
Gazi University Journal of Science

GU J Sci

26(1):85-95 (2013)

♠Corresponding author, e-mail: mhsatman@istanbul.edu.tr

Machine Coded Genetic Algorithms For Real Parameter

Optimization Problems

Mehmet Hakan SATMAN

1,♠

1
Istanbul University, Department of Econometrics, Beyazit, Istanbul, TURKEY

Received: 19.12.2011 Revised: 04.11.2012 Accepted: 24.11.2012

ABSTRACT

In this paper, we introduce a new encoding-decoding strategy for the floating-point genetic algorithms and we
call the genetic algorithms which use this strategy Machine Coded Genetic Algorithms. We suggest applying

classical crossover and mutation operations on the byte representations of real values which are already encoded

in memory. This is equivalent to use a 256-unary alphabet with 8 genes for a single real value. Use of byte
representations makes the classical genetic operators interpretable in floating-point chromosomes and increases

the search capabilities in a wide range without losing accuracy. This strategy also decreases the computation

time needed for the genetic operators. Simulation studies show that our strategy performs well on many test
functions by means of converging to global optimum and time efficiency.

Key Words: Genetic algorithms, Chromosome encoding, Real parameter optimization.

1. INTRODUCTION

The classical genetic algorithm (GA) is based on binary

coded chromosomes (Holland, 1975), (Goldberg, 1989).

Since GAs run with the fitness values of candidate

solutions rather than the goal function itself, they are

problem independent. They do not require the functions

to be continuous and differentiable and they do not suffer

86 GU J Sci., 26(1):85-95 (2013)/ Mehmet Hakan SATMAN♠

from local optima when the population size is large

enough and the initial population is well randomized to

obtain diversity.

Although the GA performs well on many problems, it is

more efficient to use floating-point genetic algorithms

(FPGAs) in real-valued problems. Janikow and

Michalewicz (1991) stated that the FPGA is faster, more

consistent and precise than the GA. Binary chromosomes

need more bits to represent a wider solution space

whereas the use of floating-point parameters makes it

possible to use larger domains even the limits of

parameters are unknown (Herrera et al., 1998). However,

crossover and mutation operations do not find a place in

FPGA’s at first glance. The mutation operator which is

defined as flipping a single bit is not meaningful for real

numbers. It is also not clear how to combine two parent

real vectors to produce new real vectors (Deb, 2004).

Radcliffe (1992) argued that there is no requirement that

the idealized genetic operators used in evolutionary

search be defined with respect to the chosen

representation, nor indeed with respect to any specific

representation. In addition to this, different optimization

algorithms with different coding-decoding strategies can

either be successful with different configurations, which

are to say, the success of genetic algorithms is not related

to coding-decoding strategy (Herrera et al., 1998) (Fogel

and Ghozeil, 1997). Finally, Reeves (1993) showed that a

higher cardinality alphabet needs the population size to

be larger in order to ensure diversity.

In this paper, we introduce a new encoding-decoding

strategy for FPGAs. In our algorithm, chromosomes are

real values but the crossover and the mutation operations

are applied on byte representations of chromosomes in

computer memory so that it neither encodes

chromosomes nor uses real values in genetic operations.

The byte representation is similar to binary representation

so the original interpretation of genetic operators is

clearer and finds a place in FPGAs. A C program is

written as an implementation and the R (R Development

Core Team, 2012) wrapper package mcga (Satman, 2012)

is written and ready for downloading at the CRAN

repositories. The source code of the C library is included

in this package and ready for use in both languages. Note

that simulations on this paper are performed using the R

package. External function calls may slow down the

library but the interactive R console may be helpful to

show the search capabilities of MCGA.

In Section 2, we discuss the use of some genetic

operators in FPGAs. In Section 3, we define a new hybrid

strategy for crossover and mutation operations and

introduce the machine coded genetic algorithms

(MCGAs). In Section 4, we give a brief description of our

implementation. In Section 5, we prepare a simulation

study to compare the performance of MCGA with some

other evolutionary algorithms using a test case of well-

known functions.

2. OPERATORS IN FLOATING-POINT GENETIC

ALGORITHMS

There are many reasons for using FPGAs in real-valued

optimization problems. Chromosomes are real vectors

and there is no need for long bit strings. Each single gene

of a chromosome is a real number which has high

precision in a wide range. There is also some attempt to

make GAs more precise with a limited chromosome

length in real-valued problems. To ensure precision in the

GAs, Schraudolph and Belew (1992) suggested the

method of Dynamic Parameter Encoding which is based

on a zooming operator. Their algorithm starts the search

in a predefined range and narrows this range after many

generations in order to represent more precise numbers

with the same length of bit strings.

As we mentioned in Section 1, there is no clear

equivalent method for the classical crossover and the

mutation operations in FPGAs. Some authors suggested

many methods for those operators whereas the classical

mutation has a unique definition which is simply flipping

a bit and the classical crossover has similar definitions

which are aimed to combine two chromosomes. Suppose

that �� and �� are chromosomes of a population P with

binary content. The one-point crossover operation of GAs

can be applied in a single point as

�� = ��
�, ��

�, … , ��	�
� , ��

�, ��
�
� , … , ��

� (1)

where k is the chromosome length and h is the cut point

where 0 < ℎ < �. One can apply this naive method on

the floating-point chromosomes. But it is clear that this

method combines variables rather than assembles piece

of blocks. Deb (2004) argued that this approach can-not

diversify the candidates and mutation attains more

importance. Note that choosing more than one cut points

is possible but its task will still be far from being

fulfilled.

A better approach is producing offspring as linear

combinations of parent chromosomes. Suppose that ��

and �� are floating-point chromosomes which contain real

values. The linear combination of those parents can be

written as

�� = ��� + �1 − ���� (2)

where � is a real value. When � is selected within the

range 0<	�<1, this operator is equivalent to weighted

average of two parents. Other values for α, for example

1,5, might be used to generate new offspring that lie out

of the space spanned by the parents.

There are many crossover methods in the literature and

almost all of them are based on linear or non-linear

combinations of real values which are contained by

floating-point chromosomes. Deb (2004) concluded that

crossover methods developed for FPGAs have equal

performance and are content dependent. Elsayed et al.

(2011) performed a simulation study among the crossover

and mutation methods in constraint problems and

concluded that there is no superior method. Herrera et al.

(2003) made a comprehensive and comparative study

among the crossover methods in FPGAs and concluded

that additional study for developing new methods is

necessary in this area.

Mutation operators in FPGAs also differ from GAs and

are generally based on adding a value from a user defined

range or a preselected scheme. Fine tuning is the key but

in most of the problems, specifying the configuration is

more difficult than solving the problem.

3. MACHINE-CODED GENETIC ALGORITHMS

In computer programs, generally compiled ones,

numerical data are stored as byte arrays in the memory. A

byte is a union of eight-bits and each single bit can take a

 GU J Sci., 26(1):85-95 (2013)/ Mehmet Hakan SATMAN 87

value of zero or one. Few bytes are required if the stored

number is small in digits. But if the number has more

digits or precision is important more bytes are required.

This is why data types were implemented in compilers

and interpreters.

The number of bytes used for storing a numerical value in

the memory is finite, that means, there is no way for

representing real-values with exact precision. As the

number of bytes increases, precision also increases and

real values can be represented in a reasonable form.

One of the most popular programming languages, C, has

numerous data types for storing or pointing a numerical

value. Suppose that p is a double-precision variable with

the value of � with 15 decimal points. The definition of

variable p can be written as

double p = 3.141592653589793;

If the compiler generates 32-bit code, variable p is 8

bytes long, which can be proven using the expression

sizeof(double). The byte representation of p can be

obtained using the C code

unsigned char *cpp = (unsigned char*) p;

and is shown in Table 1.

Table 1. Byte representation of variable p.

 1 2 3 4 5 6 7 8

Bytes 24 45 68 84 251 33 9 64

The byte array shown in Table 1 is a result of a

formulation algorithm defined in IEEE 754 - IEEE

Standard for Floating-Point Arithmetic (Stevenson,

1981). Compilers mostly use the same standard for

converting floating-point numbers and byte arrays each

other, which is to say, same result should be obtained in

Java.

Each single byte represented in Table 1 has a different

effect on the variable p. In Table 2, partial effects are

shown when the value of a single byte is increased and

decreased by 1.

Table 2. Partial effects of changing the values of bytes of p.

Value 1 2 3 4 5 6 7 8

0.000047936899621 24 45 68 84 251 33 9 63

3.016592653589793 24 45 68 84 251 33 8 64

3.141104372339793 24 45 68 84 251 32 9 64

3.141590746241160 24 45 68 84 250 33 9 64

3.141592646139213 24 45 68 83 251 33 9 64

3.141592653560689 24 45 67 84 251 33 9 64

3.141592653589679 24 44 68 84 251 33 9 64

3.141592653589793 23 45 68 84 251 33 9 64

3.141592653589793 24 45 68 84 251 33 9 64

3.141592653589794 25 45 68 84 251 33 9 64

3.141592653589907 24 46 68 84 251 33 9 64

3.141592653618897 24 45 69 84 251 33 9 64

3.141592661040374 24 45 68 85 251 33 9 64

3.141594560938426 24 45 68 84 252 33 9 64

3.142080934839793 24 45 68 84 251 34 9 64

3.266592653589793 24 45 68 84 251 33 10 64

205887.41614566... 24 45 68 84 251 33 9 65

88 GU J Sci., 26(1):85-95 (2013)/ Mehmet Hakan SATMAN♠

In Table 2, it is shown that, a small change in a byte leads

to a small change in the value of p if the byte is in the left

side of the array, while a small change in the right most

byte leads to a higher effect. This is the mutation operator

of MCGA, it is based on changing a byte by 1 rather than

adding a random value.

Effect of the mutation operation depends on the location

of the mutated byte. This is similar with the mutation

operator of binary-coded genetic algorithms. In MCGA,

each byte of a chromosome is mutated with probability
��. If a byte is subject to be mutated it is increased by +1

or -1 with probability ½.

The main advantage of using such an operator is

obtaining extremely small and huge changes without fine

tuning of optimization and operator parameters.

The crossover operation is also performed using the byte

array representations of chromosomes. Suppose that e is a

double variable with the value of exp(1) with 15 decimal

points. The C definition of this variable is shown in the

code below:

double e = 2.718281828459045;

unsigned char *cpe = (unsigned char*) e;

Results of the one-point crossover and the uniform

crossover are shown in Table 3 and Table 4, respectively.

It can be seen that crossover operations produce new

values that must not lie between two parents. But it can

be said that produced values obtained after crossover

operation are not far away from the parents.

Table 3. One-point crossover on different cut-points.

Value 1 2 3 4 5 6 7 8

3.141592653589793 24 45 68 84 251 33 9 64

2.718281828459045 105 87 20 139 10 191 5 64

2.718281420069285 24 45 68 84 10 191 5 64

3.141593061979553 105 87 20 139 251 33 9 64

2.641592653589793 24 45 68 84 251 33 5 64

3.218281828459045 105 87 20 139 10 191 9 64

Table 4. Uniform crossover.

Value 1 2 3 4 5 6 7 8

3.141592653589793 24 45 68 84 251 33 9 64

2.718281828459045 105 87 20 139 10 191 5 64

2.641593061974742 24 45 20 139 251 33 5 64

3.218281420074096 105 87 68 84 10 191 9 64

3.218741500876501 24 87 68 139 251 191 9 64

2.641132981172337 105 45 20 84 10 33 5 64

Suppose that the offspring in Table 3 and Table 4 are

generated using the formula (2) where �� and �� are

floating-point chromosomes with values d and e. One can

find the values of alphas for each single offspring using

the formula

� =
�	�

�	�
 (4)

where g is the generated content which is the result of the

arithmetic crossover operation. Note that there is not a

single � and this operation is equivalent to (2) when the �

is selected randomly in each operation.

This operator simply does what the crossover operator

does in GAs. It uses building blocks of chromosomes and

assemblies them rather than using the real values directly.

Its main advantage is being fast, which is to say, it does

not require performing arithmetic operations, especially

multiplication and division, which consume time.

MCGA uses tournament selection as selection scheme.

Tournament selection is a non-parametric method which

does not need extra transformations performed on

objective values. In tournament selection, � objective

function values (or fitness values) are selected randomly

from the population and the winner is labeled as �� !"�

where � ≤ and is the population size. Then k

objective function values are selected randomly and the

best one is labeled as �� !"�. In MCGA, � is set to 2.

 GU J Sci., 26(1):85-95 (2013)/ Mehmet Hakan SATMAN 89

The best solution in a population is always labeled as

winner if it is selected for a tournament and the worst one

loses all tournaments. Tournament selection has better or

equivalent convergence and computational time

complexity properties when compared to other selection

operators that exists in the literature (Goldberg and Deb,

1991) (Deb, 2004: 89). Since MCGA uses tournament

selection, objective values returned by objective

functions are directly comparable for determining the

winners.

Steps of MCGA can be listed in Algorithm 1.

Algorithm 1. Steps of MCGA

Step-0) Define the goal function. Goal function is a

function which takes candidate solutions as input and

returns a cost value as output. Type of the problem is

minimization, by default. Define population size PopSize,

crossover probability �$, mutation probability �� and

elitism parameter e.

Step-1) Construct a random population and an empty

population with sizes of PopSize. The former is labeled as

current population and the latter is labeled as next

population. Chromosome length is equal to number of

inputs defined in goal function.

Step-2) Calculate cost values, copy the best e solutions

into next population.

Step-3) Apply tournament selection. Apply crossover

operator on byte representations of selected chromosomes

with probability �$.

Step-4) Apply mutation operator on byte representations

of offspring generated in Step-3 with probability ��.

Copy generated offspring into next population. If PopSize

chromosomes are copied into next population go to Step-

5 else go to Step-3.

Step-5) Swap the current and the next populations.

Check if the current number of iterations is equal to

maximum number of iterations. If not, go to Step-2 else

go to Step-6

Step-6) Sort the population by cost values in ascending

order. Report the first chromosome as the final solution.

4. C AND R IMPLEMENTATIONS OF MCGA

MCGA is implemented in C, one of the most popular

programming languages. Easiness of pointing memory

and type casting make C the most proper language for

such an encoding-decoding strategy. Note that,

implementation is possible with other languages, but

would be slow or impossible if the compiler or interpreter

denies direct access to memory. On the contrary, direct

access to memory is denied in Java but floating-point

variables and byte arrays can be converted to each other

by using ByteArrayInputStream ,

ByteArrayOutputStream, ObjectInputStream and

ObjectOutputStream classes.

Table 5. Parameters of mcga.

mcga(popsize, chsize, crossprob = 1, mutateprob = 1/100, elitism = 1, minval, maxval, maxiter = 10,

evalFunc)

popsize Number of chromosomes.

chsize Number of parameters.

crossprob Crossover probability. By default it is 1

mutateprob Mutation probability. By default it is 1/100

elitism Number of best chromosomes to be copied into next generation. By default it is 1

minval Lower bound of the randomized initial population.

maxval Upper bound of the randomized initial population.

maxiter Maximum number of generations. By default it is 10

evalFunc An R function. By default, each problem is a minimization.

The R package, mcga, is written in R to wrap the original

C code. Having an interactive console and easiness of

calling compiled code in an interpreted manner make R

proper for our testing issues. Parameters and their

descriptions of mcga are given in Table 5.

After a function call, mcga returns a list containing a

matrix of the final population and a vector of the

corresponding costs. Members of the final population are

sorted by corresponding cost values.

5. SIMULATION STUDY

We perform a simulation study to compare search

capabilities and time efficiency of MCGA with some

well-known evolutionary algorithms. Differential

evolution (Storn and Price, 1997) is an other evolutionary

algorithm in this subject. In their simulation studies,

Vesterstrøm and Thomsen (2004) showed that differential

evolution (DE) is the best algorithm among others

including particle swarm optimization (Poli et al., 2007).

Covariance matrix adaptation evolution strategy (CMA-

90 GU J Sci., 26(1):85-95 (2013)/ Mehmet Hakan SATMAN♠

ES) is an other successful method developed for real-

valued optimization problems. Hansen and Kern (2004)

show that CMA-ES performs well on a set of test

functions with different number of parameters from 2 to

80.

In our simulation study, we compare MCGA with DE,

CMA-ES and FPGA using their implementations mcga,

DEoptim (Mullen et al., 2011), cmaes (Trautmann et al.,

2011) and genalg (Willighagen, 2005), respectively. We

run our simulations on the eight test functions with

number of parameters % = 2, 5, 10, 20, 40, 80. This test

suite is same of the previous work reported by Hansen

and Kern (2004) and shown in Table 6. However, we use

a limited configuration in our simulations. For

convenience, we set the population size and the

maximum number of generations to 100. So the number

of maximum function evaluations is 10000 for all. We

apply the crossover operation for all selected

chromosomes in MCGA and FPGA, so the crossover

probability is 1. The probability of mutating a single

gene is set to 0,05 and the best chromosome is directly

copied to next generation for those algorithms. All of the

test functions have a known global minimum of 0 for all

* = 0	except Schwefel has the global minimum of

420,96874636. Simulations are performed 100 times for

each single configuration. Results of the simulation study

are shown in Figure 1 and Figure 2.

As shown in Figure 1, CMA-ES and MCGA are

prominent methods as they have smaller objective

function values in average. CMA-ES has the worst

performance on Ackley, while the average of minimum

values obtained by MCGA is close to zero in all

configurations. MCGA outperforms CMA-ES for % + 80

on functions Bohachevsky, Griewank, Rastrigin, Scaled

Rastrigin and Skew Rastrigin. However, CMA-ES

converges better on those algorithms when % = 80. In

addition to this, MCGA outperforms CMA-ES for all %

values when the objective function is Schaffer. Beyond

this nice picture, MCGA is outperformed by other

algorithms on Schwefel. Since, the objective function is

defined in the range of ,−500,300./, initially

randomized population of MCGA possibly includes both

positive and negative candidates. This doubles the search

space and reaching the global minimum requires more

iterations and chromosomes.

Table 6. Test Functions (Hansen and Kern, 2004).

Name Function Init

Ackley

Bohachevsky

Griewank

Rastrigin

Scaled
Rastrigin

Schaffer

Schwefel

 GU J Sci., 26(1):85-95 (2013)/ Mehmet Hakan SATMAN 91

Skew

Rastrigin

As shown in Figure 2, CMA-ES and FPGA are

outperformed by DE and MCGA by means of time

efficiency. CPU times in seconds are obtained using an

Intel i5 machine with 4 Gb memory installed. The C

library is compiled with GCC on Linux (Ubuntu)

operating system. Although the average times represented

in Figure 2 seem similar for DE and MCGA, differences

between central tendencies of times are significant for

many cases. We test the null hypothesis

01: 3456���$78� ≤ 3456��9:� with the alternative

hypothesis 0;: 3456���$78� < 3456��9:� using

Wilcoxon rank-sum test where 3456���$78� and

3456��9:� are location parameters of calculation times for

MCGA and DE, respectively.

92 GU J Sci., 26(1):85-95 (2013)/ Mehmet Hakan SATMAN♠

Figure 1. Test functions and average of minimum values obtained by algorithms.

We fail to reject the null hypothesis for all test functions

in all dimensions except % = 40 and % = 80 using the

significance level � = 0,05. In the cases of % = 40 and

	% = 80, DE outperforms MCGA on all functions except

Schaffer and Skew Rastrigin. Note that, those

performance reports are related to language differences,

that are, CMA-ES and FPGA are written in R which is an

interpreted language while DE and MCGA are compiled

to machine code and wrapped by R functions. However,

test functions given in Table 6 are implemented in R. This

strategy standardizes the time consumed by function

evaluations, which spans the major portion of consumed

time.

 GU J Sci., 26(1):85-95 (2013)/ Mehmet Hakan SATMAN 93

Figure 2. Performance of algorithms in CPU times.

We perform the same simulation study to compare search

capabilities of algorithms with more iterations. We set the

number of iterations to 500 and results of this simulation

are given in Figure 3.

94 GU J Sci., 26(1):85-95 (2013)/ Mehmet Hakan SATMAN♠

Figure 3. Test functions and average of minimum values obtained by algorithms with more iterations.

In Figure 3, it is shown that MCGA outperforms the other

algorithms in all dimensions and all functions except

Schwefel. It is also shown that, MCGA obtains smaller

objective values when the number of iterations is 500 in

higher dimensions. CMA-ES and DE have reasonable

convergence properties relative to FPGA. Comparisons of

time efficiencies are nearly same as in Figure 2. DE and

MCGA are the prominent algorithms by means of time

efficiency.

6. CONCLUSION

In this paper, we suggest a new encoding-decoding

strategy for the floating-point chromosomes. Computers

already encode floating-point numbers using a high order

alphabet which is called a byte. Performing the classical

crossover and the mutation operations on those bytes

makes these operators interpretable on the floating-point

genetic algorithms. Use of these suggested operators also

reduces the effort for the fine tuning of the algorithm

parameters and CPU time required by genetic operators

which are mostly based on multiplication and division.

Floating-point variable types are designed to store an

huge interval of numbers and the genetic operators

suggested in this paper are capable to explore the entire

search space in reasonable times. We perform a

simulation study to compare performances of our

suggested algorithm and some other evolutionary

algorithms by means of convergence property and time

efficiency. Results of our simulation study show that

MCGA converges faster when the number of dimensions

is relatively small even with a limited configuration. It is

also shown that MCGA reaches the global optimum in

higher dimensions for most of test functions when the

number of iterations is moderate.

REFERENCES

[1] Deb, K., “Multi-Objective Optimization using

Evolutionary Algorithms”, John Wiley & Sons,

(2004).

[2] Elsayed, S.M., Sarker, R.A., Essam, D.L., “Multi-

operator Based Evolutionary Algorithms for Solving

Constrained Optimization Problems”, Computers &

Operations Research, 38: 1877-1896 (2011).

[3] Fogel, D.B., Ghozeil, A., “A Note on

Representations and Variation Operators”, IEEE

Transactions on Evolutionary Computation, 1: 2,

July (1997).

[4] Goldberg, D., “Genetic Algorithms in Search”,

Optimization, and Machine Learning, Addison-

Wesley, (1989).

[5] Goldberg, D. E., Deb, K., “A Comparison of

selection schemes used in genetic algorithms”, In

Foundations of Genetic Algorithms 1 (FOGA-1),

69-93 (1991).

[6] Herrera, F., Lozano, M., Sanchez, A.M., “A

Taxonomy for the Crossover Operator for Real-

Coded Genetic Algorithms: An Experimental

Study”, International Journal of Intelligent

Systems, 18: 309-338 (2003).

[7] Herrera, F., Lozano, M., Verdegay, J.L., “Tackling

Real-Coded Genetic Algorithms: Operators and

Tools for Behavioural Analysis”, Artificial

Intelligence Review, 12: 265-319 (1998).

[8] Hansen, N., Kern, S., “Evaluating the CMA

Evolution Strategy on Multimodal Test

Functions”, Parallel Problem Solving from Nature

- PPSN VIII, 282-291, (2004).

[9] Holland, J.H.,” Adaptation in Natural and Artificial

Systems”, University of Michigan Press, (1975).

[10] Janikow, C.Z., Michalewicz, Z., “An Experimental

Comparison of Binary and Floating Point

Representations in Genetic Algorithms”,

Proceedings of the Fourth International
Conference on Genetic Algorithms, Morgan

Kaufmann, 31-36 (1991).

[11] Mullen, K., Ardia, D., Gil, D., Windover, D., Cline,

J., “DEoptim: An R Package for Global

Optimization by Differential Evolution”, Journal of

Statistical Software, 40(6): 1-26 (2011).

[12] Poli, R., Kennedy, J., Blackwell, T., “Particle swarm

optimization - An overview, Swarm Intelligence,

1: 33-57 (2007).

 GU J Sci., 26(1):85-95 (2013)/ Mehmet Hakan SATMAN 95

[13] R Development Core Team, “R: A Language and

Environment for Statistical Computing”, R

Foundation for Statistical Computing,

http://www.R-project.org/, (2012).

[14] Radcliffe, N.J., “Non-Linear Genetic

Representations”, Parallel Problem Solving from

Nature 2, R. Manner and B. Manderick (Ed.)

(Elsevier Science Publishers, Amsterdam), 259-268,

(1992).

[15] Reeves, C.R., “Using Genetic Algorithms with

Small Populations”, Proceedings of the 5th

International Conference on Genetic Algorithms,

Morgan Kaufmann, San Mateo, CA, (1993).

[16] Satman, M.H., “mcga: Machine coded genetic

algorithms for real-valued optimization problems”,

R package version 2.0.6, http://cran.r-

project.org/web/packages/mcga/index.html, (2012).

[17] Schraudolph, N.N., Belew, R.K., “Dynamic

Parameter Encoding for Genetic Algorithms”,

Machine Learning, 9: 9-21 (1992).

[18] Stevenson, D., “A Proposed Standard for Binary

Floating-Point Arithmetic”, Draft 8.0 of IEEE Task

P754, 10.1109/C-M.1981.220377, 51-62 (1981).

[19] Storn, R., Price, K., “Differential Evolution – A

Simple and Efficient Heuristic for Global

Optimization over Continuous Spaces” , Journal of

Global Optimization, 11: 341-359 (1997).

[20] Trautmann, H., Mersmann, O., Arnu, D., “cmaes:

Covariance Matrix Adapting Evolutionary Strategy”,

R package version 1.0-11, http://CRAN.R-

project.org/package=cmaes, (2011).

[21] Vesterstrøm, J., Thomsen, R., “A Comparative Study

of Differential Evolution, Particle Swarm

Optimization, and Evolutionary Algorithms on

Numerical Benchmark Problems” , CEC2004.

Congress on June, 2: 1980-1987 (2004).

[22] Willighagen, E., “genalg: R Based Genetic

Algorithm”, R package version 0.1.1, http://cran.r-

project.org/web/packages/genalg/index.html, (2005).

