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ABSTRACT 

In this paper, we introduce a new encoding-decoding strategy for the floating-point genetic algorithms and we 
call the genetic algorithms which use this strategy Machine Coded Genetic Algorithms. We suggest applying 

classical crossover and mutation operations on the byte representations of real values which are already encoded 

in memory. This is equivalent to use a 256-unary alphabet with 8 genes for a single real value. Use of byte 
representations makes the classical genetic operators interpretable in floating-point chromosomes and increases 

the search capabilities in a wide range without losing accuracy. This strategy also decreases the computation 

time needed for the genetic operators. Simulation studies show that our strategy performs well on many test 
functions by means of converging to global optimum and time efficiency.   
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1. INTRODUCTION

The classical genetic algorithm (GA) is based on binary 

coded chromosomes (Holland, 1975), (Goldberg, 1989). 

Since GAs run with the fitness values of candidate 

solutions rather than the goal function itself, they are 

problem independent. They do not require the functions 

to be continuous and differentiable and they do not suffer 
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from local optima when the population size is large 

enough and the initial population is well randomized to 

obtain diversity. 

Although the GA performs well on many problems, it is 

more efficient to use floating-point genetic algorithms 

(FPGAs) in real-valued problems. Janikow and 

Michalewicz (1991) stated that the FPGA is faster, more 

consistent and precise than the GA. Binary chromosomes 

need more bits to represent a wider solution space 

whereas the use of floating-point parameters makes it 

possible to use larger domains even the limits of 

parameters are unknown (Herrera et al., 1998). However, 

crossover and mutation operations do not find a place in 

FPGA’s at first glance. The mutation operator which is 

defined as flipping a single bit is not meaningful for real 

numbers. It is also not clear how to combine two parent 

real vectors to produce new real vectors (Deb, 2004). 

Radcliffe (1992) argued that there is no requirement that 

the idealized genetic operators used in evolutionary 

search be defined with respect to the chosen 

representation, nor indeed with respect to any specific 

representation. In addition to this, different optimization 

algorithms with different coding-decoding strategies can 

either be successful with different configurations, which 

are to say, the success of genetic algorithms is not related 

to coding-decoding strategy (Herrera et al., 1998) (Fogel 

and Ghozeil, 1997). Finally, Reeves (1993) showed that a 

higher cardinality alphabet needs the population size to 

be larger in order to ensure diversity. 

In this paper, we introduce a new encoding-decoding 

strategy for FPGAs. In our algorithm, chromosomes are 

real values but the crossover and the mutation operations 

are applied on byte representations of chromosomes in 

computer memory so that it neither encodes 

chromosomes nor uses real values in genetic operations. 

The byte representation is similar to binary representation 

so the original interpretation of genetic operators is 

clearer and finds a place in FPGAs. A C program is 

written as an implementation and the R (R Development 

Core Team, 2012) wrapper package mcga (Satman, 2012) 

is written and ready for downloading at the CRAN 

repositories. The source code of the C library is included 

in this package and ready for use in both languages. Note 

that simulations on this paper are performed using the R 

package. External function calls may slow down the 

library but the interactive R console may be helpful to 

show the search capabilities of MCGA. 

In Section 2, we discuss the use of some genetic 

operators in FPGAs. In Section 3, we define a new hybrid 

strategy for crossover and mutation operations and 

introduce the machine coded genetic algorithms 

(MCGAs). In Section 4, we give a brief description of our 

implementation. In Section 5, we prepare a simulation 

study to compare the performance of MCGA with some 

other evolutionary algorithms using a test case of well-

known functions. 

2.  OPERATORS IN FLOATING-POINT GENETIC 

ALGORITHMS 

There are many reasons for using FPGAs in real-valued 

optimization problems. Chromosomes are real vectors 

and there is no need for long bit strings. Each single gene 

of a chromosome is a real number which has high 

precision in a wide range. There is also some attempt to 

make GAs more precise with a limited chromosome 

length in real-valued problems. To ensure precision in the 

GAs, Schraudolph and Belew (1992) suggested the 

method of Dynamic Parameter Encoding which is based 

on a zooming operator. Their algorithm starts the search 

in a predefined range and narrows this range after many 

generations in order to represent more precise numbers 

with the same length of bit strings. 

As we mentioned in Section 1, there is no clear 

equivalent method for the classical crossover and the 

mutation operations in FPGAs. Some authors suggested 

many methods for those operators whereas the classical 

mutation has a unique definition which is simply flipping 

a bit and the classical crossover has similar definitions 

which are aimed to combine two chromosomes. Suppose 

that �� and �� are chromosomes of a population P with 

binary content. The one-point crossover operation of GAs 

can be applied in a single point as 

                                             

�� = ��
�, ��

�, … , ��	�
� , ��

�, ��
�
� , … , ��

� (1) 

where k is the chromosome length and h is the cut point 

where 0 < ℎ < �. One can apply this naive method on 

the floating-point chromosomes. But it is clear that this 

method combines variables rather than assembles piece 

of blocks. Deb (2004) argued that this approach can-not 

diversify the candidates and mutation attains more 

importance. Note that choosing more than one cut points 

is possible but its task will still be far from being 

fulfilled. 

A better approach is producing offspring as linear 

combinations of parent chromosomes. Suppose that �� 

and �� are floating-point chromosomes which contain real 

values. The linear combination of those parents can be 

written as 

�� = ��� + �1 − ����           (2) 

where � is a real value. When � is selected within the 

range 0<	�<1, this operator is equivalent to weighted 

average of two parents. Other values for α, for example 

1,5,  might be used to generate new offspring that lie out 

of the space spanned by the parents. 

There are many crossover methods in the literature and 

almost all of them are based on linear or non-linear 

combinations of real values which are contained by 

floating-point chromosomes. Deb (2004) concluded that 

crossover methods developed for FPGAs have equal 

performance and are content dependent. Elsayed et al. 

(2011) performed a simulation study among the crossover 

and mutation methods in constraint problems and 

concluded that there is no superior method. Herrera et al. 

(2003) made a comprehensive and comparative study 

among the crossover methods in FPGAs and concluded 

that additional study for developing new methods is 

necessary in this area. 

Mutation operators in FPGAs also differ from GAs and 

are generally based on adding a value from a user defined 

range or a preselected scheme. Fine tuning is the key but 

in most of the problems, specifying the configuration is 

more difficult than solving the problem. 

3.  MACHINE-CODED GENETIC ALGORITHMS 

In computer programs, generally compiled ones, 

numerical data are stored as byte arrays in the memory. A 

byte is a union of eight-bits and each single bit can take a 
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value of zero or one. Few bytes are required if the stored 

number is small in digits. But if the number has more 

digits or precision is important more bytes are required. 

This is why data types were implemented in compilers 

and interpreters. 

The number of bytes used for storing a numerical value in 

the memory is finite, that means, there is no way for 

representing real-values with exact precision. As the 

number of bytes increases, precision also increases and 

real values can be represented in a reasonable form. 

One of the most popular programming languages, C, has 

numerous data types for storing or pointing a numerical 

value. Suppose that p is a double-precision variable with 

the value of � with 15 decimal points. The definition of 

variable p can be written as 

double p = 3.141592653589793; 

 

If the compiler generates 32-bit code, variable p is 8 

bytes long, which can be proven using the expression 

sizeof(double). The byte representation of p can be 

obtained using the C code 

unsigned char *cpp = (unsigned char*) p; 

and is shown in Table 1. 

 

 

Table 1. Byte representation of variable p. 

 

 1 2 3 4 5 6 7 8 

Bytes 24 45 68 84 251 33 9 64 

  

The byte array shown in Table 1 is a result of a 

formulation algorithm defined in IEEE 754 - IEEE 

Standard for Floating-Point Arithmetic (Stevenson, 

1981). Compilers mostly use the same standard for 

converting floating-point numbers and byte arrays each 

other, which is to say, same result should be obtained in 

Java. 

Each single byte represented in Table 1 has a different 

effect on the variable p. In Table 2, partial effects are 

shown when the value of a single byte is increased and 

decreased by 1. 

 

 

Table 2. Partial effects of changing the values of bytes of p. 

 

Value 1 2 3 4 5 6 7 8 

0.000047936899621 24 45 68 84 251 33 9 63 

3.016592653589793 24 45 68 84 251 33 8 64 

3.141104372339793 24 45 68 84 251 32 9 64 

3.141590746241160 24 45 68 84 250 33 9 64 

3.141592646139213 24 45 68 83 251 33 9 64 

3.141592653560689 24 45 67 84 251 33 9 64 

3.141592653589679 24 44 68 84 251 33 9 64 

3.141592653589793 23 45 68 84 251 33 9 64 

3.141592653589793 24 45 68 84 251 33 9 64 

3.141592653589794 25 45 68 84 251 33 9 64 

3.141592653589907 24 46 68 84 251 33 9 64 

3.141592653618897 24 45 69 84 251 33 9 64 

3.141592661040374 24 45 68 85 251 33 9 64 

3.141594560938426 24 45 68 84 252 33 9 64 

3.142080934839793 24 45 68 84 251 34 9 64 

3.266592653589793 24 45 68 84 251 33 10 64 

205887.41614566... 24 45 68 84 251 33 9 65 
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In Table 2, it is shown that, a small change in a byte leads 

to a small change in the value of p if the byte is in the left 

side of the array, while a small change in the right most 

byte leads to a higher effect. This is the mutation operator 

of MCGA, it is based on changing a byte by 1 rather than 

adding a random value. 

Effect of the mutation operation depends on the location 

of the mutated byte. This is similar with the mutation 

operator of binary-coded genetic algorithms. In MCGA, 

each byte of a chromosome is mutated with probability 
��. If a byte is subject to be mutated it is increased by +1 

or -1 with probability ½. 

The main advantage of using such an operator is 

obtaining extremely small and huge changes without fine 

tuning of optimization and operator parameters. 

The crossover operation is also performed using the byte 

array representations of chromosomes. Suppose that e is a 

double variable with the value of exp(1) with 15 decimal 

points. The C definition of this variable is shown in the 

code below: 

double e = 2.718281828459045; 

unsigned char *cpe = (unsigned char*) e; 

Results of the one-point crossover and the uniform 

crossover are shown in Table 3 and Table 4, respectively. 

It can be seen that crossover operations produce new 

values that must not lie between two parents. But it can 

be said that produced values obtained after crossover 

operation are not far away from the parents. 

 

 

Table 3. One-point crossover on different cut-points. 

Value 1 2 3 4 5 6 7 8 

3.141592653589793 24 45 68 84 251 33 9 64 

2.718281828459045 105 87 20 139 10 191 5 64 

 

2.718281420069285 24 45 68 84 10 191 5 64 

3.141593061979553 105 87 20 139 251 33 9 64 

 

2.641592653589793 24 45 68 84 251 33 5 64 

3.218281828459045 105 87 20 139 10 191 9 64 

  

Table 4. Uniform crossover. 

Value 1 2 3 4 5 6 7 8 

3.141592653589793 24 45 68 84 251 33 9 64 

2.718281828459045 105 87 20 139 10 191 5 64 

 

2.641593061974742 24 45 20 139 251 33 5 64 

3.218281420074096 105 87 68 84 10 191 9 64 

 

3.218741500876501 24 87 68 139 251 191 9 64 

2.641132981172337 105 45 20 84 10 33 5 64 

 

Suppose that the offspring in Table 3 and Table 4 are 

generated using the formula (2) where �� and �� are 

floating-point chromosomes with values d and e. One can 

find the values of alphas for each single offspring using  

the formula 

� =
�	�

�	�
            (4) 

where g is the generated content which is the result of the 

arithmetic crossover operation. Note that there is not a 

single � and this operation is equivalent to (2) when the � 

is selected randomly in each operation. 

 

This operator simply does what the crossover operator 

does in GAs. It uses building blocks of chromosomes and 

assemblies them rather than using the real values directly. 

Its main advantage is being fast, which is to say, it does 

not require performing arithmetic operations, especially 

multiplication and division, which consume time. 

MCGA uses tournament selection as selection scheme. 

Tournament selection is a non-parametric method which 

does not need extra transformations performed on 

objective values. In tournament selection, � objective 

function values (or fitness values) are selected randomly 

from the population and the winner is labeled as ��  !"� 

where � ≤   and   is the population size. Then k 

objective function values are selected randomly and the 

best one is labeled as ��  !"�. In MCGA, � is set to 2. 
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The best solution in a population is always labeled as 

winner if it is selected for a tournament and the worst one 

loses all tournaments. Tournament selection has better or 

equivalent convergence and computational time 

complexity properties when compared to other selection 

operators that exists in the literature (Goldberg and Deb, 

1991) (Deb, 2004: 89). Since MCGA uses tournament 

selection, objective values returned by objective 

functions are directly comparable for determining the 

winners. 

Steps of MCGA can be listed in Algorithm 1. 

Algorithm 1. Steps of MCGA 

Step-0) Define the goal function. Goal function is a 

function which takes candidate solutions as input and 

returns a cost value as output. Type of the problem is 

minimization, by default. Define population size PopSize, 

crossover probability �$, mutation probability �� and 

elitism parameter e. 

Step-1) Construct a random population and an empty 

population with sizes of PopSize. The former is labeled as 

current population and the latter is labeled as next 

population. Chromosome length is equal to number of 

inputs defined in goal function. 

Step-2) Calculate cost values, copy the best e solutions 

into next population. 

Step-3) Apply tournament selection. Apply crossover 

operator on byte representations of selected chromosomes 

with probability �$. 

Step-4) Apply mutation operator on byte representations 

of offspring generated in Step-3 with probability ��. 

Copy generated offspring into next population. If PopSize 

chromosomes are copied into next population go to Step-

5 else go to Step-3. 

Step-5)  Swap the current and the next populations. 

Check if the current number of iterations is equal to 

maximum number of iterations. If not, go to Step-2 else 

go to Step-6 

Step-6) Sort the population by cost values in ascending 

order.  Report the first chromosome as the final solution. 

4.  C AND R IMPLEMENTATIONS OF MCGA 

MCGA is implemented in C, one of the most popular 

programming languages. Easiness of pointing memory 

and type casting make C the most proper language for 

such an encoding-decoding strategy. Note that, 

implementation is possible with other languages, but 

would be slow or impossible if the compiler or interpreter 

denies direct access to memory. On the contrary, direct 

access to memory is denied in Java but floating-point 

variables and byte arrays can be converted to each other 

by using ByteArrayInputStream , 

ByteArrayOutputStream, ObjectInputStream and 

ObjectOutputStream classes. 

 

Table 5.  Parameters of mcga. 

mcga(popsize, chsize, crossprob = 1, mutateprob = 1/100, elitism = 1, minval, maxval, maxiter = 10, 

evalFunc) 

popsize Number of chromosomes. 

chsize Number of parameters. 

crossprob Crossover probability. By default it is 1 

mutateprob Mutation probability. By default it is 1/100 

elitism Number of best chromosomes to be copied into next generation. By default it is 1 

minval Lower bound of the randomized initial population. 

maxval Upper bound of the randomized initial population. 

maxiter Maximum number of generations. By default it is 10 

evalFunc An R function. By default, each problem is a minimization. 

 

The R package, mcga, is written in R to wrap the original 

C code. Having an interactive console and easiness of 

calling compiled code in an interpreted manner make R 

proper for our testing issues.  Parameters and their 

descriptions of mcga are given in Table 5.  

After a function call, mcga returns a list containing a 

matrix of the final population and a vector of the 

corresponding costs. Members of the final population are 

sorted by corresponding cost values. 

 

5.  SIMULATION STUDY 

We perform a simulation study to compare search 

capabilities and time efficiency of MCGA with some 

well-known evolutionary algorithms. Differential 

evolution (Storn and Price, 1997) is an other evolutionary 

algorithm in this subject. In their simulation studies, 

Vesterstrøm and Thomsen (2004) showed that differential 

evolution (DE) is the best algorithm among others 

including particle swarm optimization (Poli et al., 2007). 

Covariance matrix adaptation evolution strategy (CMA-
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ES) is an other successful method developed for real-

valued optimization problems. Hansen and Kern (2004) 

show that CMA-ES performs well on a set of test 

functions with different number of parameters from 2 to 

80. 

In our simulation study, we compare MCGA with DE, 

CMA-ES and FPGA using their implementations mcga,  

DEoptim (Mullen et al., 2011), cmaes (Trautmann et al., 

2011) and genalg (Willighagen, 2005), respectively. We 

run our simulations on the eight test functions with 

number of parameters % = 2, 5, 10, 20, 40, 80. This test 

suite is same of the previous work reported by Hansen 

and Kern (2004) and shown in Table 6. However, we use 

a limited configuration in our simulations. For 

convenience, we set the population size and the 

maximum number of generations to 100. So the number 

of maximum function evaluations is 10000 for all. We 

apply the crossover operation for all selected 

chromosomes in MCGA and FPGA, so the crossover 

probability is 1.  The probability of mutating a single 

gene is set to 0,05 and the best chromosome is directly 

copied to next generation for those algorithms. All of the 

test functions have a known global minimum of 0 for all 

* = 0	except Schwefel has the global minimum of 

420,96874636. Simulations are performed 100 times for 

each single configuration. Results of the simulation study 

are shown in Figure 1 and Figure 2. 

As shown in Figure 1, CMA-ES and MCGA are 

prominent methods as they have smaller objective 

function values in average.  CMA-ES has the worst 

performance on Ackley, while the average of minimum 

values obtained by MCGA is close to zero in all 

configurations. MCGA outperforms CMA-ES for % + 80 

on functions Bohachevsky, Griewank, Rastrigin, Scaled 

Rastrigin and Skew Rastrigin. However, CMA-ES 

converges better on those algorithms when % = 80. In 

addition to this,  MCGA outperforms CMA-ES for all %  

values when the objective function is Schaffer. Beyond 

this nice picture, MCGA is outperformed by other 

algorithms on Schwefel. Since, the objective function is 

defined in the range of ,−500,300./, initially 

randomized population of MCGA possibly includes both 

positive and negative candidates. This doubles the search 

space and reaching the global minimum requires more 

iterations and chromosomes. 

  

 

Table 6. Test Functions (Hansen and Kern, 2004). 

Name Function Init 

Ackley 

 

 

Bohachevsky 

 

 

Griewank 

 

 

Rastrigin 

 

 

Scaled 
Rastrigin 

 

 

Schaffer 

 

 

Schwefel 
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Skew 

Rastrigin 

 

 

 

As shown in Figure 2, CMA-ES and FPGA are 

outperformed by DE and MCGA by means of time 

efficiency. CPU times in seconds are obtained using an 

Intel i5 machine with 4 Gb memory installed. The C 

library is compiled with GCC on Linux (Ubuntu) 

operating system. Although the average times represented 

in Figure 2 seem similar for DE and MCGA, differences 

between central tendencies of times are significant for 

many cases. We test the null hypothesis 

01: 3456���$78� ≤ 3456��9:� with the alternative 

hypothesis 0;: 3456���$78� < 3456��9:� using  

Wilcoxon rank-sum test where 3456���$78� and 

3456��9:� are location parameters of calculation times for 

MCGA and DE, respectively.   
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Figure 1.  Test functions and average of minimum values obtained by algorithms. 

We fail to reject the null hypothesis for all test functions 

in all dimensions except % = 40 and % = 80 using the 

significance level � = 0,05. In the cases of % = 40 and 

	% = 80, DE outperforms MCGA on all functions except 

Schaffer and Skew Rastrigin. Note that, those 

performance reports are related to language differences, 

that are, CMA-ES and FPGA are written in R which is an 

interpreted language while DE and MCGA are compiled 

to machine code and wrapped by R functions. However,  

test functions given in Table 6 are implemented in R. This 

strategy standardizes the time consumed by function 

evaluations, which spans the major portion of consumed 

time. 
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Figure 2. Performance of algorithms in CPU times. 

 

We perform the same simulation study to compare search 

capabilities of algorithms with more iterations. We set the 

number of iterations to 500 and results of this simulation 

are given in Figure 3. 
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Figure 3. Test functions and average of minimum values obtained by algorithms with more iterations. 

 

In Figure 3, it is shown that MCGA outperforms the other 

algorithms in all dimensions and all functions except 

Schwefel. It is also shown that, MCGA obtains smaller 

objective values when the number of iterations is 500 in 

higher dimensions. CMA-ES and DE have reasonable 

convergence properties relative to FPGA. Comparisons of 

time efficiencies are nearly same as in Figure 2.  DE and 

MCGA are the prominent algorithms by means of time 

efficiency. 

6.  CONCLUSION 

In this paper, we suggest a new encoding-decoding 

strategy for the floating-point chromosomes. Computers 

already encode floating-point numbers using a high order 

alphabet which is called a byte. Performing the classical 

crossover and the mutation operations on those bytes 

makes these operators interpretable on the floating-point 

genetic algorithms. Use of these suggested operators also 

reduces the effort for the fine tuning of the algorithm 

parameters and CPU time required by genetic operators 

which are mostly based on multiplication and division. 

Floating-point variable types are designed to store an 

huge interval of numbers and the genetic operators 

suggested in this paper are capable to explore the entire 

search space in reasonable times. We perform a 

simulation study to compare performances of our 

suggested algorithm and some other evolutionary 

algorithms by means of convergence property and time 

efficiency. Results of our simulation study show that 

MCGA converges faster when the number of dimensions 

is relatively small even with a limited configuration.  It is 

also shown that MCGA reaches the global optimum in 

higher dimensions for most of test functions when the 

number of iterations is moderate. 
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