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ABSTRACT 

 

In this paper, we consider a single machine scheduling problem with two criteria: minimizing both total flow time 
with total tardiness and minimize maximum tardiness with number of tardy jobs. Unlike the classical scheduling 
problems, we use a job position deterioration, which means that the job processing time increases as a function of the 
job position. Besides deteriorated jobs, we also consider rate-modifying-activities which alter the efficiency of the 
deteriorating processor. This is the first paper, to combine both time dependent processing times and problems with 
rate-modifying-activity in the bi-criteria objectives. To solve the new type of problem, we introduce a new 
scheduling mathematical model which is based on one developed Ozturkoglu and Bulfin [1]. To analyze the 
efficiency of the mathematical model, we use three different approaches. According to computational results, up to 
50 jobs can be solved in less than one minute. 
 
Keywords: Single-Machine Scheduling, Bi-criteria, Deteriorated Jobs, Rate-Modifying- Activity 
 

 
1. INTRODUCTION 

 
Competition between companies in the same industry is 
vital because of the recession in the national and the 
international economy. Nowadays, the cost of products 
and response to customer’s requirements are important for 
companies to be successful in the market. So, managers 
should consider more than one measure when they try to 
find the best schedule for their production process. 
Therefore, bi-criteria scheduling is more attractive. For 
example, to satisfy both customers and production 

effectiveness, minimizing both total time and number of 
tardy jobs are appropriate.  
  
 Research on bi-criteria scheduling is rare compared to 
research in single criterion scheduling. Almost all bi-
criteria research assumes job processing times are 
constant. But in a real life situation, job processing times 
may deteriorate while jobs are waiting to be processed. 
Both machine and operator may cause this deterioration. 
For instance, a machine or tools may wear and processing 
time and quality of the jobs will change. Or the operator’s 
physical condition may cause the processing speed to 
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change over time. Browne and Yechiali introduced 
deteriorated processing times in the scheduling literature 
[2]. They assumed that the processing time of a job grows 
linearly depending on the start time of the job.   
 
To prevent job deterioration due to the machine, repair or 
maintenance, called rate-modifying activities (RMA), are 
needed. The RMA, an activity which affects and changes 
the production rate of the machines, was first introduced 
by Lee and Leon [3] 
 
This research addresses the bi-criteria scheduling 
problems involving single machine with deteriorating jobs 
and rate-modifying-activities. We study four criteria; total 
flow time, total tardiness, maximum tardiness and number 
of tardy jobs. Minimizing total flow time and number of 
tardy jobs reflect manufacturer satisfaction, while 
minimizing maximum tardiness and total tardiness are 
measures of customer satisfaction. To satisfy both sides 
by using those performance measures, we propose 
mathematical models and present experimental results for 

both ∑−+= UTrmpp j
i

jij |/,)1(/1 max
1α  and 

∑∑−+= TFrmpp j
i

jij |/,)1(/1 1α . 

 
2. LITERATURE REVIEW 

 

In the bi-criteria literature, some criteria are used very 
often. Therefore, we divide literature review based on 
performance measures. We classify the most common 
criteria studied in bi-criteria single machine scheduling 
problems by researchers. But before giving information 
about previous researchers, we want to explain major 
approaches to solve bi-criteria problems. There are three 
approaches in scheduling problems. 
 

1) Bi-criteria Approach: Generate Pareto curve for 
all non-dominated schedules. Using Graham et 
al. three field notation [4], we denote single 
machine bi-criteria problems under basic 

assumptions as 21 ,//1 γγ . 

2) Secondary Objective Approach: First try to 
optimize the primary criterion and then try to 
solve secondary criterion subject to the optimal 
value of the primary criterion. Denote the single 
machine bi-criteria problems under basic 

assumptions as 12 |//1 γγ .                                                     

3) The weighting method in which both objectives 
are optimized at the same time by assigning 
weights. Mathematically, the weighting method 
can be stated as follows: 
 

                                         

)()1()()(min 2111 xzwxzwxz −+=           (2.1)    

                    
In this study, we use three approaches to analyze our 
mathematical model. Various combinations of the criteria 
are considered and analyzed as primary and secondary 

criteria in the literature. We give brief literature review of 
most common used performance measures. 
 
Total Completion Time and Maximum Tardiness 
 
Smith developed a polynomial time algorithm to use 
secondary objective approach scheduling problems with 
these two objectives [5]. Afterwards, Heck and Roberts 
[6], Emmons [7], Van Wassenhove and Gelders [8] 
extended Smith’s study and developed some algorithms to 
consider secondary approach. Chen and Bulfin [9] proved 
that flow time with maximum tardiness bi-criteria 
problems are NP-hard. 

 
Later, Kondakci et al. presented an algorithm to produce 
all efficient schedules for any given non decreasing 
function of the total completion tine and maximum 
tardiness objectives. [10]. Chen [11] developed a heuristic 
to find the Pareto optimal schedules of periodic 
maintenance of the machines.   
 
Weighted Completion Time and Maximum Tardiness 
 
Burns [12] presented an algorithm that provide to a local 
optimum for both the weighted and unweighted problems 
in bi-criteria objectives. For the secondary approach, 
Bansal [13] extended Burns [12] algorithm and applied a 
branch and bound algorithm to find a globally optimal 
solution. In his algorithm, he found a locally optimal 
solution for the problem of minimizing weighted sum of 
completion times subject to the condition that every job be 
completed by its due date. Miyazaki [14] solved bi-criteria 
problem with different approach which one of the criteria 
as objective and the other as a constraint. He developed a 
necessary condition under which the local and global 
solutions are different and developed an algorithm to 
obtain an improved schedule based on the locally optimal 
schedule.  Shanthikumar and Buzacott [15], Potts and Van 
Wassenhove [16] developed some heuristics for 

problem FT |//1 max . Posner [17] and Bacghi and 

Ahmadi [18] considered with these two performance 
measures with deadlines and they found tightest bound for 
same objectives. Chen and Bulfin [9] proved that 
weighted flow time with maximum tardiness bi-criteria 

problems max|//1 TwT  and max|//1 Twu are NP-hard. 

 
Total Completion Time and Number of Tardy Job 
 
Emmons [7] was the first study which is presented a 
branch and bound algorithm based on these criteria for the 
secondary approach. Then, Nelson et al. [19] presented 
branching procedures on the bi-criteria approach. Chen 
and Bulfin [9] proved that these objectives are NP-hard. 
 
Maximum Tardiness and Number of Tardy Job 
 
Firstly, Shanthikumar [20] developed a branch and bound 

algorithm for the problem ∑ jUT |||1 max . Later on, 
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Nelson et al. [19] and Chen and Bulfin [21] proposed both 
heuristic and branch and bound algorithms for 

problem ∑ max|||1 TU j . Huo et al. [21] considered 

complexity relationship of single machine problems 

∑ }max{|||1 jjj TwU and 

∑ jjj UTw |}max{||1 with weighted tardiness. 

Also they proposed several fast heuristics.  
 
Most papers mentioned above assume processing time is 
constant. To the best of our knowledge, there is no study 
which combines bi-criteria scheduling problems with 
deteriorating jobs. So this paper is the first study which 
combines deteriorating jobs with rate-modifying-activity 
in bi-criteria objectives.   

 
3. PROBLEM DESCRIPTION 

 
As stated earlier, this study focuses on the single machine 
bi-criteria scheduling problem. There are n jobs to be 
processed on a single machine. The jobs are available at 

time zero and are independent of each other. Preemption 
is not allowed. The machine can handle one job at a time. 

Each job has an initial processing time jp  before 

deterioration, a due date jd  and an actual processing 

time  jip  which is the processing time of job j  if done i 

positions after an RMA or the initial position.  We 

calculate   jip  by; 

                                                  

( ) j
i

iji pp 11 −+= α                                         (3.1) 

 

where iα   is the deterioration rate of jobs for 

10 ≤< iα  when delayed by one position. This is non-

linear deterioration based on position rather than start 
time. And,  q   is the fixed period of time to perform the 

rma.  

 
 
 
Decision Variables 
 



 +

=
otherwise   0

1,kposition  before done is which rmaan after position ith  in the is j job if 1
ijkx  



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otherwise   0

iposition  before done is rmaan  if    1
iy  

iC =    Completion time of the job in position i. 

Our model is based on by Öztürkoğlu and Bulfin [1]. The constraints for our model are;  
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1+≤ ikji yx    nk .....,2= ;   nj ,.....,1= ;   1,.....,1 −= ki                      (3.6) 

{ }1,0∈ijkx         nknji ,.....,0;,.....,1, ==                                     (3.7) 

 

{ }1,0∈ky     nk ,.....,2=                                  (3.8) 

 

0≥iC      ni ,.....,1=                                           (3.9) 
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In constraint (3.2), the completion time of the job in 
position one is equal to the processing time of the job 
assigned to position one. Before the first position, there is 

no rma ( 01 =y ). In constraint (3.3), the completion 

time of the job in position i  is equal to the completion 

time of the job in position 1−i  plus the processing time 

of the job assigned to position i  plus the rma time if 
assigned. In constraint (3.4), each job is assigned to 
exactly one position. In constraint (3.5), each position is 
scheduled for only one job. Constraint (3.6) requires an 
rma to be done in the related position if jobs are scheduled 
after rma and to control the sequence of the rma. Lastly, 
constraints (3.7), (3.8) and (3.9) indicate the decision 
variables are binary and all other variables are non-
negative.  

 
4.  CRITERION 

 

In this paper we focus on four different objectives which 
are to minimize total flow time, total tardiness, maximum 
tardiness and number of tardy jobs. Different 
combinations of two of these criteria are studied. The 
mathematical formulation for each criterion is given 
below. 

 
4.1.  Total Completion Time 

 
Minimizing flow time is to keep the work in process 
inventory at a low level. Also, it tries to minimize 
completion times, lateness and job waiting times. It is 
defined as; 
 

∑
=

=
n

i
iCz

1

min       (4.1) 

 
Subject to: 
 
Constraint sets (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8) 
and (3.9) respectively. 
 
4.2. Total Tardiness 

 

Minimizing total tardiness is to reduce penalties cause by 

late jobs. Let jT be the tardiness of job j . 

∑
=

=
n

j
jTz

1

min          (4.2) 

 
Constraint sets (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), 
(3.9) and 
 

jjj dCT −≥         nj ,..,1=                     (4.3) 

 

 

 

4.3.  Maximum Tardiness 

 

Minimizing maximum tardiness is a measure of customer 
satisfaction based on due dates. 
 

maxmin Tz =        (4.4) 

 
Constraint sets (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), 
(3.9) and 
 

ii dCT −≥max         ni ,..,1=                                                                                        

(4.5) 
 

4.4.  Number of Tardy Jobs 

 

Often used in real applications, we try to finish as many 
jobs as possible on time because of the penalty costs.  
 

∑
=

=
n

i
iNz

1

min                 (4.6) 

Constraint sets (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), 
(3.9) and 

 

ii MTN ≥         ni ,..,1=                                                                                               

(4.7) 
 

{ }1,0∈iN          ni ,..,1=                                                                                         

(4.8) 

M is a very big number. 
 

4  5. COMPUTATIONAL EXPERIMENTS 

5  

To understand the behavior of the mathematical model, 
three approaches are used. The proposed mathematical 
model is coded using AMPL and solved by CPLEX 9.1 on 
a computer with Pentium IV 2.8 GHz processor and 1GB 
of RAM. We perform an empirical study of the three bi-
criteria approach. In the next subsection, we describe how 
we generate the data. And then, we give results and 
analysis of experiments. 
 
5.1.  Data Generations 

 
In our experiments, we consider 25 and 50 jobs.  Job 
processing times are generated from a uniform 
distribution on the interval [1-50]. To generate the due 
dates, we use τ  and R based on Huo et al. [19] which are 
denote the due date range and tardiness factor 
respectively. To generate each jobs due date, we use a 
discrete uniform distribution with intervals between   

)2/1()2/1(
11

RpandRp
n

j
j

n

j
j +−−− ∑∑

==

ττ . 

Table 1 gives problem parameters. 
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       Table 1.  The parameters of the Problem 

  Parameter                              Values 

          jp                              U~ [1-50] 

    jobsof#                          25 and 50 

α                           0.025, 0.05, 0.075 
          q                                2, 5, 8 (min.) 

          τ                                0.25, 075 

         R                                0.25, 0.50 

          iw           75.0,50.0,25.0  

 
Ten replications of each of the possibilities were run for 
each combination of performance measure. Totally, 540 
instances were generated. The results and analysis of 
experiments are given in the below. 

 
 

5.2.  Bi-criteria Approach 

 

One of the commonly used methods in bi-criteria is Pareto 

curve. In this method, 1s   is dominated by solution 2s . In 

that approach 2s is not worse than 1s  among objectives 

and 2s  can be strictly better than 1s  for at least one of 

the objectives. This solution is called non-dominated 
solutions and the set of non-dominated solutions in the 
feasible problem space is the Pareto optimal set. 
 
 
To try to find efficient Pareto curve we have plotted the 
25 points which are our objective functions. These points 
lie on the objective function line. To obtain these points, 
we use 25 jobs with 0.025 deterioration rate. All other 
parameters are the same. 
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 Figure 1. Pareto Curve for objective  ∑∑−+= TFrmp j
i

jij ,/,)1(/1 1α  
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Non-dominated means that there is no other solution in 
which one objective function can be improved without a 
simultaneous detriment to the other objective. In Figure 1, 
each of these points determines the extreme points of the 
dominated set in the decision space. All points are equally 
acceptable as the solution to the bi-criteria optimization 
problem. But, decision maker should be select only one 
solution set for practical reasons. Therefore, the decision 
maker may choose a schedule that provides a more 
balanced performance on the two criteria employed.  
 
5.3.  Secondary Objective Approach: 
 
In the secondary criterion approach, problem can be 
solved in two separate stages. Firstly, solve the problem 
for the primary criterion, called S1, in that stage ignore the 

secondary criterion, called S2. In the next stage, we solve 
the problem for the secondary criterion, subject to the 
constraint that the optimal value S1 does not change. In 
our model, first we solve our model only with primary 
objective. After getting the optimal solution, then solve 
the same model with secondary objective and add first 
optimal solution value likes a constraint. So, model can be 
solved by secondary objective method. 

  
Tables 2 and Table 3 show the computational time and 
given an RMA of the 

∑−+= UTrmp j
i

jij |/,)1(/1 max
1α and 

∑∑−+= FTrmp j
i

jij |/,)1(/1 1α respectiv

ely. 
 
 

         Table 2. Average Run Time (sec.) for ∑−+= UTrmp j
i

jij |/,)1(/1 max
1α  

Jobs numb. Det. Rate Rma time 
Ave. Comp. Time 

(sec.) Num. of given RMA 

 0.025 2 5.7 9 

 0.025 5 5.6 9 

 0.025 8 5.9 9 

 0.05 2 6.2 10 

25 0.05 5 6.3 10 

 0.05 8 6.1 10 

 0.075 2 8.6 11 

 0.075 5 8.5 12 

 0.075 8 8.8 12 

 0.025 2 18.7 20 

 0.025 5 19.0 21 

 0.025 8 19.4 21 

 0.05 2 22.2 22 

50 0.05 5 24.3 22 

 0.05 8 24.1 23 

 0.075 2 28.5 24 

 0.075 5 28.7 24 

 0.075 8 29.4 24 
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        Table 3. Average Run Time (sec.) for ∑∑−+= FTrmp j
i

jij |/,)1(/1 1α  

Jobs numb. Det. Rate Rma time 
Ave. Comp. Time 

(sec.) Num. of given RMA 

 0.025 2 19.1 8 

 0.025 5 19.8 8 

 0.025 8 20.2 8 

 0.05 2 22.9 8 

25 0.05 5 23.3 8 

 0.05 8 23.4 9 

 0.075 2 26.6 9 

 0.075 5 27.1 10 

 0.075 8 28.5 10 

 0.025 2 32.9 17 

 0.025 5 32.7 17 

 0.025 8 34.3 16 

 0.05 2 36.8 17 

50 0.05 5 37.8 18 

 0.05 8 39.1 18 

 0.075 2 38.4 19 

 0.075 5 39.9 19 

 0.075 8 40.9 19 
 
The computational results are summarized in Table 2 and 
Table 3.  Based on the tables, the number of rmas is based 
on both deterioration rate and rma time. A larger 
deterioration rate results in more rmas. It is obvious that 
for larger rma times, larger computation time is needed. 

 
 

5.4. Weighted Method 

 
The two objectives can be optimized at the same time by 
assigning the proper weights in the weighting method. 
Mathematically, the weighting method can be stated as 
follows: 
 

)1.5()()1()()(min 2111 xzwxzwxz −+=

                              
We use three different value of 

)75.0,50.0,25.0(iw in our calculations. The 

extension of weight ranges is important for the stability of 
solution.  Before using the Equation 5.1, we normalize our 
objective function values to obtain reliable results. 
 
 
Normalization 
 
In practice, multiple objectives have different dimensions 
and difficult to compare different objective types. The 
individual preferences of the objectives are described by 
weights.  These weights are assigned by the decision 
maker. But assigning proper weights are very difficult and 

causes problems unless assigns convenient weights. To 
prevent problems, the normalization of objectives is 
necessary to get reliable solutions. The normalization of 
different objectives permits the compare various 
dimensions and the find out the relationship between 
indifferent objectives. 
 
In our data set, normalization is necessary. We transform 
the data into a range between 0 and 1. The normalization 
of the objective function values are found by using below 
equation;  
 

)())(( L
i

U
i

L
iii zzzxft −−=                             

(5.2) 
 
This value provides the best normalization results as we 
normalize the objective functions by the true intervals of 
their variation over the Pareto Optimal set. The 
parameters of the equation (5.2) is given in the below; 

 

=)(xf i  original value ,  

 ))((max xfz i
U
i = , 

 ))((min xfz i
L
i = , 

 =it  transformed value. 

 
After normalization, we run our new data set and obtain 
Table 4 and Table 5.  
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Table 4. Weighted Method for objective of ),(/,)1(/1 1 FTfrmp j
i

jij
−+= α  

Jobs 
numb. 

Det. Rate Rma time 25.01 =w  5.01 =w  75.01 =w  
Ave.Flow.T 

(sec.) 
Ave.Num. 

of given RMA 

 0.025 2 6007.1 4257.2 2507.3 2.2 9 

 0.025 5 6192.9 4388.5 2584.1 3.1 5 

 0.025 8 6322.3  4480.5 2638.6 3.3 4 

 0.05 2 6295.4 4446.4 2597.3 3.5 10 

25 0.05 5 6575.01 4643.1 2711.2 3.6 7 

 0.05 8 6770.1 4780.6 2790.8 3.6 4 

 0.075 2 6467.4 4573.8 2680.1 3.9 19 

 0.075 5 6808.1 4811.8 2818.5 4.1 13 

 0.075 8 7034.2 4973.48 2912.2 4.0 9 

 0.025 2 24789.9 17060.5 9331 18.3 16 

 0.025 5 25499.6 17547.8 9595.9 21.5 14 

 0.025 8 25943.7 17851.7 9759.6 19.5 10 

 0.05 2 16395.8 11315.5 6235.2 18.2 20 

50 0.05 5 17197.9 11866.8 6532.7 23.6 13 

 0.05 8 17717.2 12261.3 6751.2 21.1 10 

 0.075 2 14993.8 9674.1 4949.4 21.6 28 

 0.075 5 15108.7 11716.9 5432.7 22.7 22 

 0.075 8 15473.9 11920.3 5748.1 24.1 16 
 
 

Table 5. Weighted Method for objective of ),(/,)1(/1 max
1 UTfrmp j

i
jij

−+= α  

Jobs 
numb. 

Det. Rate Rma time 
 

25.01 =w  

 

5.01 =w  

 

75.01 =w  
Ave. Comp. 
Time (sec.) 

Num. of given 
RMA 

 0.025 2 8857.2 6675.3 4964.2 6.2 8 

 0.025 5 8909.1 6818.1 4997.6 6.1 6 

 0.025 8 9121.7  6908.6 5271.9 9.7 5 

 0.05 2 7995.3 5881.3 4495.4 14.5 12 

25 0.05 5 8093.1 5934.2 4214.6 20.1 10 

 0.05 8 8380.6 5534.9 3984.3 20.2 9 

 0.075 2 7307.8 4983.4 3439.5 9.9 15 

 0.075 5 7495.5 4811.8 3692.4 20.2 13 

 0.075 8 7693.9 4731.5 3934.5 21.2 10 

 0.025 2 25822.2 16346.7 13488.7 58.3 20 

 0.025 5 26981.7 16984.6 14989.1 89.5 18 

 0.025 8 27349.4 17964.2 15349.1 89.5 15 

 0.05 2 22901.6 11594.7 8320.9 28.2 26 

50 0.05 5 23714.5 13688.7 9341.3 56.6 25 

 0.05 8 26341.8 14143.8 9918.6 61.1 22 

 0.075 2 19737.0 9985.2 8374.9 11.6 30 

 0.075 5 23813.7 10671.1 8964.1 32.7 26 

 0.075 8 25749.1 13462.7 10438.6 45.1 25 
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Table 4 and Table 5 show a summary of the 
computational results of both objectives. Problems with 

75.0=w  have the smallest objective function. As rma 
time and deterioration rate get bigger, the objective 
function gets bigger for the same weights. If we fix rma 
time, the objective function increases as the deterioration 
rate increases. The decision manager can make his/her 
decisions quickly and control their manufacturing systems 
by choosing proper weights. 

 
 

6. CONCLUSIONS 

 
This is the first study on bi-criteria scheduling with 
deteriorating jobs and rate-modifying-activity. We address 
a real-life scheduling problem with periodic maintenance 
activity. In reality, scheduling maintenance will result in 
some jobs being tardy and a larger flow time. Thus, the bi-
criteria used in this study are minimize total flow time 
with total tardiness, and minimize maximum tardiness 
with number of tardy jobs. Generally, mathematical 
models have not been used extensively for scheduling 
problems. In this study, all combinations are studied with 
the proposed mathematical programming model.  
 
This is the first study which uses all three approaches to 
analyze the efficiency of the mathematical model with bi-
criteria objectives.  First, we use the model to find the 
Pareto Curve for both objectives, so a manager can make 
his decision from points on the curve. Then we use 
secondary objective method. Computational results show 
that the solution of the problem is dependent on the 
number of jobs and the other parameters of the problem. 
Although, 50 job problems are solved in around one 
minute, exponential growth in solution times makes larger 
problems much harder to solve. Lastly, we use weighted 
method to analyze model.  
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