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Abstract 

In this study, first of all we define spaces ( )dS  and ( )d

wS  and give examples of these spaces. After we 

define ( )d

wS  to be the vector space of 1 ( )d

wf L  such that the fractional Fourier transform F f  belongs 

to ( )d

wS . We endow this space with the sum norm 
1,w wS w S

f f F f     and then show that it is a 

Banach space. We show that ( )d

wS

 
is a Banach algebra and a Banach ideal on  1 d

wL  if the space 

( )d

wS  is solid. Furthermore, we prove that the space ( )d

wS  is translation and character invaryant and 

also these operators are continuous. Finally, we discuss inclusion properties of these spaces. 

 

Keywords: Fractional Fourier transform, convolution, Segal algebras. 

 

wS
  Uzayının Bazı Özellikleri 

Öz 

Bu çalışmada ilk olarak ( )dS  ve ( )d

wS  uzayları tanımlandı ve bu uzaylara örnekler verildi. Sonra F f  

kesirli Fourier dönüşümü ( )d

wS  uzayında olan 1 ( )d

wf L  fonksiyonlarının ( )d

wS  vektör uzayı 

tanımlandı. Yine ( )d

wS  uzayı üzerinde 
1,w wS w S

f f F f     fonksiyonunun bir norm olduğu ifade 

edildikten sonra ( )d

wS  uzayının Banach uzayı olduğu ve ( )d

wS  uzayının bir katı (solid) uzay olması 

koşuluyla bu uzayın bir Banach cebiri ve 1 ( )d

wL  uzayının bir Banach ideali olduğu gösterildi. Ayrıca 

( )d

wS  uzayının öteleme ve karakter işlemcileri altında değişmez olduğu ve bu operatörlerin sürekliliği 

ispatlandı. Son olarak bu uzayların kapsama özellikleri tartışıldı. 

 

Anahtar Kelimeler: Kesirli Fourier dönüşümü, girişim işlemi, Segal cebirleri. 

 

1. Introduction and Preliminaries 

Throughout this article, we study on d . We 

write the Lebesgue space   ,p d

p
L f , 

for 1 p   . A weight function w  on d  is 

a measurable and locally bounded function 

that satisfying   1w x   and 

     w x y w x w y   for all , dx y . We 

define, for 1 p   , 

    .p d p d

wL f fw L   

https://orcid.org/0000-0003-3597-6161
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It is well known that  p d

wL  is a Banach 

space under the norm 
,p w p

f fw  (Reiter 

and Stegeman, 2000). Let 1w  and 2w  are two 

weight functions. We state that 1 2w w  if 

there exists 0c   such that    1 2w x cw x  

for all dx  (Feichtinger and Gürkanlı, 

1990).  

Let A  and B  Banach algebras and B A . 

B  is called a Banach ideal of A  if  

B A
f f  and fg B , with 

B B A
fg f g  for all f B , g A  

(Feichtinger vd., 1979). A Banach function 

space  , .
B

B  of measurable functions is 

called solid, if for every f B  and any 

measurable function g  satisfying 

   g x f x  almost everywhere, g B  

and 
B B

g f  (Feichtinger, 1977). 

Let  ( ), .d

B
B  be a complex valued 

measurable functions on d . ( )dB  is 

called homogeneous Banach space if it is 

strongly translation invaryant (i.e

( )d

yT f B  and y BB
T f f ) where 

   yT f t f t y   for each y  and the 

mapping yy T f  from d  into ( )dB  is 

continuous for each f  in ( )dB . 

A homogeneous Banach algebra ( )dB  is a 

subalgebra of  1 dL  such that ( )dB  is 

itself a Banach algebra with respect to a 

norm 
1

. .
B

 . A homogeneous Banach 

algebra is called Segal algebra if it is dense in 

 1 dL  (Wang, 1977). 

Let w  be a weight function on d . The 

space ( )d

wS  is subalgebra of 1 ( )d

wL  

satisfying the following conditions (Cigler, 

1969): 

 i) ( )d

wS  is dense in 
1 ( )d

wL  

ii) ( )d

wS  is a Banach algebra under some 

norm .
wS

 and the inequality 
1, ww S

f f  

holds for all ( )d

wf S  

iii) ( )d

wS  is translation invaryant and the 

mapping yy T f  from d  into ( )d

wS  is 

continuous. 

iv) For each ( )d

wf S  and all 
dy , the 

inequality  
ww

y SS
T f w y f  holds. 

We define the Fourier transform f  (or Ff ) 

of a function  1f L  as 

 
1

( ) ( ) .
2

i tf Ff f t e dt 








    

    The fractional Fourier transform is a 

generalization of the Fourier transform 

through an angle parameter   and can be 

considered as a rotation by an angle   in the 

time-frequency plane. The fractional Fourier 

transform with an angle   of a function 

 1f L  is defined by 

( ) ( , ) ( )F f u K u t f t dt 





   

where,  
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 2 2 cot cosec
2

( , )

,  if ,  

( ),                    if 2 ,  

( ),                    if (2 1) ,  

i
u t iut

K u t

Me k k

t u k k

t u k k



 

 

  

  

 
 


 
   


   

1 cot

2

i
M






  and   be a Dirac delta 

function. The fractional Fourier transform 

with 
2


   corresponds to the Fourier 

transform, (Almeida, 1994; Almeida, 1997; 

Bultheel and Martinez, 2002; Namias, 1980; 

Ozaktas vd., 2001). The fractional Fourier 

transform can be extended for higher 

dimensions as Bultheel and Martinez (2002): 

  

 

 

1

1

,..., 1

,..., 1 1

1 1

,...,

... ,..., ; ,...,

,..., ...

d

d

d

d d

d d

F f u u

K u u t t

f t t dt dt

 

 

 

 





   

or shortly 

   ( ) ... , ,F f u K u t f t dt 

 

 

    

where 

   

     
1

1 2

,..., 1 1

1 1 2 2

, ,..., ; ,...,

            , , ... , .

d

d

d d

d d

K u t K u u t t

K u t K u t K u t

  

  





 Let  1 2, ,..., d     where i k   for 

each index i  with 1 i d   and k . The 

  convolution operation define as: 

      
 

1

cot

d

j j j j

j

d

iy y x

f g x f y g x y e dy





  

for all  1, df g L  (Toksoy and Sandıkçı, 

2015).   

    Troughout this paper, unless otherwise 

indicated, we get  1 2, ,..., d     where 

i k   for each index i  with 1 i d   and 

k . In this work, we will define a space 

( )d

wS  is analogous with the space 

, ( )d

wS   which is define in (Doğan and 

Gürkanlı, 2000). Since the space ( )d

wS  is 

defined by using    convolution operation 

and fractional Fourier transform, then this 

space is a generalization of the space 

, ( )d

w wS . If we take 
2

i


   for each index 

i  with 1 i d  , the   convolution 

corresponds to ordinary convolution and also 

the fractional Fourier transform corresponds 

to the Fourier transform. An angle parameter 

  provide us more overview of results that 

established in (Doğan and Gürkanlı, 2000). 

 

2. The Space  d

w
S


 and Some 

Properties 

Let w  be a weight function on d . It is well 

known by Theorem 8 in Toksoy and Sandıkçı 

(2015),  1 d

wL  is a Banach algebra under 

  convolution. Then also the space 
1( )dL  

is a Banach algebra under   convolution. 

In this section, the space that we will denote 

by ( )dS
 under a norm .

s
 will be called 

  convolution Segal algebra if it satisfies 

conditions of Segal algebra under   

convolution operation.  

Now, we will give an example that is a 

( )dS
 space. Let proof the following 

Lemma for this example. 

 Lemma 2.1. Let 1 p   . The space 

( )p dL  is Banach module over 
1( )dL  

under   convolution. 

Proof. Let 
1( )df L  and ( )p dg L . 

Then we write  
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  

   
 

   

1

cot

.

d

d

j j j j

j

d d

d d

p

p

p

p

iy y x

p

f g

f g x dx

f y g x y e dy dx

f y g x y dy dx








 


 

 
   

 



 

 

Since the numbers p  and 
1

p

p 
 are 

conjugate, by using  Hölder's inequality we 

get 

   

 

   

   

1

1

1

1

1

1

1

 

.

d d

d

d d

d d

p

p

p
p

p
p

p

pp

pp

p p

p

f g

f y g x y dy

f y dy dx

f f y g x y dydx

f g x y dx f y dy

f g










 

   
 



  

   
  



 

 
   

 



 



 

 

 

Thus we have 

1
.

p p
f g f g   (1) 

It is easy to see that the other conditions of 

the Banach module are satisfied. 

Example 2.2. Let 1 p   . It is well 

known by Reiter (1971) the space 
1( ) ( )d p dL L  is a Segal algebra under   

convolution with the norm 
1

. . .
S p
  . If 

we take   convolution instead of   

convolution, then the space 
1( ) ( )d p dL L  

be a ( )dS
 Segal algebra under the norm 

1
. . .

s p   . It is enough to show that the 

space 
1( ) ( )d p dL L  is a Banach algebra 

under   convolution. Let 
1, ( ) ( )d p df g L L  . By using Lemma 

2.1 and Theorem 8 in Toksoy and Sandıkçı 

(2015), we have 

1

1 1 1
             

             .

s p

p

s s

f g f g f g

f g f g

f g



 

    

 



 

It is easy to show other conditions of being 

Banach algebra. Then 1( ) ( )d p dL L  is a 

( )dS
 Segal algebra.  

Let w  be a weight function on d . If we 

take   convolution instead of   convolution 

in the definition of ( )d

wS , then we will 

denote the space which provides conditions 

of the space ( )d

wS  by ( )d

wS . The norm 

of this space will also be denoted by .
wS . 

Now, we will give an example of a ( )d

wS
 

space. For this, we need the following 

lemma. 

Lemma 2.3. Let 1 p    and w  be a 

weight function on d . The space ( )p d

wL  is 

Banach module over 
1 ( )d

wL  under   

convolution. 

Proof. Let 
1 ( )d

wf L  and ( )p d

wg L . 

Then 
1( )dfw L  and ( )p dgw L . Hence, 

we write 
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    

       

 

   

1

,

1

1

cot

.

d

d d

d

j j j j

j

p w

p
p

p p

iy y x

p

f g

f g x w x dx

f y w y g x y w x y

e dy dx

fw gw








 
   
 


  




 

 



 



 

 

By using (1) we obtain 

   
,

1

1, ,

              

              .

p w p

p

w p w

f g fw gw

fw gw

f g

  





 (2) 

It is easy to see that the other conditions of 

the Banach module are satisfied. 

Example 2.4. Let 1 p    and w  be a 

weight function on d . It is well known by 

Doğan and Gürkanlı (2000) the space 
1 ( ) ( )d p d

w wL L  is a ( )d

wS  space with 

the norm 
1, ,

. . .
wS w p w
  . It is easy to see 

that the space 
1 ( ) ( )d p d

w wL L  is dense in 

1 ( )d

wL  for any w  weight. If we take   

convolution instead of   convolution, then 

the space 
1 ( ) ( )d p d

w wL L  be a ( )d

wS
 

space under the norm 
1, ,

. . .
wS w p w   . It is 

enough to show that the space 
1 ( ) ( )d p d

w wL L  is a Banach algebra under 

  convolution. Let 
1, ( ) ( ).d p d

w wf g L L   By Lemma 2.3 and 

Theorem 8 in Toksoy and Sandıkçı (2015), 

we get 

1, ,

1, 1, 1, ,
             

             .

w

w w

S w p w

w w w p w

S S

f g f g f g

f g f g

f g



 

    

 



 

It is easy to show that the other conditions of 

the Banach algebra are satisfied. Hence, 
1 ( ) ( )d p d

w wL L  is a ( )d

wS
 space. 

Now, we can define the space ( )d

wS . 

Definition 2.5. Given a weight w  on d , 

denote by ( )d

wS  the space of all 

1 ( )d

wf L  such that ( )d

wF f S

  with 

norm 

1,w wS w S
f f F f    . 

Theorem 2.6.  ( ), .
w

d

w S
S 


 is a Banach 

space. 

Proof. Let  n n
g


 be a Cauchy sequence in 

( )d

wS . Therefore  n n
g


 and  n n

F g 
 

are Cauchy spaces in 1 ( )d

wL  and ( )d

wS , 

respectively. Since 1 ( )d

wL  and ( )d

wS  are 

Banach spaces, there exists 1 ( )d

wg L  and 

( )d

wh S  where 
1,

0n w
g g  , 

0
w

n S
F g h   . By using the inequality 

1 1,
. . .

ww S  , we get 
1

0ng g   and 

1
0nF g h   . Thus  n n

F g 
 has a 

subsequence  
k

k
n

n
F g


 that converges 

pointwise to h  almost everywhere. Also it is 

clear that 
1

0
kng g  . Then we write 
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   

      

  
 

   

   

2 2

1

1

cot cosec
2

1
1

1 cot

2

1 cot

2

.

k k

d

j j j j j j

j

k
d

k

k

k

n n

d
j

j

i
u t iu t

n

n

d
j

n

j

n

F g u h u

F g g u F g u h u

i

g g t e dt

F g u h u

i
g g

F g u h u



 

 

















 





   





 

 


 

 







 

This inequality ensures F g h   almost 

everywhere. Hence 0
w

n S
g g    and 

( )d

wg S . Thus  ( ), .
w

d

w S
S 


 is a 

Banach space. 

Theorem 2.7. Let ( )d

wS  be a solid space. 

Then the space ( )d

wS  is a Banach algebra 

under   convolution operation. 

Proof. It is shown that ( )d

wS  is a Banach 

space by Theorem 2.6. Let , ( )d

wf g S . 

By using Theorem 7 in Toksoy and Sandıkçı 

(2015), we write 

   

   

   

 

2

1

1

cot
2

1,

2

1 cot

.

d

j j

j

d

d

j j

i
u

w

F f g u

i

e F f u F g u

F g u f t dt

F g u f





 































 (3) 

Since  F f g   is continuous, then it is also 

measurable. Since ( )d

wS  is a solid space, 

by using (3) we get   ( )d

wF f g S

   and 

 
1,

1,
                    .

w w

w

wS S

S w

F f g F g f

F g f

 



 



 


 (4) 

By Theorem 8 in Toksoy and Sandıkçı 

(2015) and (4) we obtain 

 
1,

1, 1, 1,

1,

             

             

             .

w w

w

w

w w

S w S

w w S w

w S

S S

f g f g F f g

f g F g f

f g

f g





 









    

 





 (5) 

It is easy to see other conditions of being 

Banach algebra. 

Theorem 2.8. Let ( )d

wS  be a solid space. 

Then the space ( )d

wS  is a Banach ideal on 

 1 d

wL  under   convolution operation. 

Proof. Let 1 ( )d

wf L  and ( )d

wg S . 

Since 1 ( )d

wL  is a Banach algebra under   

convolution, then we have  1 d

wf g L  . 

We get the result from the proof the previous 

Theorem. 

Theorem 2.9. Let ( )d

wS  be a solid space 

and   ( )d d

c wC S
 is dense in ( )d

wS . 

Then the mapping v by M T g  (where

   itx

xM f t e f t  for all , dx t ) from d  

into ( )d

wS
 is continuous for all 

( )d

wg S , where  

 1 1cos ,..., cosd db y y 
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 and 

 1 1sin ,..., sind dv y y     

 for all  1,...,
d

dy y y  . 

Proof. It is easy to see that mappings y b  

and y v  from d  into d  are continuous. 

Also mappings yy T g  and 
yy M g   

from d  into ( )d

wS
 are continuous by 

definition of ( )d

wS  and Lemma 2.4 in 

(Doğan and Gürkanlı, 2000), respectively. 

Then the composition mappings by T g  

and vy M g  from d  into ( )d

wS
 are 

continuous. Let  1 1cos ,..., cosd db y y     

and  1 1sin ,..., sind dv y y       for 

 * *

1 ,..., d

dy y y   . Hence we write 

( )d

wb
T g S

 . Let 0   be given. There 

exists 1 0   such that  

   
2w

v b v b S
M T g M T g


  


   (6) 

whenever 1y y    and there exists 

2 0   such that  

2w
b b S

T g T g


 
   (7) 

whenever 2y y   . Since ( )d

wS  is a 

solid space, then it is strongly character 

invaryant, i.e ( )d

y wM g S  and 

ww
y SS

M g g 
  for all ( )d

wg S  and 

dy , by Lemma 2.4 in (Doğan and 

Gürkanlı, 2000). Let  3 1 2min ,   . 

Therefore, combining (6) and (7) we obtain 

 

   

   

2 2

w

w

w

w

w w

v b v b S

v b v vb b v b S

v b b S

v b v b S

b vb b v bS S

M T g M T g

M T g M T g M T g M T g

M T g T g

M T g M T g

T g T g M T g M T g

 


  

    




  


    



   

 

 

   

  

whenever 3y y   . This is the desired 

result. 

Theorem 2.10. Let ( )d

wS
 be a solid space. 

i)  The space ( )d

wS  is translation invariant. 

ii) Let   ( )d d

c wC S
 is dense in 

( )d

wS . Then the mapping 
yy T g  from 

d  into ( )d

wS
 is continuous.  

Proof. i) Let ( )d

wg S . Thus  1 ( )d

wg L  

and ( )d

wF g S

 . It is well known that the 

space 1 ( )d

wL  is translation invariant and 

holds the inequality  
1,1,y ww

T g w y g  for 

all  1,...,
d

dy y y   (Fischer vd., 1996). 

Let  1 1cos ,..., cosd db y y   and 

 1 1sin ,..., sind dv y y     for all 

 1,...,
d

dy y y  . By using Proposition 

3(1) in Toksoy and Sandıkçı (2015), we may 

write 

 

 

2

1 1

2

1

sin cos sin
2

sin cos
2

( )

T ( )

d d

j j j j j j

j j

d

j j j

j

y

i
y iu y

b

i
y

v b

F T g u

e e F g u

e M T F g u



  



 



 



 





 (8) 
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Since ( )d

wS  is a solid space then it is 

strongly character invaryant by Lemma 2.4 in 

(Doğan and Gürkanlı, 2000). Also the space 

( )d

wS  is translation invaryant. Then we 

have 

2

1

sin cos
2

( ).

d

j j j

j

i
y

d

v b we M T F g S
 


 


  

By using equality (8) we obtain 

  ( )d

y wF T g S

  and  

 

 

2

1

2

1

sin cos
2

sin cos
2

                    

                    

                    .

d

j j j

j

w

w

d

j j j

j

w

w

w

i
y

y v b
S

S

i
y

v b S

b S

S

F T g e M T F g

e M T F g

T F g

w b F g

 

 

 































 

This indicates that ( )d

wS  is translation 

invariant. Also we may write the inequality 

   
1,

.
ww

y w SS
T g w y g w b F g

     (9) 

ii) Let ( )d

wg S . It is enough to show that 

if lim 0n
n

y


  for   d

n n
y


 , then 

lim
ny

n
T g g


 . It is known that the mapping 

yy T g  from d  into 1 ( )d

wL  is 

continuous (Fischer vd., 1996). Therefore we 

may write 

1,
0

ny
w

T g g   (10) 

as n  . Let we define sequences  n n
b


 

and  n n
v


 in d  such that j  sequences of 

coordinates cosnj nj jb y   and 

sinnj nj jv y   , respectively. By using (8), 

we get 

 

 

 

 

2 2

1 1

2

1

2

1

2

1

sin cos sin cos
2 2

sin cos
2

sin cos
2

sin cos
2

1

n
w

n
w

d d

nj j j nj j j

j j

n n

d

nj j j

j

w

d

nj j j

j

n n
w

d

nj j j

j

w

n n

y
S

y
S

i i
y y

v b

i
y

S

i
y

v b
S

i
y

S

v b

F T g g

F T g F g

e M T F g e F g

e F g F g

e M T F g F g

e F g

M T F g F g



 

   

 

 

 

 

 

 



 





 















 

 
 


 


 


 

 

2

1

sin cos
2

1 .

w

d

nj j j

j

w

S

i
y

S
e F g

 










 

 

Let  1 1cos ,..., cosd db y y   and

 1 1sin ,..., sind dv y y     for all 

 1,...,
d

dy y y  . The mapping 

v by M T g  from d  into ( )d

wS
 is 

continuous by the previous Theorem. Thus 

we have 

0
n n

w
v b

S
M T F g F g  

   (11) 

 as n  . Let 

2

1

sin cos
2

1

d

nj j j

j

i
y

nh e
 




    for 

all n . It is obvious that 0nh   as 

n  . Then by combining (10) and (11) 
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 

 

2

1

1,

1,

sin cos
2

1 0

n
w

n n
w

n n n
w

d

nj j j

j

w

y
S

y y
w S

y v b
w S

i
y

S

T g g

T g g F T g F g

T g g M T F g F g

e F g



 

 

 













   

   


  

 

as n  . This is the desired result. 

Theorem 2.11. Let ( )d

wS  be a solid space 

and   ( )d d

c wC S
 is dense in ( )d

wS . 

Then the mapping a cy M T g  from d  into 

( )d

wS
 is continuous for all ( )d

wg S , 

where  

 1 1sin ,..., sind dc z z 
 

 and 

 1 1cos ,..., cosd da z z   

 for all  1,...,
d

dz z z  . 

Proof. The proof is the same as the proof of 

Theorem 2.9. 

Theorem 2.12. Let ( )d

wS
 be a solid space. 

i)  The space ( )d

wS  is character invaryant. 

ii) Let   ( )d d

c wC S
 is dense in 

( )d

wS . Then the mapping 
zz M f  from 

d  into ( )d

wS
 is continuous.  

Proof. i) Let ( )d

wg S . Thus  1 ( )d

wg L  

and ( )d

wF g S

 . It is easy to see that 

1 ( )d

z wM g L  and 
1, 1,z w w

M g g . Let 

 1 1sin ,..., sind dc z z   and 

 1 1cos ,..., cosd da z z   for all 

 1,...,
d

dz z z  . By using Proposition 

3(2) in Toksoy and Sandıkçı (2015), we may 

write 

 

2

1 1

2

1

sin cos cos
2

sin cos
2

( )

T ( )

( ).

d d

j j j j j j

j j

d

j j j

j

z

i
z iu z

c

i
z

a c

F M g u

e e F g u

e M T F g u



  



 



 







 





 (12) 

Since ( )d

wS  is a solid space then it is 

strongly character invaryant by Lemma 2.4 in 

(Doğan and Gürkanlı, 2000). Also the space 

( )d

wS  is translation invaryant. Then we 

have 

2

1

sin cos
2

( ).

d

j j j

j

i
z

d

a c we M T F g S
 








  

By using equality (12) we get 

  ( )d

z wF M g S

  and  

 

 

2

1

2

1

sin cos
2

sin cos
2

                     

                     

                     .

d

j j j

j

w

w

d

j j j

j

w

w

w

i
z

z a cS

S

i
z

a c S

c S

S

F M g e M T F g

e M T F g

T F g

w c F g

 

 

 



































 

This means that ( )d

wS  is character 

invariant. Also we may write the inequality 

 
1,

.
w w

z S w S
M g g w c F g     

ii) This is analogous the proof of Theorem 

2.10 (ii). 
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Example 2.13. Let w  and   be weight 

functions on d  and 1 p   . Let us take 

the space  ,

,

w d

pA 

  consist of all 

 1 d

wf L  such that  p dF f L   

(Toksoy and Sandıkçı, 2015). If  

   x w x   for all dx  and 1p  , then 

denote by B  the space of all  1 d

wf L  

such that  1 d

wF f L  . This space is a 

( )d

wS  space with sum norm  

1, 1,B w w
f f F f   

for all f B . If we take 
2

i


   for all 

1 i d  , then the space B  is a , ( )d

w wS  

space that define in (Doğan and Gürkanlı, 

2000). Hence the space ( )d

wS  is a 

generalization of the space , ( )d

w wS . 

3. Inclusion Properties of The Space 

 d

w
S
  

Proposition 3.1. Let w  be a weight 

functions on d  and 

 1 1cos ,..., cosd db y y   for all 

 1,...,
d

dy y y  . If    w b w y , then 

there exists   0c g   such that 

     
ww

y SS
c g w y T g w y g 

   

for all 0 ( )d

wg S  . 

Proof. Let 0 ( )d

wg S  . Thus there exists 

  0c g   such that 

     
1,1,y ww

c g w y T g w y g   (13) 

by (Fischer vd., 1996). Let    w b w y  

such that  1 1cos ,..., cosd db y y   for all 

 1,...,
d

dy y y  . By using (9), we get 

  .
ww

y SS
T g w y g 

  (14) 

Combinning (13) and (14) we obtain 

      .
ww

y SS
c g w y T g w y g 

   

Lemma 3.2. Let 1w  and 2w  be weight 

functions on d . If 
1 2
( ) ( )d d

w wS S  , then 

1
( )d

wS
 is a Banach space under the norm 

1 2

. . .
w wS S   . 

Proof. Let  n n
g


 be a Cauchy sequence in 

 
1
( ), .d

wS . Thus  n n
g


 is also a 

Cauchy sequence in  1
1

( ), .
w

d

w S
S 

  and 

 2
2

( ), .
w

d

w S
S 

 . Since these spaces are 

Banach spaces, then there exists 
1
( )d

wg S  

and 
2
( )d

wh S  such that 
1

0
w

n S
g g    

and 
2

0
w

n S
g h    as n  . By using 

inequalities 

1 1
1 1,

. . .
ww S

 
 

 and  

2 2
1 1,

. . .
ww S

 
 

We have 
1

0ng g   and 
1

0ng h   as 

n  . Besides, we may write 

1 1 1
.n ng h g g g h      

Hence we obtain 0ng g   as n  . 

Therefore  
1
( ), .d

wS  is a Banach space. 
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Proposition 3.3. Let 1w  and 2w  be weight 

functions on d  and    1 1w b w y , 

   2 2w b w y  where 

 1 1cos ,..., cosd db y y   

for all 

 1,...,
d

dy y y  . 

If 
1 2
( ) ( )d d

w wS S   then 2 1w w . 

Proof. Assume that 
1 2
( ) ( )d d

w wS S  . 

Then 
2
( )d

wg S  for all 
1
( )d

wg S . Let 

   1 1w b w y  and    2 2w b w y  where 

 1 1cos ,..., cosd db y y   

for all 

 1,...,
d

dy y y  . 

Thus, by Proposition 3.1, there exists 

constants 1 2 3 4, , , 0c c c c   such that 

   
1

1 1 2 1
w

y S
c w y T g c w y


   (15) 

and 

   
2

3 2 4 2 .
w

y S
c w y T g c w y


   (16) 

It is shown that the space  
1
( ), .d

wS  is a 

Banach space by Lemma 3.2. Then by closed 

graph theorem, there exists 0c   such that 

2 1

.
w w

y yS S
T g c T g

 
  (17) 

Hence, combining (15), (16) and (17) we 

obtain 

   
2 1

3 2 2 1 .
w w

y yS S
c w y T g c T g cc w y

 
    

 Therefore,    2
2 1

3

cc
w y w y

c
 . If we take 

2

3

cc
k

c
 , then we have 

   2 1w y kw y  

for all dy . This means 2 1w w . 
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