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Abstract

In this study, first of all we define spaces S®(R?) and S2(R‘) and give examples of these spaces. After we
define SZ(R") to be the vector space of f e L} (R") such that the fractional Fourier transform F, f belongs
to S, (R"). We endow this space with the sum norm |f|, =| f|, +|F, f[. and then show that it is a

Banach space. We show that SZ(R") is a Banach algebra and a Banach ideal on LﬁV(R") if the space

SO (R") is solid. Furthermore, we prove that the space S¢(R") is translation and character invaryant and
also these operators are continuous. Finally, we discuss inclusion properties of these spaces.

Keywords: Fractional Fourier transform, convolution, Segal algebras.

S¢ Uzaymmin Baz1 Ozellikleri
Oz
Bu calismada ilk olarak S®(R?) ve SO (R") uzaylari tanimlandi ve bu uzaylara érnekler verildi. Sonra F, f

kesirli Fourier doniisimii SO (R‘) uzayinda olan f e L (R") fonksiyonlarmin S?(R‘) vektdr uzayi

so Ik +IF.f

tanimlandi. Yine SZ(R?) uzay: iizerinde ||f so fonksiyonunun bir norm oldugu ifade

edildikten sonra S%(R‘) uzaymin Banach uzayi oldugu ve S©(R‘) uzaymm bir kati (solid) uzay olmasi
kosuluyla bu uzaym bir Banach cebiri ve L. (R’) uzaymin bir Banach ideali oldugu gdsterildi. Ayrica

S&(R") uzaymin dteleme ve karakter islemcileri altinda degismez oldugu ve bu operatérlerin siirekliligi

ispatlandi. Son olarak bu uzaylarin kapsama 6zellikleri tartisildi.

Anahtar Kelimeler: Kesirli Fourier doniigiimii, girisim islemi, Segal cebirleri.

1. Introduction and Preliminaries that satisfying w(x)zl and

d
Throughout this article, we study on R®. We w(x+y)<w(x)w(y) forall x,yeR". We

write the Lebesgue space (L"(Rd),”f”p), define, for 1< p <oo,

p dy\ _ p d
for 1< p <oo. A weight function w on R? is LW(R )_{f| fwel (R >}
a measurable and locally bounded function
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It is well known that Lf,(R?) is a Banach
space under the norm ||f||p]W =| fW||p (Reiter

and Stegeman, 2000). Let w;, and w, are two
weight functions. We state that w, <w, if
there exists ¢>0 such that w, (x)<cw, (x)
for all xeR" (Feichtinger and Giirkanls,
1990).

Let A and B Banach algebras and Bc A.

B is called a Banach ideal of A if
Ifl,=|f], and  fgeB,  with
Ifal, <|fllgl, for al feB, gea

(Feichtinger vd., 1979). A Banach function
space (B,[[,) of measurable functions is

called solid, if for every f eB and any

measurable  function g satisfying
g (x)|<|f(x)| almost everywhere, ge<B

and g, <| f|, (Feichtinger, 1977).

Let (B(R’),|],) be a complex valued

measurable functions on RY. B(R") is

called homogeneous Banach space if it is
strongly translation invaryant (i.e

T,f eB(R") and HTnyB:||f||B) where
T,f(t)="f(t-y) for each y and the
mapping y —>T,f from R® into B(R®) is

continuous for each f in B(R?).

A homogeneous Banach algebra B(R") is a
subalgebra of Ll(Rd) such that B(RY) is
itself a Banach algebra with respect to a
norm |, <||,- A homogeneous Banach
algebra is called Segal algebra if it is dense in
L'(R?) (Wang, 1977).

Let w be a weight function on R®. The
space S, (R’) is subalgebra of L' (R?)

satisfying the following conditions (Cigler,
1969):

i) S, (R") isdensein L (R")

ii) S, (R?) is a Banach algebra under some

norm || and the inequality |f, <I/f|;

holds for all f €S, (R")

i) S, (R) is translation invaryant and the
mapping y —T,f from R into S, (R") is
continuous.

iv) For each f S, (R") and all yeR", the
holds.

Sw

inequality HTnyS <w(y)|f

We define the Fourier transform f (or Ff )
of afunction f eL'(R) as

f(0) = Ff (o f (t)e "“dt.

)= 1

The fractional Fourier transform is a
generalization of the Fourier transform
through an angle parameter « and can be
considered as a rotation by an angle « in the
time-frequency plane. The fractional Fourier
transform with an angle « of a function
f e L'(RR) is defined by

F.f(u) :TKa(u,t) f ()t

where,
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K, (u,t)
l(u2+t2)cotoz—iutcosecoz .
Me?  ifazkr, keZ
o(t—u), if a=2kz, keZ
S(t+u), if o = (2k +1)7, k e Z

M :,/leﬂ and & be a Dirac delta
T

function. The fractional Fourier transform

with a:% corresponds to the Fourier

transform, (Almeida, 1994; Almeida, 1997;
Bultheel and Martinez, 2002; Namias, 1980;
Ozaktas vd., 2001). The fractional Fourier
transform can be extended for higher
dimensions as Bultheel and Martinez (2002):

or shortly

+00 +00

F i) =[..[ K, (ut)f (t)dt,

—0 —00

a4 (ul""’ud ;tl""’td)

=K, (ul,tl)Ka2 (uz,tz)...Kad (Ug.ty)-
Let o =(ay, a,,...., ;) Where a; #kz for

each index i with 1<i<d and keZ. The
©® convolution operation define as:

iiyj(yj—xj)coto{j
(fog)(x)= [ f(y)g(x-y)e" dy

]Rd

forall f,ge Ll(]Rd) (Toksoy and Sandiker,
2015).

Troughout this paper, unless otherwise
indicated, we get a=(a,q,,...ay) where

a; #kr for each index i with 1<i<d and
k eZ. In this work, we will define a space
SZ(R?) is analogous with the space

S,.,(R’) which is define in (Dogan and
Giirkanli, 2000). Since the space S%(R?) is

defined by using ® convolution operation
and fractional Fourier transform, then this
space is a generalization of the space

S,w(RY). If we take ¢, :% for each index

i with 1<i<d, the ® convolution
corresponds to ordinary convolution and also
the fractional Fourier transform corresponds
to the Fourier transform. An angle parameter
a provide us more overview of results that
established in (Dogan and Giirkanli, 2000).

2. The Space S? (Rd) and Some

Properties

Let w be a weight function on R?. It is well
known by Theorem 8 in Toksoy and Sandikg1

(2015), Llw(Rd) is a Banach algebra under

® convolution. Then also the space L'(R?)
is a Banach algebra under ® convolution.

In this section, the space that we will denote
by S°(R*) under a norm |||, will be called

® convolution Segal algebra if it satisfies
conditions of Segal algebra under ©
convolution operation.

Now, we will give an example that is a
S®(R") space. Let proof the following
Lemma for this example.

Lemma 2.1. Let 1<p<ow. The space

L°(R?) is Banach module over L(R?)
under ® convolution.

Proof. Let
Then we write

fel’(R') and gel’(RY).
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|t el

= [I(feg)(x)" dx

d p
Ziyj(yj—xj)cotaj
= J-f(y)g(x—y)ej:1 dy| dx
p
<[] [110ote-viey | e
Since the numbers p and Ll are

conjugate, by using Holder's inequality we
get

=[] J1F (0l (x=y)f dyex

RY R

e J(J |g<x—y>|"dx}|f ()l
Rd Kd
Il

Thus we have
[feg], <[f].]9],- @)

It is easy to see that the other conditions of
the Banach module are satisfied.

Example 2.2. Let 1<p<oo. It is well
known by Reiter (1971) the space
L'(RY) A LP(R?) is a Segal algebra under *
convolution with the norm | :||||l+||||p If

we take O convolution instead of =*

convolution, then the space L'(R®) L (R?)

be a S°(R") Segal algebra under the norm

o = +|} - It is enough to show that the
o =+,

space L'(RY)NL°(R") is a Banach algebra
under ® convolution. Let
f.ge '(R)NLP(RY). By using Lemma
2.1 and Theorem 8 in Toksoy and Sandik¢i
(2015), we have

[teg],. =[tegl, +|fog],

<[ ¥l ol + 11, hall,
<[]l .. -

It is easy to show other conditions of being
Banach algebra. Then L*(R*)NL"(R?) is a

S®(R®) Segal algebra.

Let w be a weight function on R?. If we
take ® convolution instead of * convolution

in the definition of S (R"), then we will

denote the space which provides conditions
of the space S, (R?) by SO(R"). The norm

of this space will also be denoted by ||.. -

Now, we will give an example of a S®(R")
space. For this, we need the following

lemma.
Lemma 2.3. Let 1<p<ow and w be a
weight function on R®. The space L?(R?) is

Banach module over L. (R") under ®
convolution.
Proof. Let fell(R’) and gel®(R?).

Then fwe L'(R®) and gwe L°(R?). Hence,
we write
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Ifeq],,

=(Rf \(f®9)(X)W(X)\deJ%

<
&

[1] f()w(y)a(x-y)w(x-y)

Rd
b Vo
dx

d

Ziyj(yj—xj)cotaj
xg i dy

=[(fw)e(gw),
By using (1) we obtain

[feg,, <|(fw)e(gw)],
SN (2)

= ” f ||1,w ”g”pw '

It is easy to see that the other conditions of
the Banach module are satisfied.

Example 2.4. Let 1<p<ow and w be a

weight function on R°. It is well known by
Dogan and Giirkanli (2000) the space

LRYNL(RY) is a S,(RY) space with
the norm ””sw =||-||1,W+||-||p,w- It is easy to see
that the space L (R%)~LP(R") is dense in
L (R?) for any w weight. If we take ©
convolution instead of * convolution, then
the space L, (R))NL(R?) be a SO (R")

space under the norm || =||[,,, +[,., - 1tis

enough to show that the space
L (RY)NLP(RY) is a Banach algebra under
® convolution. Let

f,gel (R") AL (R"). By Lemma 2.3 and
Theorem 8 in Toksoy and Sandik¢r (2015),
we get

|feg

s ” f ®g||1w + ” f ©g ”p,w

< ” f ||1,w ”g”lw + ” f ||1,W ”g ”p,w
= ”f g”sv"j )

Sw

It is easy to show that the other conditions of
the Banach algebra are satisfied. Hence,

LL(RY)NLE(RY) isa SO(R?) space.
Now, we can define the space S*(R?) .

Definition 2.5. Given a weight w on R,
denote by S%(R?) the space of all

f e L, (R?) such that F f Sy (R") with
norm

|t

so =y +IFf

so

Theorem 2.6. (Sv”j(Rd),||.||s,,) is a Banach

space.

Proof. Let (g,) ,, be a Cauchy sequence in
Sy (R®). Therefore (g,) . and (F,9,)
are Cauchy spaces in L (R") and SO(R"),
respectively. Since L (R?) and SO (R") are
Banach spaces, there exists g e L% (R®) and
hesy(R') l9.-al,,, —0.
||Fa9n—h||553 —0. By using the inequality

<ML <Hse
1 1w Sw '

IF,9,-h|,—>0. Thus (F,g,)_, has a

where

Jso . we get |lg,—g|, >0 and
subsequence (Fagnk )n . that converges

pointwise to h almost everywhere. Also it is
clear that

9, — ng — 0. Then we write
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[F.9(u)=h(u)

F, (9, —9)(u)[+
lj /1 icote,

x ; (g”k _g)(t)‘

R

+|F, 9, (u)—h(u)‘

(U)—h(u)\-

<

29y, (u)=h(u)

IN

d .
z%(ujz +t12)cotaj —iujt; cosecq;

]
e dt

g”k —ng

This inequality ensures

|9, - 9]s. =0

F,g=h almost

everywhere. Hence and

geSi(RY). Thus (SR, ) is a

Banach space.

Theorem 2.7. Let S(R?) be a solid space.

Then the space SZ(R") is a Banach algebra
under ® convolution operation.

Proof. It is shown that SZ(R") is a Banach

space by Theorem 2.6. Let f,geS%(R?).

By using Theorem 7 in Toksoy and Sandike1
(2015), we write

IF, (fOg)(u)

d 2
| W oo |

IFf@Few @

(I (O
HI "

Since F, (f®g) is continuous, then it is also
measurable. Since S°(R?) is a solid space,
by using (3) we get F, (f®g)e Sy (R?) and

IF. (fog)

<
Sw

=|IF.9

1,w Svc\;)

(4)

M f ||1,w '

By Theorem 8 in Toksoy and Sandikei
(2015) and (4) we obtain

. =lredl,, +[F. (100,

- ” f ||1,w ”g ||1,W

=1,

<[ fll;

Sw

It is easy to see other conditions of being
Banach algebra.

Theorem 2.8. Let S®(R?) be a solid space.
Then the space S%(R?) is a Banach ideal on

Llw(Rd) under ® convolution operation.

Proof. Let f el (R%) and geSZ(RY).
Since L (R") is a Banach algebra under ®
convolution, then we have fOg e IiN(Rd).

We get the result from the proof the previous
Theorem.

Theorem 2.9. Let SO(R") be a solid space
and C,(R*)NS;(R") is dense in SP(R°).
Then the mapping y—M,T,g
M, f (t)=e™f (t) forall x,teR’) from R’
S2(RY) s
g €S2(R?), where

(where

into continuous for all

b=(y,cosa,..., Y4 COS e )
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and
=(-y,sinay,...,—y,sinay)
for all y=(y1,---, Yo ) eR".

Proof. It is easy to see that mappings y —b
and y —»v from R? into R? are continuous.
Also mappings y—>Tg and y—Mg
from R" into SO(RY) are continuous by
definition of SO(R") and Lemma 2.4 in

(Dogan and Giirkanli, 2000), respectively.
Then the composition mappings y—T,0

and y—>M,g from R into SO(R") are
continuous. Let b* =(y; cose,,.... y; COs )

and for

V= (—yl* sing,...,—Y, sin ad)

Hence we write

a :(yf,...,y;)eRd.
d -
T.geS,(R"). Let £>0 be given. There

exists o, >0 such that

M. (Tb*g)SWG <<

2

M, (7,9)- ®

whenever Hy—y*”<51 and there exists

0, >0 such that

[T,

£
< 2 (7)

) is a
solid space, then it is strongly character

invaryant, ie  M,geS;(R")  and

HMyg . :”9”55 for all geS2(R?) and
yeR? by Lemma 2.4 in (Dogan and
Giirkanli, 2000). Let &,=min{3,,5,}.

Therefore, combining (6) and (7) we obtain

HMVT

:HMVTbg ~M,T.g+M,T

SHMV(Tbg ~T,.9) .

+HMV (T,9)-M,(T,.9)|, .
‘ HM T g) (Tb*g)sv?
E £

<5 to=E

whenever |ly—y’|<d,. This is the desired

result.

Theorem 2.10. Let SO (R?) be a solid space.

i) The space SZ(R") is translation invariant.

i) Let C(R')NSJ(RY) is dense in
S, (R"). Then the mapping y —>T,g from

R® into S#(R?) is continuous.

Proof. i) Let g eSZ(R?). Thus geL (R")
and F,g Sy (R"). It is well known that the
space L., (RY) is translation invariant and

holds the inequality [T,g| <w(y)[g],,, for

all y=(Yy,...s)eR"® (Fischer vd., 1996).

Let b=(y,cosa,..., Y4 COSe ) and

=(-y,sinay,....,—y,sine,)  for  all

y=(Y,..Yg)eR".
3(1) in Toksoy and Sandik¢1 (2015), we may
write

By using Proposition

. (T,9) @)
i- sina; cosa; i—iujyjsina]—
B e T,F,g(u) (8)
ii sina; cosa;
—e” MVTbFag(u)
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Since SP(RY) is a solid space then it is

strongly character invaryant by Lemma 2.4 in
(Dogan and Giirkanli, 2000). Also the space

S2(R") is translation invaryant. Then we

have
iiyfsinajcosaj
e’ M,T.F,g eSO (R).
By using equality (8) we obtain
F, (Tyg) eS2(R?) and
Zd:lyfsinozjcosozJ
F,(T,9) . =[e” M T,F.g
9
ilzyfsinajcosaj
= eH ||MvaFag S\?
o ”Tb Fag ”sv(;
<W(b)”Fag Sy "

This indicates that SZ(R") is translation

invariant. Also we may write the inequality

e

. <w(ylal,, wO)IFgly - ©

i) Let g eSZ(RY). Itis enough to show that

if limy =0 for (y,)_,<R® then

n—oo

AilpoTyng =g . It is known that the mapping
from R° Lt (RY) s

continuous (Fischer vd., 1996). Therefore we
may write

y—>T,9 into

7,99, —0 (10)

as n—oo. Let we define sequences (b,)
and (v, )

coordinates

neN

- d -
v In R" such that j sequences of

b, =Y, Cosq; and

Vy ==Yy sing;, respectively. By using (8),
we get

Fa(TYng_g) S8

=||F (Tyng)_Fag

M

d . d .
i o . i, .
ZEYHJS'”O‘J'COS“] nymsma]—cosaj

=|le™ M, T, F,g-e” F.9
i%yﬁj sina; cosa
+e F.0-F,9
Sw
iiyf‘jsinaj cosa;
<|e™? (MvnTanag—Fag) w
ilyﬁj sinajcosa;
+ler ~1|F.9ls
:H(MvnTbn Fg- Fag) -
iiyﬁj sinaj cosa;
+ler —1||Fag||S$ .
Let b=(y,cosa,..., Y4 COS e ) and
v=(-y;sina,...—y,singy) for  all
y=(Y,- Yg) R, The mapping

y—>MTg from R® into S2(R?) is
continuous by the previous Theorem. Thus
we have

HMVnTbn F.9-F.9

0 -0 (11)

d .
(-
zaynjsmajcosaj

as n—oo. Let h =-1+e™ for
all neN. It is obvious that |h,|—>0 as
n — oo. Then by combining (10) and (11)
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T,9-9

Im.o-dl.,

- HTYn 9- ng,W +

Fa (Tyng)_ Fag 50

<[r.o-ol,, +[(M.T.Fo-F.0)

d

S

i
7)/“] smaj COSaj

+le™ -1|F,9

s®—>0

as n — oo, This is the desired result.

Theorem 2.11. Let S®(R") be a solid space
and C,(R*)NS;(R") is dense in SP(R?).
Then the mapping y —> M_T.g from R? into

S2(R") is continuous for all geS°(R?),
where

c=(zsina, ... zgsinay)
and

a=(zco0sa,,...,2,COS ¢ty )
forall z=(z,..,z,)eR".

Proof. The proof is the same as the proof of
Theorem 2.9.

Theorem 2.12. Let S®(R?) be a solid space.

i) The space S%(R") is character invaryant.

i) Let C (R)NSJ(RY) is dense in
S2(R?). Then the mapping z — M, f from

R® into S¢(R?) is continuous.

Proof. i) Let g eS?(R?). Thus ge L (R?)
and F,geSo(RY). It is easy to see that
M.geL,(R?) and |M.g|,,=[g],, Let

c=(zsina, ... zgsinay) and

a=(z,c08¢,,...,2,€0S ) for all

z=(z,...2,)€R?. By using Proposition

3(2) in Toksoy and Sandik¢1 (2015), we may
write

F,(M,g)(u)

d d
[P )
E —5 % sinaj cosa; E iu;z; cos;

—eH g T.F,g(u) (12)

d .
i,

> —_2isina;jcosa;
2

=e" M,T.F, g(u).

Since SP(RY) is a solid space then it is
strongly character invaryant by Lemma 2.4 in
(Dogan and Giirkanli, 2000). Also the space
S2(R") is translation invaryant. Then we

have
i—izfsinajcosaj
e M. T.F.geSo(R).
By using equality (12) we et
F,(M,g)eS; (RY) and
HFQ(MZQ)S@= e 2 ajMaTCFag
S
Zd:—izfsinajcosaj
=|e" IM.T.F, 9],
=||TcFag s¢
< W(C)”Fag”sv? ’
This means that S?(R?) s character

invariant. Also we may write the inequality

”MZg So < ”g”lw +W(C)||Fag

so

i) This is analogous the proof of Theorem
2.10 (ii).
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Example 2.13. Let w and @ be weight
functions on R and 1< p<oo. Let us take

the space AX’S’(R") consist of all
fell,(R?) such that F,fel?(R)
(Toksoy and  Sandik¢i,  2015). If

w(x)=w(x) forall xeR" and p=1, then
denote by B the space of all f el (R’)
such that F,f el (R?). This space is a
SZ(R®) space with sum norm

[l =1t 7. f1,

for all feB. If we take ¢, =% for all

1<i<d, then the space B is a S, (R")

space that define in (Dogan and Giirkanli,
2000). Hence the space S%(R?%) is a

generalization of the space S, (R?).

3. Inclusion Properties of The Space

sz (r?)
Proposition 3.1. Let w be a weight
functions on R® and
b=(y,cosa,..., Y4 COS e ) for all

Y=Yy Yg) R If w(b)<w(y), then
there exists ¢(g) >0 such that

c(g)w(y)<[T, g, <w(y)lo

S
forall 0 geS?(R?).

Proof. Let 0= g € SZ(R") . Thus there exists
c(g)> 0 such that

c(o)w(y)<[T,gl,, <w(¥)lel,, ™

by (Fischer vd., 1996). Let w(b)<w(y)
such that b=(y,cosa,..., y, cose) for all

Y=Yy ¥s ) € RY. By using (9), we get

e (14)

L <w(y)lal

Combinning (13) and (14) we obtain

(9)w(y) <1, <w(y)le

Se

Lemma 3.2. Let w, and w, be weight
functions on RY. If Sy (R”) = Sy; (R”), then

Su (R") is a Banach space under the norm

.
S""l

s

Proof. Let (g,) , be a Cauchy sequence in
(S ®.[)- Thus (g,),, is also a
Cauchy sequence in (S;;(Rd),”.”%) and
(sz(]Rd),”.stz). Since these spaces are

Banach spaces, then there exists g € S, (R%)

and heS; (R") such that |g,—g.. >0

and ||g,—h|,, >0 as n—co. By using
w

inequalities
<ML, <M

and
”“1 < ” 1w, = | Suy

We have |g,—g|, >0 and ||g,—h|, -0 as
n — co. Besides, we may write

lg=hl, <9 -g.], +lg,=nl,.

Hence we obtain [|g,—g|| >0 as n— .

Therefore (Sv‘j1 (R )H||H) is a Banach space.
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Proposition 3.3. Let w, and w, be weight

functions on R and w;(b)<w(y),

w, (b) <w, (y) where
b=(y,cosa,..., Y4 COS e )
for all
y=(Yi,- Yg ) €RC.
If S; (RY) = S;; (R) then w, <w, .

Proof. Assume that S;(R’)c<S; (RY).
Then geS; (R?) for all geS;(R"). Let
w, (b)<w,(y) and w,(b)<w,(y) where

b=(y,cosa,..., Y4 COSe )
for all

Y=Y Vo) €R"

Thus, by Proposition 3.1, there exists
constants c,c,,c,,c, >0 such that

ClWl ( y) = HTyg HSJQ < CZW1 ( y) (15)

and

(16)

c3wz(y)sHTyg . <c,w,(y).

It is shown that the space (Sv‘jl (Rd),m.”D is a

Banach space by Lemma 3.2. Then by closed
graph theorem, there exists ¢ >0 such that

HTyg (17)

SCHT gH .
Se Y=llsg

Hence, combining (15), (16) and (17) we
obtain

c3w2(y)§HTyg ” ScHTngSMQq <cc,w, (y).

Therefore, wz(y)s%wl(y). If we take

3

e, _ k , then we have

Cs

WZ(Y)S le(Y)
forall y e R®. This means w, < w,.

4. References

Almeida, L. B. 1994. “The fractional Fourier
transform and time-frequency
representations”, IEEE Transactions on
Signal Processing, 42(11), 3084-3091.

Almeida, L. B. 1997. “Product and
convolution theorems for the fractional
Fourier transform”, IEEE Signal Processing
Letters, 4(1), 15-17.

Bultheel, A. and Martinez, H. 2002. “A
shattered survey of the fractional Fourier
transform”,  Department of Computer
Science, K.U.Leuveven, Report TW337.

Cigler, J. 1969. “Normed ideals in L'(G)”,
Indagationes Mathematicae, 72(3), 273-282.

Dogan, M. and Giirkanli, A. T. 2000. “On
functions with Fourier transforms in S, 7,

Bulletin of Calcutta Mathematical Society,
92(2), 111-120.

Feichtinger, H. G. 1977. “On a class of
convolution algebras of functions”, Annales
de linstitut Fourier, 27(3), 135-162.

Feichtinger, H. G., Graham, C. and Lakien,
E. 1979. “Nonfactorization in commutative,
weakly selfadjoint Banach algebras”, Pacific
Journal of Mathematics, 80(1), 117-125.

Feichtinger, H. G. ve Giirkanli A. T. 1990.
“On a family of weighted convolution
algebras”, International  Journal  of
Mathematics and Mathematical Sciences,
13(3), 517-525.

933



On Some Properties of Space SVCV’

Fischer, R. H., Giirkanli, A. T. and Liu, T. S.
1996. “On a family of weighted spaces”,
Mathematica Slovaca, 46(1), 71-82.

Namias, V. 1980. “The fractional order of
Fourier transform and its application in
guantum mechanics”, Journal of the Institute
of Mathematics and its Applications, 25, 241-
265.

Ozaktas, H. M., Kutay, M. A. and Zalevsky,
Z. 2001. “The fractional Fourier transform
with applications in optics and signal
processing”, John Wiley and Sons, England.

Reiter, H. and Stegeman, J. D. 2000.
“Classical harmonic analysis and locally
compact group”, Clarendon Press, Oxford.

Reiter, H. 1971. L' —Algebras and Segal
Algebras”, Springer-Verlag, New York.

Toksoy, E. and Sandik¢i, A. 2015. “On
function spaces with fractional Fourier
transform in weighted Lebesgue spaces”,
Journal of Inequalities and Applications,
2015(1), 87.

Wang, H. C. 1977. “Homogeneous Banach
Algebras”, Marcel Dekker Inc., New York
and Basel.

934



