
Gazi University Journal of Science
GU J Sci
25(1):137-153 (2012)

ORIGINAL ARTICLE

A Genetic Algorithm Based Examination Timetabling

Model Focusing on Student Success for the Case of the

College of Engineering at Pamukkale University, Turkey

Can Berk KALAYCI1, Aşkıner GÜNGÖR1,♠

1Department of Industrial Engineering, College of Engineering, Pamukkale University, 20020 Denizli

Received: 01.04.2011Revised: 27.06.2011 Accepted: 01.08.2011

Abstract

This study proposes a genetic algorithm (GA) based model to generate examination schedules such that they
focus on students’ success in addition to satisfying the hard constraints required for feasibility. The model is
based on the idea that the student success is positively related to the adequate preparation and resting time among
exams. Therefore, the main objective of this study is to maximize time length among exams (i.e., paper spread)
considering the difficulties of exams. Two different genetic algorithm models were developed to optimize paper
spread. In the first genetic algorithm model, a high penalty approach was used to eliminate infeasible solutions
throughout generations. The second genetic algorithm model controls whether or not each chromosome joining
the population satisfies the hard constraints. To evaluate the models, a set of experiments have been designed
and studied using the data collected from the College of Engineering in Pamukkale University.

Keywords: Genetic Algorithms, Examination Timetabling, Student Success

1. INTRODUCTION

Timetabling has attracted the attention of the
operational research and artificial intelligence research
communities for more than 40 years. Perhaps the most
widely studied class of timetabling problem is
educational timetabling [1]. Timetabling problems are
NP-complete in their general form, regarding their
computational complexity, meaning that the difficulty
to find a solution rises exponentially to their size and a
deterministic algorithm, giving an optimal solution in
polynomial time, cannot be found. University
timetabling is a significant administrative issue that
arises in academic institutions. The general term
university timetabling typically refers to both university
course and examination timetabling which are different
in nature. In this study, we focus on examination
timetabling problem which is a difficult and lengthy
task for which universities devote a large amount of
human and material resources. In some institutions,
administrators approve the final timetable if exams are
scheduled without any major conflicts in the available

time period. It is widely accepted that exams are a part
of learning process; therefore it is required to pay
attention to other issues related to scheduling exams. In
this study, we specifically focus on students’ success
when scheduling exams in addition to several hard
constraints required for feasibility of the suggested
schedule. Student success is positively related to the
adequate preparation and resting time among exams.
One of the desirable attributes of real-life examination
timetabling solutions is the maximization of paper
spread [2], which is a measure of the amount of study
time that each student has among examinations. We
extend this to include the idea that the amount of study
time required by the students among examinations is
positively related to the difficulty of exams. Therefore,
the main objective of this study is to maximize paper
spread (i.e., time length among exams) considering the
difficulties of exams for better success rates of students.
Two different genetic algorithm (GA) models were
developed for this purpose. In the first GA model, a
high penalty approach is used to get rid of infeasible

138 GU J Sci, 25(1):137-153 (2012)/ Can Berk KALAYCI, Aşkıner GÜNGÖR

solutions throughout generations. The second GA
model controls whether or not each chromosome
joining the population satisfies the hard constraints. If
the hard constraints are not satisfied, conflicts are
removed from the chromosome with an embedded
repair function. If repair fails, the chromosome is
destroyed. The second method forces the genetic
algorithm to search only in the feasible solution space.
Comparative simulation results for both solution
approaches are presented. The results show the effects
of repair function and high penalty cost usage in solving
NP-complete problems using GA based approaches and
contribute to GA application literature.

The rest of this paper is organized as follows: The
following section provides an overview of previous
studies related to examination timetabling. Section 3
describes the problem under study and related
constraints. Section 4 presents the proposed GA
methods. Experimental design and computational
results are given in section 5. Finally, in section 6
conclusions are presented.

2. LITERATURE REVIEW

In the literature, there has been a wide investigation of
automated timetabling approaches in the domain of
examination timetabling with various methodologies
based on artificial intelligence and operational research
techniques in order to produce better and feasible
timetables. Qu et al. [3] provides an up to date overview
of search methodologies and automated system
development for examination timetabling. This section
provides a survey of related work in the literature and
clarifies the contribution of the proposed model.

A scheduling problem is simply to assign a set of tasks
to a set of sources under a set of constraints. In an
uncapacitated examination timetabling problem, exams
represent tasks and time slots represent sources.
Constraints are examined in two categories as hard and
soft constraints. Hard constraints have to be assured in
order to obtain feasible solutions. It is almost
impossible to satisfy all of the soft constraints yet the
quality of the solution is increased with the number of
soft constraints satisfied. Therefore, choosing soft
constraints wisely according to a certain goal becomes
important. An example for a hard constraint in
uncapacitated examination timetabling problem is
considered to be “scheduling two exams with common
students into the same time slot”. Occurrence of this
condition is “a conflict” and causes infeasibility in the
solution obtained. On the other hand, one of the soft
constraints, defined by Carter et al. [4], is concerned
with spreading out the exams over a timetable so that
students will not have to take exams that are too close to
each other. The objective is to assign exams into
timeslots while minimizing the cost of the violations of
the hard and soft constraints. This is widely used in
examination timetabling research to measure the
solution quality. This measure is called “conflict
density” and given in equation (1).

1

1 1

()
N N

ij

i j i N
ConflictDensity

N

β−

= = +=
∑∑

(1)

where N is the number of exams and ijβ

is a decision

variable assuming value of 1 if exam i and exam j have
at least one student in common while assuming value 0
otherwise.

There has been a wide investigation of different
methods to minimize the cost on the violations of the
constraint stated above using various techniques such as
cased based heuristic selection [5], large neighborhood
search approach [6], graph based heuristic [1], the great
deluge metaheuristic [7] and fuzzy methodologies and
heuristic orderings [8]. heuristic combinations [9], a
random iterative graph based hyper-heuristic [10],
variable neighborhood search and its hybridization with
a genetic algorithm [11] and genetic algorithms by
inducing solutions [12]. Gogos et al. [13] proposed a
multi stage algorithmic process including hill climbing,
simulated annealing, heuristics, metaheuristics and
exact methods for the solution of examination
timetabling problem considering the soft constraint
provided by conflict density given in equation (1) to
measure the final timetable quality in addition to hard
constraints required for the feasibility provided by their
proposed methods.

Exact methods and heuristic approaches have been
widely applied to solve real-world timetabling problems
as case studies in different universities considering
specific constraints. Foulds and Johnson [14] designed a
decision support system to construct university
timetables considering specific circumstances to New
Zealand University which detects if a room is double-
booked, allocated to a course that exceeds the room
capacity or a course is allocated to the same time slot.
Dimopoulou and Miliotis [15] designed and
implemented a computer network based timetabling
system to aid the construction of a university course
timetable at Athens University of Economics and
Business. Dimopoulou and Miliotis [16] improved their
previous system. Burke and Petrovic [17] described a
method for decomposing large real-world timetabling
problems and presented an approach that considers
timetabling problems as multi-criteria decision
problems. Room capacities, proximity of exams, time
and order of exams have been considered as satisfaction
criteria for the objective. Burke and Newall [18]
adapted heuristic ordering based method to solve
examination timetabling problem by minimizing the
conflicts weighted descending by available periods
among exams considering capacity constraints.

Integer programming formulation is very popular for
timetabling problems since presenting candidate
solutions fits easily and efficiently. Daskalaki et al. [19]
presented a 0–1 integer programming formulation of the
university timetabling problem with the objective

 GU J Sci, 25(1):137-153 (2012)/ Can Berk KALAYCI, Aşkıner GÜNGÖR 139

function that aims the satisfaction of expressed
preferences regarding teaching periods, days of the
week, and classrooms for specified courses. Daskalaki
and Birbas [20] proposed a two-stage relaxation
procedure that solves the integer programming
formulation of a university timetabling problem with
the objective function of minimizing penalty costs to
drive the final solutions to better timetables. Avella and
Vasil'Ev [21] applied branch and cut algorithm using
integer programming formulation to maximize the
satisfaction of teachers under a wide range of
constraints for the solution of university course
timetabling problem. MirHassani [22] presented a 0–1
integer programming formulation of the university
timetabling problem and solved the real timetabling
problem at Shahrood University of Technology
considering the number of sessions necessary for a
course as a hard constraint. Having one day off between
two sessions of each course is considered as a soft
constraint. The objective function of this model sets to
minimize the infeasibility of the soft constraint and also
penalize the redundant and non-preferred times. It is
also stated that by changing the penalty functions it was
possible to change the computation time, meaning that
the optimization process may be guided faster to the
optimal solution. MirHassani [2] pointed out the
maximization of paper spread, which is a measure of
the amount of study time that each student has between
examinations as one of the most significant desirable
attributes of real-life examination timetabling solutions.
Al-Yakoob and Sherali [23] proposed a mixed-integer
programming approach that aims to enhance existing
manual approaches by minimizing class conflicts
considering specific constraints of the university. Head
and Shaban [24] proposed a heuristic approach to build
the schedule and place the students into rooms
simultaneously.

Multi-objective optimization approaches mostly focus
on minimizing the timetable length while
simultaneously optimizing the spread of examinations.
van den Broek et al. [25] solved a real-world
timetabling problem at the Department of Industrial
Design of the TU Eindhoven with the objective to
assign courses as high as possible on preference lists
and to have students spread as equally as possible over
the sections. Birbas et al. [26] aimed to satisfy the
teachers’ preferences, assign core courses towards the
beginning of each day, balance the sum of teaching and
idle periods in addition to hard constraints required for
feasibility. Kahar and Kendall [27] developed a
heuristic solution approach for capacitated examination
timetabling problem given the constraints at University
Malaysia Pahang in addition to generally used
constraints and compared the results of their
university’s current software solutions. Sarin et al. [28]
applied Benders’ partitioning approach using integer
programming formulation to minimize the total distance
that faculty members have to travel from their offices to
the classrooms where the courses are scheduled to sole
university timetabling problem at College of
Engineering of Virginia Tech University. Rudová et al.
[29] solved complex university timetabling at Purdue
University using generic iterative forward search,
branch and bound algorithm considering rooms, room
equipments, instructors availability and time precedence

between classes. Wang et al. [30] designed and
implemented a decision support system includes a
greedy heuristic to create initial schedules and a
variable bilinearization and decomposition technique
that allows the improver module to improve the initial
timetabling solutions 0-1 linear programming
formulation at United States Military Academy/West
Point with the objective function that attempts to
minimize the total number of makeup exams due to
short time period availability.

Metaheuristics and hybrid combinations have been
applied to solve examination timetabling problems.
Smith et al. [31] modified neural networks approach to
solve school timetabling problems and compared with
results obtained using the greedy search, simulated
annealing and tabu search. Genetic algorithms have
been the most studied evolutionary algorithms in terms
of exam timetabling research. Dave Corne [32]
investigated direct and indirect approaches of genetic
algorithms in terms of search space, speed of the
algorithm and quality of the solution. Naji Azimi [33]
used a direct approach by integrating a high penalty
model to satisfy hard constraints and applied genetic
algorithms, simulated annealing, tabu search and ant
colony system techniques and hybrid combinations of
these approaches to examination timetabling problem
considering a similar objective to the general density
function given in equation (1). Ross et al. [34] stated the
weakness of the use of direct coding in genetic
algorithms. Erben [35] proposed a grouping genetic
algorithm using a swap mutation operator to exchange
the positions of two randomly chosen groups in the
chromosome and a greedy algorithm to satisfy capacity
constraints to solve graph coloring problems that
correspond to modeling the exam timetabling problem
with only hard constraints. Wong et al. [36] applied
fitness based evaluation counting consecutive night and
next day morning exams provided by binary tournament
selection operator, uniform crossover operator, random
mutation operator with heuristic repair and a reinsertion
operator. Sheibani [37] tried to maximize the interval
between exam subjects using genetic algorithms with
the minimum number of clashes. Wong et al. [38]
proposed a hybrid multi-objective evolutionary
algorithm in which crossover is replaced by two local
search operators. Côté et al. [39] applied a multi
objective evolutionary algorithm to simultaneously
minimize timetable length and proximity cost. Santiago-
Mozos et al. [40] presented the application of a two-
phase heuristic evolutionary algorithm to obtain
personalized timetables in a Spanish university as a case
study using the objective function to minimize the total
number of non-assigned subjects and make obtained
timetables as compact as possible satisfying the
maximum number of student preferences. Chiarandini
et al. [41] proposed a hybrid metaheuristics algorithm
including heuristics, tabu search, variable neighborhood
descent and simulated annealing approaches to solve
university course timetabling problem. Ülker et al. [42]
applied genetic algorithms using linear linkage
encoding representation with greedy partition crossover,
lowest index first crossover and lowest index max
crossover operators. Beligiannis et al. [43] developed an
adaptive algorithm based on evolutionary computation
techniques in order to solve high school timetabling

140 GU J Sci, 25(1):137-153 (2012)/ Can Berk KALAYCI, Aşkıner GÜNGÖR

problem in Greece using the objective function to
minimize the total cost of idle hours for all teachers and
maximize the satisfaction of teachers. Pongcharoen et
al. [44] developed a stochastic optimization timetabling
tool for university course timetabling using genetic
algorithms and simulated annealing, included a repair
process, which ensures that all infeasible timetables are
rectified in order to prevent clashes and determine
rooms with the sufficient seating capacity. Mumford
[45] presented candidate solutions to a multi-objective
memetic algorithm as orderings of examinations and a
greedy algorithm to construct violation free timetables
from permutation sequences of exams for solving
examination timetabling problem. Cheong et al. [46]
proposed a multi objective evolutionary algorithm
including genetic algorithms and a hill climber local
search operator to minimize the number of clashes and
timetable length considering capacity constraints. De
Causmaecker et al. [47] suggested a decomposed
metaheuristics approach.

As presented above, the timetabling literature is quite
rich and each new insight into the problem is considered
to be a contribution to the related reseach field. We
contribute to the literature by extending the
MirHassani’s [2] maximization of paper spread idea by
considering the difficulty of each exam which is
positively linked to the required amount of study time
according to our main focus of students’ success.
Taking difficulties of exams into account requires more
complex GA structures. We used two different GA
modeling approaches and compared them. A conflict
formulization similar to equation (1) has been used
including three types of exam clashing (i.e., two exams
in the same time slot, two exams on the same day and
two exams on two consecutive days).

3. PROBLEM DEFINITION and FORMULATION

Variables used in the definition and formulation of the
examination timetabling problem are given as follows:
N is the number of exams, iE is an exam where

}{1, ,i N∈ … , D is the number of days, T is the

given number of available timeslots, it specifies the

assigned time slot for iE where Tti ≤≤1 . idc

specifies the difficulty coefficient for iE where

[]10,..,1=idc and integer. The value of 10
represents the most difficult exam, the value of 1
represents the easiest one, ()ij N NC c ×= is a conflict

matrix where each element denoted by ijc is the

number of students taking iE and jE , ita is 1 if iE is

allocated to it , 0 otherwise, ()ij N NS s ×= is the

shared exam matrix where each element is denoted by 1
if iE and jE are shared exams, 0 otherwise, and finally

L is the seating capacity for each period.

Hard and soft constraints considered in this problem can
be written as follows:

i. No student can sit in more than one exam at
the same time.

0),(
1

1 1
=×∑ ∑

−

= +=

N

i

N

ij
jiij ttbc where

1 ()
(,)

0
i j

i j

if t t
b t t

otherwise
=⎧

= ⎨
⎩

(2)

ii. All of the planned exams must be scheduled
among the available time slots.

1 it T≤ ≤ for every iE where

}{1, , i N∈ …
(3)

iii. Every exam can only be scheduled once in
any timetable.

1
1

T

it
t

a
=

=∑

where }{1, , i N∈ … (4)

iv. All of the shared exams of different
departments have to be scheduled at the same
time.

1 1
() 0

N N

ij i j
i j

s t t
= =

⋅ − =∑∑ (5)

v. The maximum amount of time between exams
as much as possible among available time
slots is necessary. This soft constraint is
formulated into equation (8).

vi. Difficult exams should be assigned to
considerably far time slots than easier exams
according to each other’s position. This soft
constraint is formulated into equation (8).

vii. There must be sufficient seats for every exam
scheduled in the time period.

Constraints i, ii, and iii are generally accepted hard
constraints for uncapacitated examination timetabling
problems. By applying these constraints, all exams of
each student are assigned to different time slots in the
available time period. Constraint iv is a hard constraint
suitable for the case of College of Engineering at
Pamukkale University (PAUCOE). In this case, a
lecturer teaching the same course in different
departments requires the exam to be scheduled to a time

1

N

it i
i

a c L
=

≤∑

where { }1,...,t T= (6)

 GU J Sci, 25(1):137-153 (2012)/ Can Berk KALAYCI, Aşkıner GÜNGÖR 141

slot so that all students can take the exam at the same
time. This means that exams for more than one course
need to be scheduled in the same time slot. We name
this type of exams as “shared exams”. In order to
increase the quality of the feasible solution, MirHassani
[2] presented the soft constraint v to maximize the
paper spread which is a measure of the amount of study
time that each student has among examinations. By the
help of paper spread, students will have more time to
study or to relax among exams. In this study, we focus
on the thought that difficult exams require more study
and resting time than easier exams. Therefore it is also
required to consider the difficulties of exams during the
construction of paper spread which brings out the
modified soft constraint given in constraint vi. When
the final schedule is obtained by satisfying this soft
constraint as much as possible, students will be able to
get enough study and resting time among difficult
exams. The capacity constraint is also a hard constraint
to be satisfied for each period (i.e., constraint vii).

We now formulate the objective function for the
proposed GA models as follows:

1

1 1

[() (,)]
N N

ij i j i j
i j i

Min c dc dc t tλ
−

= = +

+ ⋅∑∑ (7)

Where;

()
() ()

() ()

4 ()/

1000 ,

2 , , ,
,

1 , , , 1

0 ,

i j

i j

t t D
i j

i j

i j

if t t

if Mod t D Mod t D
t t

if Mod t D Mod t D

otherwise

λ
− −

=⎧
⎪

=⎪⎪= ⎨
− =⎪

⎪
⎪⎩

 (8)

Equation (8) presents a proximity value assigned to two
corresponding exams inspired by Carter et al. [4]. For
example, if it is accepted that there are four possible
time slots for each exam in a day, then the proximity
values associated with two corresponding exams may
take the values of 1000, 8, 4, 2, 1 or 0 depending on the
proximity to each other. In this equation, the cost of
violating this hard constraint is fixed to 1000 as Naji
Azimi [33] did to avoid infeasible solutions through
generations so that candidate solutions satisfy the
constraint i.

4. THE PROPOSED GENETIC ALGORITHMS

Genetic Algorithms (GA) are based on an analogy of
biological evolution, in which the fitness of an
individual determines its ability to survive and
reproduce [48]. Each individual which represents a

candidate solution in the population is repeatedly
evaluated by genetic operators such as crossover and
mutation. In this evaluation process, survival of each
individual is determined according to a fitness function.
Bad individuals, i.e., low qualified solutions, are
destroyed through generations. This “survival of the
fittest principle” is the idea behind GA [49]. When the
ending criteria are satisfied, the chromosome that has
the best gene combination at the last generation
represents the best solution for the problem.

In order to solve the exam timetabling problem defined
in Section 3, a GA based model has been designed and
implemented and detailed in the following subsections.

4.1. Gene encoding

It is well known that timetabling problems falls into the
NP-Complete class of combinatorial optimization
problems. When the problem size increases, the solution
space is exponentially increased and an optimal solution
in polynomial time cannot be found. Therefore, it is
necessary to use alternative methods in order to reach
(near) optimal solutions faster. Metaheuristics such as
GAs seem to be particularly suited for this task because
they process a set of solutions in parallel, possibly
exploiting similarities of solutions by recombination
that provides an alternative to traditional optimization
techniques to locate optimum solutions in complex
landscapes [12, 35, 38, 39, 46].

In order to apply a GA to a particular problem, an
internal representation for the solution space is required.
The choice of this structure is one of the most critical
aspects for the success of the GA operators for the
problem. As explained in sections 2 and 3, in our study,
different from the related literature, the case of “shared
exams” need to be taken into account when determining
the GA structure. This is a common requirement in
government universities in Turkey. For example, Exams
of Calculus 101 offered in all departments should be
scheduled at the same time slot. As it is demonstrated in
Figure 1, unlike Cheong et al. [46] each gene of a
chromosome represents the assigned time slot for the
related exam. The selection of the chromosome
encoding focused on the following concern. A
chromosome shall occupy as small space as possible in
relevance with the information it encodes and to be easy
to preserve as many characteristics of the timetable
concerning hard constraints as possible during the
reproduction processes. Shared exam slots are placed as
the first chain in the chromosome structure and then
other non-shared exams of each department are added
to the structure respectively. Shared and other exams’
gene combinations form an individual in the GA.

142 GU J Sci, 25(1):137-153 (2012)/ Can Berk KALAYCI, Aşkıner GÜNGÖR

Figure 1. The chromosome representation of a candidate solution to PAUCOE exam timetabling problem

The integer interval of gene values is determined by
available time slots in a day and available days in the
schedule. If we assume that there are 4 different time
slots available each day at a 9 days exam period (as in
the case of Pamukkale University), 36 possible time slot

assignments exist. Therefore, gene values may take
integer values between [1, 36].

In Figure 2, time slot assignments are demonstrated for
t time slots available each day at a D days’ period.

Figure 2. Symbolic representation of t time slots available each day of a D days period

4.2 Chromosome initialization

The creation of the initial population has an importance
regarding diversity. In this problem formulation, all
exams which belong to a term have to be scheduled at
different time slots, so chromosomes that form the
initial population have to be adjusted to take different
gene values in chains that represent terms. If two or
more genes have same values in a chain, direct violation
of hard constraints occur. For this reason, during the
creation of the initial population, randomization process
is modified to block conflicts by assuring different gene
values. By this modification, there will not be any
conflicts on chain basis. However, there may still be

other conflicts because of the interactions among other
chains. In order to remove these conflicts, fitness
function selection structure or a special repair function
is used. Detailed information can be found in the
following subsections.

4.3 Fitness function

The fitness function is one of the most important parts
of the GA, because it decodes the chromosome into
timetable and calculates a fitness value of each
chromosome that points out how well it solves the
problem under study.

 GU J Sci, 25(1):137-153 (2012)/ Can Berk KALAYCI, Aşkıner GÜNGÖR 143

In our problem, the fitness is formed in order to
maximize students’ success. There are many students
who share the same exam schedule at each term. Instead
of checking each student’s schedule separately in the
database, we preferred to group students based on
chains and shared exams. Thus, subchains and their
connected shared exams represent a group of students
who have the same exam schedule.

As it is demonstrated in Figure 3, the fourth subchain
includes exams that belong to a subgroup of students.
With the appropriate query on shared chain that is
automatically executed by the system, it is found out
that S2 and S4 are shared exams which also belong to

this group of students. Thus, S2 and S4 exams are added
to the fourth subchain as E5 and E6. In some cases,
students are obligated to retake exams from previous
terms. All exams that student subgroups are responsible
for are added to the assignment array and fitness value
is calculated. Details of these different cases are given
in section 4.5. Each exam has a time slot and a
difficulty coefficient. Difficulty coefficients of each
exam are obtained on a scale between 1 and 10, integer
values, by conducting surveys with students and also
considering European Credit Transfer System (ECTS)
credits of each course. Basically, the greater coefficient
represents the more difficult exam on the schedule.

Figure 3. Assignment array of all exams for a subchain

4.4. Genetic Operators

Beligiannis et al.[43] used linear ranking selection and
Erben [35], Wong et al. [36], Côté et al. [39], Cheong et
al. [46], Pillay and Banzhaf [12] used tournament
selection operator in order to create the intermediate
population (mating pool) for reproduction. Among the
different types of selection procedures existing, we have
chosen the one known as roulette wheel [11, 33, 40, 44,
48, 50], in which the probability of an individual to be
selected for the next generation depends on its current
fitness value. Before applying genetic operators, each
individual in the population is sorted according to their
fitness values and the individuals that have values
greater than a specified average fitness value are put
into a mating pool. New fitness values of individuals
are calculated according to equation (9). Then, the
individuals with negative fitness values are removed
from mating pool for the current iteration of GA and the
problem is converted to a maximization problem from a
minimization problem.

The variables used in equation 9 are described as
follows: nF is the new fitness value of the current

chromosome; aF is the average fitness value of the

current population; co : 0,1,2 or 3, sd is the standard

deviation of the current population; and oF is the old
fitness value of the current individual.

 n a oF F co sd F= + × −
(9)

In equation 9, when co = 0, the individuals with fitness
values below the average are taking out of the mating
pool. The individual with the least fitness value in
general population has the greatest fitness value in the
mating pool by this transformation. Individuals with
their new fitness values in the mating pool become
ready to enter roulette wheel process. The greater
fitness value means the bigger part of the roulette wheel
is occupied by that individual. Thus, better
chromosomes have a greater chance to be selected.
Roulette wheel selects the first individual as a mate, and
the next one afterwards. No individual is allowed to
mate itself, because variation to better or worse is
expected during crossover. This selection procedure is
continued until the required number of mates for
crossover is reached.

144 GU J Sci, 25(1):137-153 (2012)/ Can Berk KALAYCI, Aşkıner GÜNGÖR

4.4.1 Crossover operator

Naji Azimi [33] applied one and two point crossover
operator, Terashima-Marin et al. [51] applied clique-
based crossover operator, Santiago-Mozos et al. [40]
applied partially matched crossover operator, Ülker et
al. [42] applied greedy partition crossover and lower
index first-max crossover operators, Pongcharoen et al.
[44] applied one, two point and position based
crossover operators, Puente et al. [50] introduced a
specific multi point crossover operator that can only
work exchanging information between entire work
weeks to solve timetabling problems by GA.
Beligiannis et al. [43] and Pillay and Banzhaf [12] did
not use any crossover operator at all because of their
experimental results have shown that crossover in this
specific problem and chromosome encoding does not
contribute satisfactorily, while it adds too much

complexity and time delay. In this algorithm, we have
used a modified uniform crossover operator which has
been experimented to give satisfying results in Erben
[35] and Wong et al. [36] for the solution of timetabling
problems in GA. New individuals created by crossover
operation, called children, should satisfy the same
constraints as previous individuals, called parents.
Genes that are associated with zero value of randomly
created binary chain are copied from the first parent.
The remaining genes of the first child are copied from
the second parent from the second parent starting from
the first gene. If there are similar genes in second
parent’s chromosome, these genes are jumped over
from copying to the child in order to prevent conflicts in
the chain of the new chromosome. Crossover operation
is demonstrated as an example in Figure 4.

Figure 4. A creation of a child with uniform crossover

4.4.2. Mutation operator

Côté et al. [39] used uniform mutation operator,
Erben[35], Santiago-Mozos et al. [40], Cheong et al.
[46], Puente et al. [50], Pillay and Banzhaf [9] used
swap mutation operator, Beligiannis et al. [43] created a
mutation operator that swap and randomize,
Pongcharoen et al. [44] used a day shift change
mutation operator. Since diversity cannot be obtained
by crossover operation, a mutation operator is necessary
for the variation of chromosomes in the population. For

the chromosome structure under implementation, swap
mutation operator is not able to provide full diversity as
it only interchanges the values inside the chromosome.
We selected and modified the random replacement
mutation operator [33, 36] to use in GA. It is
demonstrated in Figure 5 as an example that randomly
selected gene is replaced with a new value in the
selected chromosome. This new value cannot be same
as one of the values in the belonging chain, so these
gene values are removed from the pool of gene values.

 GU J Sci, 25(1):137-153 (2012)/ Can Berk KALAYCI, Aşkıner GÜNGÖR 145

Figure 5. Mutation in a chain of selected chromosome

Mutation is a very sensitive operator that may quickly
create better candidates and slow down the whole
operation. That’s why it is required to pay much more
attention to this component. The question here is how
much diversity is more appropriate for the problem
under study. In order to answer this question, a new
parameter is added to the set of experiments called
mutation tactic. This parameter decides to replace 1, 2
or 4 genes at a time.

4.5 Embedded repair function to remove
infeasibilities

High penalty cost [33] which is added to fitness value
for hard constraints, described in section 3, aims to
prevent infeasible chromosomes to survive at next
generations. During experiments with high penalty cost
model, it has been seen that this idea works well to get
rid of infeasible solutions. However, we got the sense of
GA performance may have been affected worse due to
letting infeasible chromosomes to be occupied in
general population even though they are not going to be
eventually selected [32]. Thus, we came up with an
alternative model that assures feasible chromosomes in

general population called repair function model. This
repair technique is commonly used to block hard
constraints for GA [12, 36, 39, 42, 44, 46, 50]; so we
designed a special repair algorithm for the problem
under study and embedded it to the GA.

Chromosome repair operation is executed regarding the
information of related shared exams and also whether or
not each exam is taken from upper and lower terms. In
the example given in Figure 6, it is assumed that O1
exam is a shared exam belonging to xth chain. Before
repair operation, xth chain has the genes with values 4,
19, 1 and 2, respectively. S1 exam is accepted as a
defect and the time slot of 4 is going to be unloaded
because O1 exam already requires that time slot. Thus,
“shared exam and chain” conflict is prevented. One of
the possible time slots is selected randomly and
assigned to the xth chain’s empty gene. This process is
very similar to mutation operation described in the
previous subsection. Other related chain value
adjustments are done with the same logic by checking
the data matrix of shared exams.

146 GU J Sci, 25(1):137-153 (2012)/ Can Berk KALAYCI, Aşkıner GÜNGÖR

Figure 6. Query for shared exams and repair process

In the example given in Figure 7, it is assumed that A1
exam is both taken from one and two upper terms. Since
A1 exam belongs to the xth chain, chains (x+1) and
(x+2) should be checked. In (x+1)th chain, there is no
conflict; but exam C1 in chain (x+2) is assigned to the

same time slot of A1. Therefore, A1 exam is labeled as a
defect and the time slot for A1 has to be replaced. The
new time slot should be determined so that the time slot
will be different that the values in chains x, (x+1) and
(x+2).

Figure 7. Scan upper chains and repair

First, each gene in the chromosome is checked for
shared exams, lower and upper terms conflicts. If any

 GU J Sci, 25(1):137-153 (2012)/ Can Berk KALAYCI, Aşkıner GÜNGÖR 147

conflicts are met, repair process is applied for that gene.
When the repair process is applied from first gene to the
last one, any change in the chromosome that has been
done is recorded because the following changes may
interact with previous changes. Therefore, a
replacement is done considering any possible conflict to
ensure the solution is feasible.

4.6 Chromosome selection and flow of the proposed
GA

The pseudo code for general flow of the proposed GA is
given in Table 1.

Table 1. Pseudo code for general flow of the proposed algorithm

SET initial population size to double of population size
SET number of offspring to crossover rate times population size
SET elite size to elitism rate times population size
CALL generate initial population with initial population size RETURNING initial population
SET number of mutants to chromosome length times mutation rate times population size
FOR each chromosome in the initial population

CALL determine fitness value with input variables RETURNING fitness value and conflict matrix
END FOR
SORT fitness values of each chromosome in initial population in descending order.
DETERMINE general population from initial population
SET trial to zero.
REPEAT

CALL create mating pool with standard division coefficient RETURNING Pool
IF Pool has not enough chromosomes THEN

RETURN
ELSE

CONTINUE
END IF
CALL crosswhom with Pool and number of offspring RETURNING Mating Set
CALL crossover with Population, Mating Set RETURNING Offspring
CASE mutation tactic OF

1: CALL mutate 1 gene with Population, number of mutants, maximum time slot RETURNING Mutants
2: CALL mutate 2 genes with Population, number of mutants, maximum time slot RETURNING Mutants
4: CALL mutate 4 genes with Population, number of mutants, maximum time slot RETURNING Mutants

END CASE
CALL select best of chromosomes with Population, Offspring, Mutants, Elites RETURNING Population

UNTIL trial < number of generation

Children created by crossover operator, mutants created
by mutation operator and the general population are
inserted into the selection process. Best of these
chromosomes are passed onto the next generation, the
rest is destroyed. In order to save some of better
individuals in the general population, elites are directly
transferred to the next generation without any
modification. The only difference between high penalty
cost model and the repair model is the integration of the
repair function in the creation of initial population and
after the creation of new children and mutants. Since

high penalty cost is redundant when repair process is
applied, it was not necessary to modify fitness
formulation. Selection of new generation and the
general flow of repair model are demonstrated in Figure
8. This loop is continued until two ending criteria: (1)
Upper limit of number of generations is reached; (2)
Improvement rate of the fitness value through ten
generations is satisfied. The experimental results and
analysis for both models are given in section 5.

Figure 8. Selection of new generation with repair function model

148 GU J Sci, 25(1):137-153 (2012)/ Can Berk KALAYCI, Aşkıner GÜNGÖR

4.7 Allocating exams to rooms

Although the room allocation is not in the focus of our
study, for the sake of completeness we developed a
simple heuristic to assign exams into rooms. Every
room is considered to be identical except their seating
capacities. After the final timetable is constructed by
GA, a simple heuristic is applied to assign exams to
rooms for each period without allowing double-
booking. When the seating capacity of one room is not
enough, two or more rooms are combined as one. The
heuristic creates every possible combination of rooms,
called virtual rooms, and allocate where necessary. If
the room assigning heuristic fails because of the
capacity limit given in constraint vii, it checks for other
solutions in the database with same or approximate
fitness values. If it no allocation can be made, the
heuristic automatically calls the GA again with the best
known parameters by taking some of the feasible good
solutions as initial population in order to come up with
a solution for which the room allocation can be made.

5. EXPERIMENTAL RESULTS and ANALYSIS

We have tested our proposed algorithms on data sets
collected from the College of Engineering of
Pamukkale University. We have investigated the effects
of GA parameters and operators, compared the
algorithms’ performance and time complexity. The
design of each experiment, the results and analyses are
provided in the following subsections.

5.1 Investigation on the GA parameters and
operators

The experimental factors and levels considered in
experiments are shown in Table 2. Population size (ps),
elitism rate (er), crossover rate (cr), mutation rate (mr),
mutation tactic (mt) and standard deviation coefficient
(co) are the factors that are used to investigate GA
performance.

Table 2. GA experimental factors and its levels
 Levels

Name Low Medium High
1 ps 20 40 80
2 er 0.1 0.2 -
3 cr 0.3 0.6 0.9
4 mr 0.01 0.05 0.1
5 mt 1 2 4

Fa
ct

or
s

6 co 0 3 -

In order to carry out a full factorial experimental
analysis with the factors and levels provided in Table 2,
1620 experiments are totally required with 5
replications for each experiment set. Replication is
necessary, because randomness may eventually cause
different performance. For one experiment with our
data set, high penalty cost model required
approximately 10 minutes and repair function model
required average of 25 minutes to complete on a
Pentium IV 1.80 GHz Intel processor. A full factorial
analysis would take approximately 40 days of
computing time. This is just too long. So we preferred
to modify Taguchi’s 27L experimental design table
which is well suited to experimental factors and levels
for selected parameters. Modification of Taguchi’s 27L

table is necessary because in the original table there are
13 factors yet in our case there are 6 factors. Final
experiment sets are shown in Table 3 after removing
unnecessary columns and applying appropriate dummy
treatment where necessary in order to get the general
idea of factor affecting the GA model. Therefore 135
experiments are executed for each proposed GA
models.

 GU J Sci, 25(1):137-153 (2012)/ Can Berk KALAYCI, Aşkıner GÜNGÖR 149

Table 3. Experiment Sets

Experiment ps er cr mr mt co

1 20 0.1 0.3 0.01 1 0

2 20 0.1 0.3 0.01 2 3

3 20 0.1 0.3 0.01 4 3

4 20 0.2 0.6 0.05 1 0

5 20 0.2 0.6 0.05 2 3

6 20 0.2 0.6 0.05 4 3

7 20 0.2 0.9 0.1 1 0

8 20 0.2 0.9 0.1 2 3

9 20 0.2 0.9 0.1 4 3

10 40 0.1 0.6 0.1 1 3

11 40 0.1 0.6 0.1 2 3

12 40 0.1 0.6 0.1 4 0

13 40 0.2 0.9 0.01 1 3

14 40 0.2 0.9 0.01 2 3

15 40 0.2 0.9 0.01 4 0

16 40 0.2 0.3 0.05 1 3

17 40 0.2 0.3 0.05 2 3

18 40 0.2 0.3 0.05 4 0

19 80 0.1 0.9 0.05 1 3

20 80 0.1 0.9 0.05 2 0

21 80 0.1 0.9 0.05 4 3

22 80 0.2 0.3 0.1 1 3

23 80 0.2 0.3 0.1 2 0

24 80 0.2 0.3 0.1 4 3

25 80 0.2 0.6 0.01 1 3

26 80 0.2 0.6 0.01 2 0

27 80 0.2 0.6 0.01 4 3

Experimental results for high penalty cost model are
shown in Table 4 and in Table 5 for the repair function
model in ascending order according to average fitness
values and standard deviations of last generation
respectively. aLF is the average of fitness values in

the last generation, sdLF is the standard deviation of

fitness values in the last generation, cput is CPU time

in seconds during the total operation of each experiment
and aG represents average generation number
executed during the operation of designed models. 10th
and 22nd experiment sets appear to provide best results
regarding average fitness values, standard deviation,
CPU time and number of generations for both models
designed.

Table 4. Experiment Sets Results with high penalty cost
model

High penalty cost model

Experiment # aLF sdLF cput aG

10 4344 58 1084 200

22 4345 30 2749 205

19 4354 35 1635 260

25 4387 65 858 426

16 4399 69 680 270

13 4412 59 359 324

17 4415 70 963 639

11 4419 36 1065 387

23 4435 79 1718 284

7 4455 68 304 129

4 4471 65 196 159

8 4526 54 333 248

20 4527 126 537 148

5 4563 68 271 339

14 4774 132 273 289

2 4859 134 171 454

26 4907 178 271 163

1 4974 158 103 224

24 5131 307 1606 473

21 5260 270 535 205

9 5633 199 157 173

27 5711 406 449 298

6 5964 376 117 200

18 6134 359 152 142

3 6257 605 117 349

12 6432 478 165 96

15 7520 884 71 83

150 GU J Sci, 25(1):137-153 (2012)/ Can Berk KALAYCI, Aşkıner GÜNGÖR

Table 5. Experiment Sets Results with repair function
model

Repair Function Model

Experiment # aLF sdLF cput aG

10 2217 16 2529 140
22 2218 20 6564 160
17 2231 27 2687 596
19 2236 15 3683 188
23 2236 30 4264 223
25 2238 16 1625 343
13 2246 35 728 278
11 2246 42 2937 326
16 2268 32 1503 178
8 2276 59 941 210
7 2291 56 849 101
5 2292 35 555 234
20 2310 58 1261 120
4 2322 51 449 107
2 2403 116 289 413
14 2429 43 403 209
1 2491 85 153 144
26 2493 53 349 104
21 2570 81 1262 192
24 2578 140 4633 465
27 2582 106 616 233
9 2714 242 340 128
12 2752 163 374 73
6 2792 135 304 206
18 2957 214 324 120
3 2984 148 128 243
15 3191 188 105 64

5.2. Complexity and performance of the algorithms

Detailed experiment results for five different trials of
10th experiment set are shown in Table 6 and Table 7
for high penalty cost and repair function model,
respectively. bFF is the best fitness value in the first

generation; bLF is the last fitness value in the last

generation; cput is the CPU time during the algorithm’s

operation and G is the number of generations. A
conflict matrix is used to calculate and explain the
meaning of each fitness value. We considered five
different types of exam clashing for students: 1CT : two

exams are offered in the same time slot; 2CT : two
exams are offered on two consecutive time slots on the
same day; 3CT : two exams are offered with one time

slot break on the same day; 4CT : Two exams are
offered with two time slots break on the same day; and

5CT : two exams are offered on two consecutive days.

Only 1CT

is related to a hard constraint, other conflict

types are linked to soft constraints.

Table 6. Detailed experiment results for high penalty
cost model

bFF bLF cput G 1CT 2CT 3CT 4CT 5CT
19878 4388 824 152 0 0 5 50 265

19488 4414 1057 195 0 0 0 57 267

21636 4324 1226 227 0 0 0 49 290

20358 4327 1059 196 0 0 1 49 278

19891 4267 1256 232 0 0 5 49 276

Table 7. Detailed experiment results for repair function
model

bFF bLF cput G 1CT 2CT 3CT 4CT 5CT
6136 2202 2127 118 0 0 0 17 171
6160 2230 2218 123 0 0 1 17 163
6023 2215 2758 153 0 0 2 20 155
5910 2236 2744 152 0 0 0 17 169
6053 2201 2797 155 0 0 1 19 161

As the main focus of this study is to maximize students’
success, conflict types 5CT , 4CT , 3CT , 2CT , 1CT
should be preferred, respectively. In order to understand
the value of these results, fitness value and conflict
matrix of the timetable which is manually constructed is
given in Table 8. It can be easily stated that both of the
models provide better timetables than manual
construction. However, repair function model provided
far better results of all. Repair function model, even
with the worst parameter set, provided better timetables
than high penalty cost model with best parameter set.

Table 8. Fitness value and conflict matrix of manually
constructed timetable

bLF 1CT 2CT 3CT 4CT 5CT
9100 0 35 39 7 345

At worst case, it has been calculated that high penalty
cost model requires 20,294,251,207 processes and
repair function model requires 94,381,970,167
processes on the most complex case for 10th
experiment set values of ps=40, er=.1 , cr=.6, mr=.1,
mt=1, co=3. According to this complexity result, high
penalty cost model works approximately 4.65 times
faster than the repair function model. The worst time
complexity was considered during the calculation of
complexity. This value changes according to the
difficulty of timetable construction. For instance, for the

 GU J Sci, 25(1):137-153 (2012)/ Can Berk KALAYCI, Aşkıner GÜNGÖR 151

10th parameter set repair function model was
approximately 3.3 times slower than the high penalty
cost model. As a result, in our case, high penalty cost
model constructed faster timetables, but showed low
performance. In Figure 9, the change in the fitness
values for best parameter results through generations is

shown for both algorithms to demonstrate performance
differences. While both algorithms start with the initial
value of 23482, penalty function model is stuck to 4789
at the 390th iteration and repair function model is stuck
2331 at the 354th iteration under 500 iterations at most.

Figure 9 Comperative experiment results for best parameters set

-6. Conclusions and Future Work

In this paper, a GA based examination timetabling
model focusing on students’ success has been designed
and examined using the data collected from the College
of Engineering at Pamukkale University. This paper
extended the MirHassani’s [2] maximization of paper
spread idea by considering the difficulty of each exam
which is positively linked to the students’ success.
Considering difficulties of exams requires more
complex GA structures. We used two different GA
modeling approaches, clearly explained them in the
paper and compared them with each other and the exam
schedule created manually. First GA model works
connected to the high penalty value minimization and
the second model includes a repair function that forces
the algorithm to work on only feasible solutions by
assuring all of the hard constraints to be satisfied in
each stage of the algorithm.

The timetabling literature is extensive. Even small
contributions are valuable including applications of the
models to real life problems. This paper includes the
effects of difficulties of exams into the objective
function. The model also deals with shared exams and
offers a real life application case in a university in
Turkey. Almost in all universities in Turkey, exam
timetabling is a very difficult task mostly done by
“research assistants” causing waste of valuable research
time. This is a valuable contribution of proposed study
on the application side. The model presented can be
implemented in software to make it use practical. On

the theory side, the models presented can be extended to
include the fuzziness that may arise when understanding

the difficulties of exams. In addition, new soft
constraints may be added to problem such as student
preferences. So far in the existing literature, only
constraints set by the institutions and lecturers have
been taken into account.
Acknowledgments : This research was partially funded
by Scientific Research Projects Division of Pamukkale
University under grant number 2007FBE0014.

REFERENCES
[1] Burke, E. K., McCollum, B., Meisels, A., Petrovic,

S., & Qu, R. A graph-based hyper-heuristic for
educational timetabling problems. European
Journal of Operational Research, 176, 177-192
(2007)

[2] MirHassani, S. A. Improving paper spread in

examination timetables using integer
programming. Applied Mathematics and
Computation, 179, 702-706 (2006)

[3] Qu, R., Burke, E., McCollum, B., Merlot, L., &
Lee, S. A survey of search methodologies and
automated system development for examination
timetabling. Journal of Scheduling, 12, 55-89
(2009)

[4] Carter, M. W., Laporte, G., Lee, S.Y. Examination

timetabling: Algorithmic strategies and
applications. The Journal of the Operational
Research Society, 47, 373-383 (1996)

152 GU J Sci, 25(1):137-153 (2012)/ Can Berk KALAYCI, Aşkıner GÜNGÖR

[5] Burke, E., Petrovic, S., & Qu, R. Case-based

heuristic selection for timetabling problems.
Journal of Scheduling, 9, 115-132.(2006)

[6] Abdullah, S., Ahmadi, S., Burke, E., & Dror, M.

Investigating Ahuja–Orlin’s large neighbourhood
search approach for examination timetabling. OR
Spectrum, 29, 351-372 (2007)

[7] Petrovic, S., Yang, Y., & Dror, M. Case-based

selection of initialisation heuristics for
metaheuristic examination timetabling. Expert
Systems with Applications, 33, 772-785 (2007)

[8] Asmuni, H., Burke, E. K., Garibaldi, J. M.,

McCollum, B., & Parkes, A. J. An investigation of
fuzzy multiple heuristic orderings in the
construction of university examination timetables.
Computers & Operations Research, 36, 981-1001
(2009)

[9] Pillay, N., & Banzhaf, W. A study of heuristic

combinations for hyper-heuristic systems for the
uncapacitated examination timetabling problem.
European Journal of Operational Research, 197,
482-491 (2009)

[10] Qu, R., Burke, E. K., & McCollum, B. Adaptive

automated construction of hybrid heuristics for
exam timetabling and graph colouring problems.
European Journal of Operational Research, 198,
392-404 (2009)

[11] Burke, E. K., Eckersley, A. J., McCollum, B.,

Petrovic, S., & Qu, R. Hybrid variable
neighbourhood approaches to university exam
timetabling. European Journal of Operational
Research, 206, 46-53 (2010)

[12] Pillay, N., & Banzhaf, W. An informed genetic

algorithm for the examination timetabling
problem. Applied Soft Computing, 10, 457-467
(2010)

[13] Gogos, C., Alefragis, P., & Housos, E. An

improved multi-staged algorithmic process for the
solution of the examination timetabling problem.
Annals of Operations Research (2010)

[14] Foulds, L. R., & Johnson, D. G. SlotManager: a

microcomputer-based decision support system for
university timetabling. Decision Support Systems,
27, 367-381 (2000)

[15] Dimopoulou, M., & Miliotis, P. Implementation of

a university course and examination timetabling
system. European Journal of Operational
Research, 130, 202-213 (2001)

[16] Dimopoulou, M., & Miliotis, P. An automated

university course timetabling system developed in
a distributed environment: A case study. European

Journal of Operational Research, 153, 136-147
(2004)

[17] Burke, E. K., & Petrovic, S. Recent research

directions in automated timetabling. European
Journal of Operational Research, 140, 266-280
(2002)

[18] Burke, E. K., & Newall, J. P. Solving Examination

Timetabling Problems through Adaption of
Heuristic Orderings. Annals of Operations
Research, 129, 107-134 (2004)

[19] Daskalaki, S., Birbas, T., & Housos, E. An integer

programming formulation for a case study in
university timetabling. European Journal of
Operational Research, 153, 117-135 (2004)

[20] Daskalaki, S., & Birbas, T. Efficient solutions for a

university timetabling problem through integer
programming. European Journal of Operational
Research, 160, 106-120 (2005)

[21] Avella, P., & Vasil'Ev, I. A Computational Study

of a Cutting Plane Algorithm for University
Course Timetabling. Journal of Scheduling, 8,
497-514 (2005)

[22] MirHassani, S. A. A computational approach to

enhancing course timetabling with integer
programming. Applied Mathematics and
Computation, 175, 814-822 (2006)

[23] Al-Yakoob, S. M., & Sherali, H. D. A mixed-

integer programming approach to a class
timetabling problem: A case study with gender
policies and traffic considerations. European
Journal of Operational Research, 180, 1028-1044
(2007)

[24] Head, C., & Shaban, S. A heuristic approach to

simultaneous course/student timetabling.
Computers & Operations Research, 34, 919-933
(2007)

[25] Van den Broek, J., Hurkens, C., & Woeginger, G.

Timetabling problems at the TU Eindhoven.
European Journal of Operational Research, 196,
877-885 (2009)

[26] Birbas, T., Daskalaki, S., & Housos, E. School

timetabling for quality student and teacher
schedules. Journal of Scheduling, 12, 177-197
(2009)

[27] Kahar, M. N. M., & Kendall, G. The examination

timetabling problem at Universiti Malaysia
Pahang: Comparison of a constructive heuristic
with an existing software solution. European
Journal of Operational Research, In Press,
Accepted Manuscript (2010)

[28] Sarin, S., Wang, Y., & Varadarajan, A. A

university-timetabling problem and its solution

 GU J Sci, 25(1):137-153 (2012)/ Can Berk KALAYCI, Aşkıner GÜNGÖR 153

using Benders’ partitioning—a case study. Journal
of Scheduling, 13, 131-141 (2010)

[29] Rudová, H., Müller, T., & Murray, K. Complex

university course timetabling. Journal of
Scheduling (2010)

[30] Wang, S., Bussieck, M., Guignard, M., Meeraus,

A., & O’Brien, F. Term-end exam scheduling at
United States Military Academy/West Point.
Journal of Scheduling, 13, 375-391 (2010)

[31] Smith, K. A., Abramson, D., & Duke, D. Hopfield

neural networks for timetabling: formulations,
methods, and comparative results. Computers &
Industrial Engineering, 44, 283-305 (2003)

[32] Dave Corne, P. R., Hsiao-lan Fang. Evolutionary

timetabling: Practice, prospects and work in
progress. In P. Prosser (Ed.), Proceedings of the
UK Planning and Scheduling SIG Workshop
(1994)

[33] Naji Azimi, Z. Hybrid heuristics for Examination

Timetabling problem. Applied Mathematics and
Computation, 163, 705-733 (2005)

[34] Ross, P., Hart, E., & Corne, D. Some Observations

about GA-Based Exam Timetabling. Lecture
Notes in Computer Science, Vol. 1408 (pp. 115)
(1998)

[35] Erben, W. A Grouping Genetic Algorithm for

Graph Colouring and Exam Timetabling. Lecture
Notes in Computer Science, Vol. 2079 (pp. 132-
156) (2001)

[36] Wong, T., Cote, P., & Gely, P. Final exam

timetabling: a practical approach. In Electrical
and Computer Engineering, 2002. IEEE CCECE
2002. Canadian Conference on (Vol. 2, pp. 726-
731 vol.722) (2002)

[37] Sheibani, K. An Evolutionary Approach For The

Examination Timetabling Problems. D. C. E. K.
Burke (Ed.), Proceedings of the 4th international
conference on practice and theory of automated
timetabling (Vol. 2740/2003, pp. 387–396). Gent,
Belgium: Springer Berlin / Heidelberg (2002)

[38] Wong, T., Cote, P., & Sabourin, R. A hybrid

MOEA for the capacitated exam proximity
problem. In Evolutionary Computation, 2004.
CEC2004. Congress on (Vol. 2, pp. 1495-1501
Vol.1492) (2004)

[39] Côté, P., Wong, T., & Sabourin, R. A Hybrid

Multi-objective Evolutionary Algorithm for the
Uncapacitated Exam Proximity Problem. Lecture
Notes in Computer Science, Volume 3616 (pp.
294-312) (2005)

[40] Santiago-Mozos, R., Salcedo-Sanz, S., DePrado-

Cumplido, M., & Bousoño-Calzón, C. A two-
phase heuristic evolutionary algorithm for

personalizing course timetables: a case study in a
Spanish university. Computers & Operations
Research, 32, 1761-1776 (2005)

[41] Chiarandini, M., Birattari, M., Socha, K., & Rossi-

Doria, O. An effective hybrid algorithm for
university course timetabling. Journal of
Scheduling, 9, 403-432 (2006)

[42] Ülker, Ö., Özcan, E., & Korkmaz, E. Linear

Linkage Encoding in Grouping Problems:
Applications on Graph Coloring and Timetabling.
PATAT'06 Proceedings of the 6th international
conference on Practice and theory of automated
timetabling VI Springer-Verlag Berlin,
Heidelberg, (2007)

[43] Beligiannis, G. N., Moschopoulos, C. N.,

Kaperonis, G. P., & Likothanassis, S. D. Applying
evolutionary computation to the school timetabling
problem: The Greek case. Computers &
Operations Research, 35, 1265-1280 (2008)

[44] Pongcharoen, P., Promtet, W., Yenradee, P., &

Hicks, C. Stochastic Optimisation Timetabling
Tool for university course scheduling.
International Journal of Production Economics,
112, 903-918 (2008)

[45] Mumford, C. A multiobjective framework for

heavily constrained examination timetabling
problems. Annals of Operations Research (2008)

[46] Cheong, C., Tan, K., & Veeravalli, B. A multi-

objective evolutionary algorithm for examination
timetabling. Journal of Scheduling, 12, 121-146
(2009)

[47] De Causmaecker, P., Demeester, P., & Vanden

Berghe, G. A decomposed metaheuristic approach
for a real-world university timetabling problem.
European Journal of Operational Research, 195,
307-318 (2009)

[48] Goldberg, D. E. Genetic Algorithms in Search,

Optimisation and Machine Learning. Boston:
Addison-Wesley Longman Publishing Co.,
Inc.(1989)

[49] Michalewicz, Z. Genetic algorithms + data

structures = evolution programs (3rd ed.):
Springer-Verlag (1996)

[50] Puente, J., Gómez, A., Fernández, I., & Priore, P.

Medical doctor rostering problem in a hospital
emergency department by means of genetic
algorithms. Computers & Industrial Engineering,
56, 1232-1242 (2009)

[51] Terashima-Marin, H., Ross, P., & Valenzuela-

Rendon, M. Clique-based crossover for solving the
timetabling problem with GAs. In Evolutionary
Computation, 1999. CEC 99. Proceedings of the
1999 Congress on (Vol. 2, pp. 1206 Vol. 1202)
(1999)

