day; 3CT  : two exams are offered with one time 

slot break on the same day; 4CT  : Two exams are 
offered with two time slots break on the same day; and 

5CT  : two exams are offered on two consecutive days. 

Only 1CT
 
is related to a hard constraint, other conflict 

types are linked to soft constraints. 
 

Table 6. Detailed experiment results for high penalty 
cost model 

bFF  bLF cput G  1CT  2CT  3CT 4CT 5CT
19878 4388 824 152 0 0 5 50 265 

19488 4414 1057 195 0 0 0 57 267 

21636 4324 1226 227 0 0 0 49 290 

20358 4327 1059 196 0 0 1 49 278 

19891 4267 1256 232 0 0 5 49 276 
 
 
Table 7. Detailed experiment results for repair function 
model 

bFF bLF cput  G  1CT  2CT  3CT 4CT 5CT
6136 2202 2127 118 0 0 0 17 171 
6160 2230 2218 123 0 0 1 17 163 
6023 2215 2758 153 0 0 2 20 155 
5910 2236 2744 152 0 0 0 17 169 
6053 2201 2797 155 0 0 1 19 161 

 
 

As the main focus of this study is to maximize students’ 
success, conflict types 5CT , 4CT , 3CT , 2CT , 1CT  
should be preferred, respectively. In order to understand 
the value of these results, fitness value and conflict 
matrix of the timetable which is manually constructed is 
given in Table 8. It can be easily stated that both of the 
models provide better timetables than manual 
construction. However, repair function model provided 
far better results of all. Repair function model, even 
with the worst parameter set, provided better timetables 
than high penalty cost model with best parameter set. 
 
Table 8. Fitness value and conflict matrix of manually 
constructed timetable 

bLF  1CT 2CT   3CT   4CT  5CT  
9100 0 35 39 7 345 

 
At worst case, it has been calculated that high penalty 
cost model requires 20,294,251,207 processes and 
repair function model requires 94,381,970,167 
processes on the most complex case for 10th 
experiment set values of ps=40, er=.1 , cr=.6, mr=.1, 
mt=1, co=3. According to this complexity result, high 
penalty cost model works approximately 4.65 times 
faster than the repair function model. The worst time 
complexity was considered during the calculation of 
complexity. This value changes according to the 
difficulty of timetable construction. For instance, for the 
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10th parameter set repair function model was 
approximately 3.3 times slower than the high penalty 
cost model. As a result, in our case, high penalty cost 
model constructed faster timetables, but showed low 
performance. In Figure 9, the change in the fitness 
values for best parameter results through generations is 

shown for both algorithms to demonstrate performance 
differences. While both algorithms start with the initial 
value of 23482, penalty function model is stuck to 4789 
at the 390th iteration and repair function model is stuck 
2331 at the 354th iteration under 500 iterations at most. 
 

 
Figure 9 Comperative experiment results for best parameters set 

 

-6. Conclusions and Future Work 

In this paper, a GA based examination timetabling 
model focusing on students’ success has been designed 
and examined using the data collected from the College 
of Engineering at Pamukkale University. This paper 
extended the MirHassani’s [2] maximization of paper 
spread idea by considering the difficulty of each exam 
which is positively linked to the students’ success. 
Considering difficulties of exams requires more 
complex GA structures. We used two different GA 
modeling approaches, clearly explained them in the 
paper and compared them with each other and the exam 
schedule created manually. First GA model works 
connected to the high penalty value minimization and 
the second model includes a repair function that forces 
the algorithm to work on only feasible solutions by 
assuring all of the hard constraints to be satisfied in 
each stage of the algorithm. 
 
The timetabling literature is extensive. Even small 
contributions are valuable including applications of the 
models to real life problems. This paper includes the 
effects of difficulties of exams into the objective 
function. The model also deals with shared exams and 
offers a real life application case in a university in 
Turkey. Almost in all universities in Turkey, exam 
timetabling is a very difficult task mostly done by 
“research assistants” causing waste of valuable research 
time. This is a valuable contribution of proposed study 
on the application side. The model presented can be 
implemented in software to make it use practical. On 

the theory side, the models presented can be extended to 
include the fuzziness that may arise when understanding  
 
 
 
the difficulties of exams. In addition, new soft 
constraints may be added to problem such as student 
preferences. So far in the existing literature, only 
constraints set by the institutions and lecturers have 
been taken into account.  
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