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ABSTRACT 

The modes of deformation of bi-metal rods during forward extrusion through arbitrarily curved dies are studied in this paper. 

An analytical solution is developed to predict the mode of deformation by using the upper bound method. The effects of the 

yield stress ratio, shape and length of the die, extrusion ratio and frictional shear factors at the interface and the die surface are 
considered in the analysis. It is found that frictional shear factor at the interface, the ratio of flow stresses and die length are 

important parameters that can change mode of deformation from uniform deformation to cladding-type. Shape of the die, 
reduction in area and frictional shear factor at the die surface have not effect on the mode of deformation, although the effects 

are great on the extrusion pressure. The extrusion process is also simulated by using the finite element code, ABAQUS. The 

theoretical results show good agreement with the FEM results. 

Keywords: Bi-metallic rod; Extrusion; Deformation mode, FEM 
 

1. INTRODUCTION 

During the bi-metallic rod extrusion process, owing to 

the differences between mechanical properties with 

respect to the constituent materials, bi-metallic rodsf 

requently exhibit a non-homogeneous deformation in 

the extrusion process. In general, if one constituent 

material is harder than the other, it will resist 

deformation; undergo a smaller reduction in area. It is 

necessary to know the conditions under which uniform 

extrusion or cladding may be carried out.A considerable 

amount of investigations has been done by different 

researches on the process of bi-metallic rod and tube 

extrusion process. Osakada et al. Described the 

hydrostatic extrusion of composite rods with hard cores 

by the upper bound method [1]. Ahmed studied the 

extrusion of copper clad aluminum wire [2]. Avitzur 

summarized the factors that affect simultaneous flow of 

layers in extrusion of a bimetal rod through conical dies 

[3]. Some of these factors include percentage reduction 

in area, semi-die angle, friction factor between sleeve 

and die wall, and ratio of core to sleeve radii. Tokuno 

and Ikeda verified thedeformation in extrusion of 

composite rods by experimental and upper bound 

methods [4]. Yang et al. Studied the axisymmetric 

extrusion of composite rods through curved dies by 

experimental and upper bound methods [5]. Sliwa 

described the plastic zones in the forward extrusion of 

metal composites by experimental and upper bound 

methods [6]. Chitkara and Aleem theoretically studied 

the mechanics of extrusion of axisymmetric bi-metallic 

tubes from solid circular billets using fixed mandrel 

with application of generalized upper bound and slab 

method analyses [7, 8]. They investigated the effect of 

different parameters such as extrusion ratio, frictional 

conditions, and shape of the dies and that of the 

mandrels on the extrusion pressures. Hwang and Hwang 

studied the plastic deformation behavior within a 

conical die during composite rod extrusion by 

experimental and upper bound methods [9]. 

Kazanowski et al. Discussed the influence of initial bi-

material billet geometry on the final product dimensions 

[10]. Theflat face die was used for all experiments and 

proposed bi-material billet design modifications were 



428 GU J Sci, 26(3):427-437 (2013)/ Heshmatollah HAGHIGHAT, G. R. ASGARI 

 
evaluated experimentally and by finite element 

modeling. Nowotynska and Smykla studiedtheinfluence 

of die geometric parameters on plastic flow of layer 

composites during extrusion process by experimental 

method [11]. Khosravifard and Ebrahimi [12] analyzed 

the extrusion of Al/Cu bimetal rod through conical dies 

by FEM and studied effect of extrusion parameters in 

creation of interfacial bonds.  

 

In this paper, a method of predicting the mode of 

deformation in bi-metallic rod extrusion through dies of 

any shape by using the upper bound method is 

proposed. FEM simulation on the extrusion of a bi-

metallic rod composed of an aluminum sleeve layer and 

a copper core layer is also conducted. The effects of a 

set of independent process parameters, including the 

yield stress ratio, thefractional cross-sectional area of 

the core, extrusion ratio, die shape and length and 

frictional shear factors at the interface and the die 

surface are investigated. 

 

2. DEFORMATION MODELS 

 

Fig. 1 is a schematic diagram of the bi-metallic rod 

extrusion through a die of arbitrary curved shape. The 

billet considered for analysis is a bi-metallic rod in 

which the inside material, core, is harder than the 

outside material, sleeve. An initially billet, made up of a 

rod and an annular tube of two different ductile 

materials with the mean flow stresses, cσ and sσ , 

respectively, is considered. The subscripts 

c and s denote core and sleeve, respectively. The initial 

outer and inner radii of the combined billet 

are
i

R
1

and iR2 , respectively. The outer radius of the 

extruded bi-metallic rod is
f

R
1

and the interface radius 

of the final extruded rod is
f

R
2

.  

 

Three types of deformation modes are considered as: 

(a) Both materials deform to the same reduction. This 

mode is called uniform deformation. 

(b) The harder material remains undeformed while the 

softer material deforms to cover the harder material. 

This mode will be called cladding. 

(c) The materials deform to different extrusion ratios. 

This mode will be called general deformation. 

 

2.1. Uniform deformation 

 

In the first considered case, core and sleeve materials 

deform with the same extrusion ratio. This mode of 

deformation is shown in Fig. 1. In zones I, II, V and VI 

the materials are rigid, and both materials are plastically 

deformed in zones III and IV. A spherical coordinate 

system ),,( φθr  is used to describe the position of the 

four surfaces of velocity discontinuity,
41

SS − , as 

well as the velocity in zones I-VI.  The position of the 

coordinate system origin O is defined by the 

intersection of a line, that goes through the point where 

the die profile starts and the outlet of the die, with the 

axis of symmetry.  

The die surface, which is labeled as )(rψ in Fig. 1, is 

given in the spherical coordinate system. The interface 

between the core and the sleeve materials is defined 

by )(riψ which is the angular position of the interface 

surface as a function of the radial distance from the 

origin O .  

 

 

Figure 1. Kinematically admissible velocity field for uniform deformation. 

2.2. Cladding 

 

The other extreme mode of deformation is that when 

deformation occurs only in thesofter material. This is 

the case when hard material is cladded with a soft 

materialby extrusion. The inner harder material remains 

undeformed (
fi

RR
22

= ) and it acts like a mandrel 

attached to the punch and moves with the punch 

velocity
i

U . This mode of deformation is similar to 

mono-metal tube extrusion through a curved die using a 

moving cylindrical shaped mandrel. The considered 

deformation zones and velocity field for this 

deformation mode is shown in Fig. 2. This field can not 

be applied when the radius of the core material,
i

R
2

is 
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greater than the die exit radius
f

R
1

. The zones 1 and 2 

are rigid, and the sleeve material, deforms in zone 2.  

 

Figure 2. Kinematically admissible velocity field for 

cladding-type deformation. 

 

A spherical coordinate system ),,( φθr is used to 

describe the position of the two spherical surfaces of 

velocity discontinuity,
1

S and
2

S , as well as the 

velocity in zones 1, 2 and 3. The position of the 

coordinate system origin O is defined by the 

intersection of a line that goes through the point where 

the die profile starts and the outlet of the die, with core 

surface. The surface
1

S and
2

S are located at 

distances
i

r and
f

r from the origin O , respectively. The 

mathematical equations for radial positions of two 

velocity discontinuity surfaces
1

S and
2

S are given by 

αsin

21 ii

i

RR
r

−
= , 

αsin

21 if

f

RR
r

−
=                  (1) 

whereα is the angle of the line connecting the initial 

point of the curved die to the final point of the die with 

axis of symmetry and LRR fi /)(tan 11 −=α , 

where L denotes the die length. 

 

2.3. The general case 

 

Consider the general case shown in Fig. 3, where the 

sleeve and core materials areextruded with different 

extrusion ratios. Two spherical coordinate systems with 

origins
1

O and
2

O , are used to describe the position of 

the four surfaces of velocity discontinuity as well as the 

velocities in deformation zones. The center of the entry 

and exit spherical boundaries of the deformation zone 

III,
1

S and
2

S , is
1

O and the center of the entry and exit 

spherical boundaries of the deformation zone 

IV,
3

S and
4

S , is
2

O . 

The surfaces
 1

S  and 
2

S  are located at 

distances
i

r
1

and
f

r
1

from the origin
1

O , respectively 

and the surfaces
3

S and
4

S are located at 

distances
i

r
2

and
f

r
2

from the origin
2

O , respectively. 

The mathematical equations for radial positions of two 

velocity discontinuity surfaces 
1

S and
2

S are given by 

αsin

1

1

xR
r i

i

−
= , 

αsin

1

1

xR
r

f

f

−
=                             (2) 

where x is distance of origin
1

O from the axis of 

symmetry and the mathematical equations for radial 

positions of two velocity discontinuity 

surfaces
3

S and
4

S are given by 

βsin

2

2

i

i

R
r = , 

βsin

2

2

f

f

R
r =               (3) 

where angle β , shown in Fig. 3, is given by 

 

Figure 3. Kinematically admissible velocity field for the general case. 

 

αβ sinsin
1

2

xR

xR

i

i

−

−
=                        (4) 

The core material flows as if it is flowing through a 

curved die having an equation  

 

)(2 riψ , which is the angular position of the interface 

surface as a function of the radial distance from the 
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origin
2

O , and the radius of the inner material changes 

from
i

R
2

to
f

R
2

. 

 

It is clear that this field includes both uniform 

deformation when 0=x and cladding 

when
i

Rx
2

= .  

 

3. UPPER BOUND ANALYSIS 

 

Based on the upper bound theory, for a rigid-plastic 

Von-Misses material and amongst all the kinematically 

admissible velocity fields, the actual one that minimizes 

the power required for material deformation is 

expressed as 

∫∫∫∫ −∆+∆+=
tS

ii

fSvSV

ijij dSvTdSvmdSvdVJ
332

1

3

2 00

0

* σσ
εεσ &&                                                  (5) 

 

where 0σ is the mean flow stress of the material, 

ijε& the strain rate tensor, m the constant friction factor, 

V the volume of plastic deformation zone, 

vS and fS the area of velocity discontinuity and 

frictional surfaces respectively, tS the area where the 

tractions may occur, v∆ the amount of velocity 

discontinuity on the frictional and discontinuity surfaces 

and iv and iT are the velocity and tractions applied 

on tS , respectively. 

 

To analyze the process in the general case, the material 

under deformation is divided into six zones, as shown in 

Fig. 3.  Zones III and IV are the deformation regions 

that are surrounded by four velocity discontinuity 

surfaces
1

S ,
2

S ,
3

S ,
4

S and die surface. In addition to 

these surfaces, there are two frictional surfaces between 

die wall and sleeve, 5S and interface surface between 

sleeve and core, 6S .  

Assuming volume flow balance, the radial 

velocity rU within the deformation zone III can be 

obtained. In Fig. 3, the volume flow of the material 

across the surface
2

S at the point ),,( 1 φγfr in the 

radial direction is 

 

φγγγ drxdrUdQ fff )sin)((cos 111 +−= (6) 

 

where angleγ is the angular position for point leaving 

deformation zone III and fU1 is determined by 

i

ff

ii
f U

RR

RR
U

2

2

2

1

2

2

2

1
1 −

−
=          (7) 

The volume flow of the material in the radial direction 

at the point ),,( φθr in the deformation zone III is 

φθθ drxrdUdQ r )sin)(( +=                      (8) 

where angleθ is angular position of a point in the 

deformation zone III. Equating Eqs. (6) and (8), the 

radial velocity component in zone III is found to be 

θ
γ

γ
θ
γ

θ

θ

d

d

rx

rx
UU

f

fr cos
sin

sin
)

sin

sin
( 21

1 +

+
−= (9) 

For small distance x  

θ
γ

θ

γ

sin

sin

sin

sin 11

r

r

rx

rx ff ≅
+

+
                                (10) 

Assuming the proportional distances in a cylindrical 

sense from the core surface, then 

ψ
θ

α
γ

sin

sin

sin

sin
=                                    (11) 

whereψ is the angular position of the die surface at 

radial distance r from the origin 1O . Differentiating Eq. 

(11) yields 

ψ
θ

α
θ
γ

γ
sin

cos
sincos =

d

d
                                    (12) 

Substituting Eqs. (10)-(12) into Eq. (9),the radial 

velocity component is simplified as 

θ
ψ
α

cos
sin

sin
2

2
2

1

1 







−≅

r

r
UU

f

fr
                   (13) 

The full velocity field for the flow of the material in 

zone III is obtained by invoking volume constancy. 

Volume constancy in spherical coordinates is defined as 

0=++ φφθθ εεε &&&
rr

            (14) 

With the assumption of no rotational motion in the 

deformation zone (i.e. 0=φU ), the angular 

component of velocity field is given by 

ψ
θ

ψ
αψ

θ
tan

sin
)

sin

sin
( 2

2

1

1
rr

r
UU

f

f ∂
∂

−≅              (15) 

For deformation zone IV, the velocity field developed 

by Gordon et al. [13] for mono-metal rod extrusion 

through a die of equation )(
2

r
i

ψ , is used as  

θ
ψ
β

cos
sin

sin

2

2

2
2

2

2

i

f

fr
r

r
UU 








−=  

ii

if

f
rr

r
UU

2

2

2

2

2

2

2
tan

sin
)

sin

sin
(

ψ
θ

ψ
βψ

θ ∂

∂
−=  

0=φU                  (16) 

Based on the established velocity field, the strain rate 

fields for zones III and IV can be obtained by  

r

U r
rr ∂

∂
=ε&  
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r

UU

r

r+
∂

∂
=

θ
ε θ
θθ

1
&  

θ
φθ

ε θφ
φφ cot

sin

1

r

U

r

UU

r

r ++
∂

∂
=&  









∂

∂
+−

∂

∂
=

θ
ε θθ

θ
r

r

U

rr

U

r

U 1

2

1
&  










∂

∂
+−

∂

∂
=

φθ
ε φφ
φ

r
r

U

rr

U

r

U

sin

1

2

1
&  









−

∂

∂
+

∂

∂
= φ

φθ
θφ

θ
θφθ

ε U
r

U

r

U

r

cot1

sin

1

2

1
&    (17) 

With the strain rate field and the velocity field, the 

standard upper bound method can beimplemented. This 

upper bound method involves calculating the internal 

power of deformation over the deformation zone 

volume, calculating the shear power losses over the 

velocity discontinuity surfaces and the frictional power 

losses along frictional surfaces.  

 

3.1. Internal power of deformation 

 

The internal power of deformation is given by  

∫=
V

ijiji dVW εεσ &&&

2

1

3

2
0  (18) 

where 0σ is the mean flow stress of the material 

and dV is a differential volume in the deformation zone. 

Internal power of zones I, II and V, VI are zero and the 

general equation to calculate the internal power of 

deformation in zone III is calculated as 

drdrrxW
ir

fr

r

ri
rrr

S
iIII θθεεεε

σ
π

ψ

ψ θφφθθ )sin(
2

1

2

1

2

1

3

2
2

1

1

)(

)(1

2222 ++++= ∫ ∫ &&&&&   (19) 

where )(
1

r
i

ψ is the angular position of the interface 

surface as a function of the radial distance from the 

origin
1

O and it is assumed that  

)](sin
sin

sin
[sin)( 1

1 rri ψ
α
β

ψ −=           (20) 

The general equation to calculate the internal power of 

deformation in zone IV is determined as 

drdrrW
ir

fr

ri

rrr
C

iIV θθεεεε
σ

π
ψ

θφφθθ )sin(
2

1

2

1

2

1

3

2
2

2

2

)(2

0

2222∫ ∫ +++= &&&&&
 (21) 

where
C

σ is the mean flow stress of core material and 

)]
sin

(sin
sin

sin
[sin)

sin
()( 1

12 α
ψ

α
β

α
ψψ

x
r

x
rr ii −=−= − (22)    

 

 

3.2. Shear power dissipation 

 

The general equation for the power losses along a shear 

surface of velocity discontinuity in an upper bound 

model is 

dSvW

vS

S ∫ ∆=
3

0σ& (23) 

For velocity discontinuity surface
1

S : 

α

θ
ψ

θ
tan

sin

sin 1

1

1

irr

ii

iS

r
rU

Uv
=∂

∂

+=∆
  (24) 

θθπ drrxdS
ii 111

)sin(2 +=                            (25) 

   For velocity discontinuity surface
2

S : 

α

θ
ψ

θ
tan

sin

sin
1

1

12

frr

ff

fS

r
rU

Uv
=∂

∂

+=∆
 (26)  

θθπ drrxdS
ff 112

)sin(2 +=   (27) 

For velocity discontinuity surface
3

S : 

β

θ
ψ

θ
tan

sin

sin 2

2
2

3

irr

i
ii

iS

r
rU

Uv
=∂

∂

+=∆
(28) 

θθπ drdS
i
sin2 2

23
=                                     (29) 

For velocity discontinuity surface
4

S : 

β

θ
ψ

θ
tan

sin

sin
2

2
22

24

frr

i
ff

fS

r
rU

Uv
=∂

∂

+=∆
 (30) 

θθπ drdS f sin2
2

24 = (31) 

The power dissipated on the velocity discontinuity 

surfaces
1

S ,
2

S ,
3

S and 
4

S are determined as  

∫ +∆=
α

β
θθ

σ
π drxrvW iiS

S

S )sin(
3

2 1111
& (32) 

∫ +∆=
α

β
θθ

σ
π drxrvW ffS

S

S )sin(
3

2 1122

&    (33) 

∫ ∆=
β

θθ
σ

π
0 3

2

2

3
sin

3
2 dv

r
W S

iC

S
& (34) 

∫ ∆=
β

θθ
σ

π
0 4

2

2

4
sin

3
2 dv

r
W S

fC

S
& (35) 

 

3.3. Frictional power dissipation 

 

The general equation for the frictional power losses 

along a surface with a constant friction factor m is 

dSvmW
S

f ∫ ∆=
f 

0

3

σ
&                (36) 

   For frictional surface
5

S : 

ψθθ ηη
=

+=∆ sincos5 UUv r
                 (37) 

where 

22 )(1

sin,

)(1

1
cos

r
r

r
r

r
r

∂
∂

+

∂
∂

=

∂
∂

+

=
ψ

ψ

η
ψ

η
(38) 

and 

dr
r

rrxdS 2

5
)(1)sin(2

∂
∂

++=
ψ

ψπ        (39) 

The power dissipated on the die surface
5

S can be 

determined as 

∫ ∆=
ir

fr

S

f
drrv

m
W

1

1
5

1

5
sin

3
2 ψ

σ
π&                 (40) 
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For frictional surface
6

S : 

βθθθ ηη
=

−+−=∆ iIVIIIirIVrIII UUUUv sin)(cos)(6
 (41) 

where iη  is local angle of the interface surface with 

respect to the local radial velocity  component and 

22

2

22 )(1

sin,

)(1

1
cos

r
r

r
r

r
r i

i

i

i

∂
∂

+

∂
∂

=

∂
∂

+

=
ψ

ψ

η
ψ

η
(42) 

and 

dr
r

rrdS i
i

22
26 )(1sin2

∂
∂

+=
ψ

ψπ               (43) 

The power dissipated on the interface surface can be 

determined as 

∫ ∆=
ir

fr
i

S

f
drrv

m
W

2

2
26

2

6
sin

3
2 ψ

σ
π&     (44) 

The total upper bound solution for extrusion pressure is  

 

2

1

654321

ii

ffssssiIViIII

RU

WWWWWWWW
P

π

&&&&&&&& +++++++
= (45) 

 

4. RESULTS AND DISCUSSIONS 

 

A MATLAB program has been implemented for the 

previously derived equations andthe relative extrusion 

pressure is calculated for a series of deformation modes 

and a field giving the lowest extrusion pressure is 

found. In this calculation, the value of x is varied as a 

parameter representing the deformation mode, 

where x is limited between 0 and
i

R
2

. Minimization of 

the total extrusion force determines the value of 

parameter x . 

 

The developed upper bound model can be used for 

prediction of the mode of deformation of bi-metallic rod 

extrusion process through dies of any shape if the die 

profile is expressed as equation )(rψ . Two types of 

die shapes were examined in the present investigation. 

The first die shape is conical die. The second die shape 

is from the work by Yang and Han [14]. They created a 

streamlined die shape as a fourth-order polynomial 

whose slope is parallel to the axis at both entrance and 

exit. Die shape of Yang and Han was expressed in 

spherical coordinate system by Ref. [15].  

 

Figs. 4a-4b show examples of the relationship 

between

C

P

σ
and 

iR

x

2

 for conical and Yang and Han 

die shape, respectively, where 0=x represents 

uniform deformation and 
12

Rx = represents cladding. 

The assumed extrusion conditions are the same for both 

conical and curved dies and they are as 151 =iR mm, 

92 =iR mm reduction in area 3.0
2

1

2

1

2

1 =
−

i

fi

R

RR , the 

die length 9 mm, the frictional shear factor on the die 

surface 1m is 0.2 and the frictional shear factor 2m at 

the interface is 0.9. Curves are plotted for various ratios 

of the flow stress. As shown in Figs 4a-4b, 

the

C

P

σ
versus

iR

x

2

curves are convex upwards and the 

minimum value of the extrusion pressure is obtained 

either at 0=x or 
i

Rx
2

=  for both conical and curved 

dies. Figs 4a-4b also show that uniform deformation 

occurs at low extrusion ratios and die shape has not 

effect on the mode of deformation  although the effect 

is great on the extrusion pressure. 

 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.2 0.4 0.6 0.8 1

x/R2i

P
/σ

s

RA = 30%

Die length = 9 mm

m1 = 0.2

m2 = 0.9

σc / σs = 6

5

4

3

2

1

(a) Conical die 
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s
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Die length = 9 mm

m1 = 0.2
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5

4

3

2

1

(b) Yang and Han die shape 

Figure 4. Relationship between relative extrusion pressure and

iR

x

2

 for various ratios of flow stress: (a) for conical die, 

(b) for Yang and Han die shape. 

 

The extrusion process is simulated by using the finite 

element code, ABAQUS. Considering the symmetry in 

geometry, two-dimensional axisymmetric models are 

used for FEM analyses. In each case, the whole model 

is meshed with CAX4R elements. Fig. 5a illustrates the 

mesh used to analyze the deformation in extrusion of bi-

metallic rod for Yang and Han die shape and the 

extrusion conditions 151 =iR mm, 92 =iR mm 

reduction in area  0.3, the die length 9 mm, the 1m  = 

0.2 and 2m  0.9. Fig. 5b shows uniform deformation for 

yield stress ration 2 and Fig. 5c shows cladding mode 

for yield stress ration 4. By comparing the analytical 

results with the FEM results, it is seen that there is a 

good agreement between the analytical predictions and 

the FEM simulations.  

 

Fig. 6 shows the effect of the friction factor between the 

sleeve material and the die surface 1m on the mode of 

deformation. As shown in this figure, the effect of 

friction on the mode of deformation is not marked, 

although the effect is great on the extrusion pressure. 

 

 

 

 (a) The finite element mesh                                                                                                                           

(b) The deformed mesh in uniform mode
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(c) The deformed mesh in cladding mode  

Figure 5. (a) The finite element mesh, (b) the uniform deformation yield stress ration 2 and (c) cladding mode for yield 

stress ration 4( 151 =iR mm, 92 =iR mm, reduction in area  0.3 9=L  mm, 
1m = 0.2 and

2m =0.9) 

 

The effect of the friction factor between sleeve and 

core 2m on the mode of deformation is also examined 

and it is shown in Fig. 7. It is clear that the effect of 

friction at the interface is one of the decisive factors, 

which can changes deformation mode from uniform 

deformation to cladding mode. When the friction at the 

interface is low, the deformation mode is uniform, as 

the frictional stress increases, the deformation mode 

changes to the cladding type. Uniform deformation 

occurs only when 2m is large and the ratio of flow 

stresses is low. Preformed rod whose interface is 

bonded by adhesion tins a large value of 2m  and will 

not allow relative slip at the interface in the deformation 

zone. For such a preformed bi-metal rod, the main 

feature of the deformation mode is uniform 

deformation. 
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Figure 6. Effect of the friction factor between sleeve and die wall 1m on the mode of deformation. 
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Figure 7. Effect of the friction factor between sleeve and core 2m on the mode of deformation. 

The effect of die length on the deformation mode for 

different values of friction factor is shown in Fig. 8.As 

it is expected, for a given value of friction factor, the 

relative extrusion pressure is minimized in an optimum 

die length. It is observed that the deformation mode is 

changed when shearing friction factor increases. From 

this figure, it is also seen that an increase in the friction 

factor tends to increase the relative extrusion pressure. 
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Figure 8. Effect of die length on the mode of 

deformation. 

 

Fig. 9 shows the effect of reduction in area on the mode 

of deformation. As shown in this figure, the effect of 

friction on the mode of deformation is not marked, 

although the effect is great on the extrusion pressure 

 

 

 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1
x/R2i

P
/σ

s

Die length= 9 mm

m1=0.2

m2=0.9

σc/σs=2

RA=15%

RA=30%

RA=45%

Figure 9. Effect of reduction in area on the mode of deformation. 

 

5. CONCLUSIONS 

 

In this research, a theoretical analysis of the modes of 

deformation of bi-metallic rod extrusion through dies of 

anyshape has been developed by using the upper bound 

method and the following results were extracted: 

(1) Extrusion of a bi-metallic rod through arbitrarily 

curved die was analyzed at several yield stress ratios,  

and it has been found that uniform deformation occurs 

at low yield stress ratios.  

(2) It was predicted that uniform deformation will be 

occurred when the frictional stress at the interface is 

high. The cladding type of deformation will occur when 

the inner material is hard, the interface friction is 

relatively low and the die length is large. 

(3) The frictional shear factor of die surface and 

extrusion ratio do not effect on the mode of 
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deformation, although the effects are great on the 

relative extrusion pressure. 

(4) The developed upper bound solution can be very 

beneficial in studying the influence of multiple 

variables and any dies hape on the deformation modes 

such as uniform deformation and cladding of bi-metallic 

rod extrusion process. 

 

Nomenclature 

1m :friction factor between sleeve and die 

2m :friction factor between core and sleeve 

P : extrusion pressure 

φθ ,,r : spherical coordinates  

fr , fr1 , fr2 :spherical radii of exit velocity 

discontinuity surfaces 

ir , ir1 , ir2 :spherical radii of entrance velocity 

discontinuity surfaces 

fR1 :outer radius of sleeve at exit 

fR2 :outer radius of core in extruded bi-metallic rod 

iR1 :radius of container  

iR2 :outer radius of core in initial bi-metallic rod 

v∆ :amount of velocity discontinuity  

L : length of die 

S :area of frictional or velocity discontinuity surface 

rU , θU , φU :velocity components in spherical 

coordinate 

f
U , fU1 , fU 2  : exit velocities 

i
U   :entrance velocity 

*J :externally supplied power of deformation 

fW
•

:power dissipated on the frictional surfaces   

i
W& :internal power of deformation 

SW
•

:power dissipated on the velocity discontinuity 

surfaces   

x :distance of origin 2O from the axis of symmetry 

Greek symbols 

rrε
•

, θθε
•

, φφε
•

:normal strain rate components in the 

radial, angular and rotational directions  

θε r

•

, φε r

•

, θφε
•

 :shear strain rate components  

η :local angle of the die surface with respect to the local 

radial velocity component 

iη :local angle of the interface surface with respect to 

the local radial velocity component 

α :angle of the line connecting the initial point of the 

die to the final point of the die                                                                                                                       

β :angle of the line connecting the initial point of the 

interface to the final point of the interface  

γ :arbitrary angle on the surface 2S  

)(rψ :angular position of the die as a function of 

radial position  

)(riψ , )(1 riψ , )(2 riψ  :angular positions of the 

interface as a function of radial position from 

originsO , 
1

O and
2

O , respectively 

cσ :flow stress of the corematerial 

sσ :flow stress of the sleevematerial 
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