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Abstract
In this article, Maximum likelihood estimation (MLE) and Bayesian estimation for
Rayleigh distribution using progressive type-II censoring in the presence of outliers is
considered. Inverse Gamma prior and Jeffreys prior are used for Bayesian estimation.
Squared error loss function (SELF), precautionary loss function (PLF) and K-loss func-
tion (KLF) are used for obtaining the expressions of Bayes estimators and posterior risks.
Credible intervals are also derived. A simulation study is presented to discuss the behavior
of Bayes estimators. Applicability of the undertaken study is highlighted using three real
data sets.
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1. Introduction
An observation markedly away from the measurements in the data set is referred to as

an outlier. Though outliers generally represent random error but may contain valuable
information. Data especially from industrial processes may found to be contaminated with
outliers. These outliers are often eliminated or discarded from the data set before analysis.
But it is of immense importance to know the nature of outliers present in the data sets
and handle these nuisance quantities carefully rather than to discard them. Methods and
tools exist for finding and testing the outliers contained in the data set. For detailed study
on outliers we refer to Anscombe [6], Grubbs [15], Barnett [10], Kale [17], Hawkins [16],
Barnett [11], and Kale and Kale [18].
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In life testing experiments and survival analysis, censoring is a commonly and frequently
used technique. It is introduced in situations when a portion of lifetime distribution is
known and the remaining portion is known to exceed some value. A huge literature is
available on the study of censored sampling spanning at about 50 years and inference
on the basis of censored samples for a range of life time distributions such as Normal,
Exponential, Gamma, Rayleigh, Weibull, Extreme value, Log-normal, Inverse Gaussian,
Laplace have been conducted by many authors.

A more generalized version of the type-II censoring scheme known as the progressive
type-II censoring scheme is available that provides the facility to remove the units during
the experiment and it also reduces cost and consumption of time during the experiment. A
substantial description on progressive censoring has been given by Balakrishnan and Ag-
garwala [9]. Studies on different lifetime distributions using progressive censoring schemes
have been conducted such as by Aslam et al. [7], Mann[20], Childa and Balakrishnan
[12], and Soliman [24]. Maximum likelihood estimation and Bayesian estimation under
progressive type-II censoring scheme is given by Yuen and Tse [26], Wu and Chang [25],
and Sarhan and Abuammoh [22].

Rayleigh distribution is a widely used distribution in life testing experiments, survival
as well as reliability analysis. Rayleigh distribution is analyzed by Dyer and Whisenand
[14]. Bayesian predictive intervals are derived for the two-component Rayleigh mixture
model by Saleem and Aslam [21]. Classical estimation using type-I progressive censoring
is presented on mixed Rayleigh distribution by Afify [2]. Bayesian estimation of Rayleigh
distribution using progressive type-II censoring is conducted by Azimi and Yaghmaei [8].
In this study, our focus is to obtain parameter estimates of Rayleigh distribution when
data from the considered model contain outliers. Outliers are generally discarded so it
deems important to utilize them efficiently.

2. Materials and methods
In this section, we introduce the model, construct its likelihood function, obtain poste-

rior density and conduct Bayesian estimation of the proposed model.

2.1. Rayleigh probability model and its likelihood function
Consider a random sample X1, X2, ..., Xn such that m of them are distributed as:

f(x, α, β) = 2x

αβ
e

− x2
αβ , 0 < x < ∞; α, β > 0 (2.1)

and remaining n − m of them can be modeled by:

f(x, α) = 2x

α
e− x2

α , 0 < x < ∞; α > 0 (2.2)

The joint probability density function of X1, X2, ..., Xn in the presence of outliers according
to Dixit [13] is:

f(x1, x2, . . . , xn; α, β) =
n∏

i=1
f(x; α)

∑
A

m∏
j=1

[
f(xAj ; α, β)
f(xAj ; α)

]
(2.3)

where ∑
A

=
n−m+1∑
A1=1

n−m+2∑
A2=A1+1

, . . . ,
n∑

Am=Am−1+1

By substituting expressions from (2.1), and (2.2) in (2.3), we get

f(x1, x2, ..., xn, α, β) = 2n

αnβn

n∏
i=1

xie
− 1

α
(

n∑
i=1

x2
i ) ∑

A

m∑
j=1

e
− 1

α
( 1

β
−1)(xAj)2

(2.4)
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and marginal distribution of X ′s can be obtained as:

f(xi, α, β) = m

n

(2xi

αβ
e

−
x2

i
αβ

)
+

(
n − m

n

)(2xi

α
e−

x2
i

α

)
x > 0; α, β > 0 (2.5)

The likelihood function under the progressive type-II censoring scheme in the presence
of outliers is given by

L(α, β|x) = C1
C (r, s)

r∏
i=1

[
f (xi, α) S (xi, α)Ri

] ∑
A

s∑
j=1

[
f(xAj ; α, β)S(xAj ; α, β)Ri

f(xAj ; α)S(xAj ; α)Ri

]
(2.6)

substitution of respective functions and simplification leads to:

L(x|α, β) = 2r

αrβs

∏r
i=1(xi)e− 1

α

∑r

i=1(x2
i )(Ri+1) ∑

A e
−

1
α

( 1
β

−1
) ∑s

j=1(x2
Aj)(RAj+1)

0 < x < ∞; α, β > 0
(2.7)

Here, s is the number of outliers out of r. where

∑
A

=
r−s+1∑
A1=1

r−s+2∑
A2=A1+1

, ...,
r∑

AAr=Ar−1+1

2.2. Maximum likelihood estimation
To get Maximum Likelihood Estimators (MLEs) for the Rayleigh probability model in

the presence of outliers, we take logarithm of the likelihood function (2.7) and differentiate
it with respect to parameters which yields the following equations.

∂(L(α, β|x)
∂α

= − r

α
+ 1

α2

r∑
i=1

(x2
i )(Ri + 1) +

∑
A

1
α2

( 1
β

− 1
) s∑

j=1
(x2

Aj)(RAj + 1) (2.8)

∂(L(α, β|x)
∂β

= − s

β
+ 1

αβ2

s∑
j=1

(x2
Aj)(RAj + 1) (2.9)

Solving simultaneously (2.8) and (2.9) for α, β and equating to zero, we can get MLEs
for the parameters of interest. Assuming asymptotic normality 100(1 − α)% confidence
intervals forα and β can be obtained as α̂ ±Zα/2SE(α̂) and β̂ ±Zα/2SE(β̂) where V ar(α̂)
and V ar(β̂) are the diagonal entities obtained by inverting the Fisher Information Matrix
which may be obtained as:

I(α, β) =
[

E(− ∂2

∂α2 LogL(α, β)) E(− ∂2

∂α∂β LogL(α, β))
E(− ∂2

∂α∂β LogL(α, β)) E(− ∂2

∂β2 LogL(α, β))

]
(2.10)

2.3. Bayesian estimation
In this section, we obtain Bayes estimators, posterior risks and credible intervals for

Rayleigh distribution. We need to specify a loss function to arrive at Bayes estimator
and its posterior risk which is the expected value of a given loss function Ali [5]. Three
loss functions, Squared error loss function (SELF), precautionary loss function (PLF)
and K-loss Function (KLF) is used to derive the expressions of Bayes estimators and
their posterior risks. We refer to Ali [3] and Ali [4] for derivation and details on loss
functions.These three loss functions are used to deal with different situations so employed
with the purpose to choose efficient Bayes estimators.
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2.3.1. Posterior distribution assuming informative prior (IP). The inverse gamma
distribution is used as prior distribution for both parameters. The joint prior density func-
tion of α and β may be written as:

p(α, β) = ba

Γa

dc

Γc
α(−a−1)β(−c−1)e

− b
α

− d
β α, β > 0 (2.11)

and posterior distribution in the presence of s outliers under progressive type-II censoring
is:

p(α, β|x) =
∑
A

[ α−(r+a+1e− 1
α

[b+D1−D2] ∑
A

[
β−(c+s+1)−1 exp− d

β

]
Γ(r + a + 1)Γ(c + s + 1)/(b + D1 − D2)(r+a+1)d(c+s+1)

]
(2.12)

α, β > 0

Here
∑

A[ Γ(r+a+1)Γ(c+s+1)
(b+D1−D2)(r+a+1)(d)(c+s+1) ] is the normalizing constant.

D1 =
r∑

i=1
(x2

i )(Ri + 1) D2 =
s∑

j=1
(x2

Aj)(RAj + 1)

Marginal posterior distributions of α and β having s outliers which are used to obtain
Bayes estimators are:

p(α|x) =
∑
A

[
α−(r+a+1)−1e− 1

α

[
b+D1−D2

]
Γ(c + s + 1)

d(c+s+1)

]
(2.13)

p(β|x) =
∑
A

[
β−(c+s+1)−1e

− d
β Γ(r + a + 1)

(b + D1 − D2)(r+a+1)

]
(2.14)

2.3.2. Posterior distribution assuming non-informative prior (NIP). Non- infor-
mative priors are also the important part of Bayesian statistics. We use Jeffrey’s prior as
NIP to carry out Bayesian analysis. The joint Jefferys prior for the parameters of Rayleigh
distribution is:

g(α, β) ∝ 1
αβ

(2.15)

Hence the posterior distribution in the presence of s outliers under progressive type-II
censoring is:

p(α, β|x) =
∑
A

[α−(r+1)−1e− 1
α

[D1−D2] ∑
A

[
β−(s+1)−1 exp− 1

β

]
Γ(r + 1)Γ(s + 1)/(D1 − D2)(r+1)

]
(2.16)

2.4. Bayes estimators and their posterior risks under different loss func-
tions

In this section we present Bayes estimates and posterior risk under SELF, PLF, KLF.
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2.4.1. Square error loss function(SELF). The SELF, defined as L(θ, θ̂) =
(
θ − θ̂

)2

equally weights the under and overestimation hence regarded as a symmetric loss function.
Bayes estimators obtained under SELF are posterior expectations while risk is obtained
as posterior variance. Bayes estimators and their posteriors risk of α and β are:

α̂ =
∑
A

[ Γ(c + s + 1)Γ(r + a)
d(c+s+1)(b + D1 − D2)(r+a)

]
(2.17)

β̂ =
∑
A

[ Γ(r + a + 1)Γ(c + s)
(b + D1 − D2)(r+a+1)d(c+s)

]
(2.18)

and
R(α̂) =

∑
A

[ Γ(c + s + 1)Γ(r + a − 1)
d(c+s+1)(b + D1 − D2)(r+a−1)

]
− α̂ (2.19)

R(β̂) =
∑
A

[ Γ(c + s − 1)Γ(r + a + 1)
d(c+s−1)(b + D1 − D2)(r+a+1)

]
− β̂ (2.20)

2.4.2. Precautionary loss function (PLF). Everything in life is not symmetric. This
fact invites us to use loss functions that are asymmetric by nature. PLF which is an
asymmetric loss function and is particularly applied when underestimation is of serious
concern is defined as. L(θ, d) = (θ−d)2

d . Bayes estimators and posteriors risk under PLF
are obtained as:

d̂ = [Eθ|x(θ2)
1
2 ], ρ(d̂) = 2[Eθ|x(θ2)

1
2 ] − 2Eθ|x(θ)

Bayes estimators and their posteriors risk of α and β when PLF is used are;

α̂ =
[ ∑

A

Γ(c + s + 1)Γ(r + a − 1)
d(c+s+1)(b + D1 − D2−)(r+a−1)

] 1
2

(2.21)

β̂ =
[ ∑

A

Γ(c + s − 1)Γ(r + a + 1)
d(c+s−1)(b + D1 − D2)(r+a+1)

] 1
2

(2.22)

R(α̂) = 2
[
α̂ −

∑
A

Γ(c + s + 1)Γ(r + a)
d(c+s+1)(b + D1 − D2)(r+a)

]
(2.23)

R(β̂) = 2
[
β̂ −

∑
A

Γ(c + s)Γ(r + a + 1)
d(c+s)(b + D1 − D2)(r+a+1)

]
(2.24)

2.4.3. K-loss function. The K-loss function defined as k(θ, θ̂) =

√
θ̂

θ
−

√
θ

θ̂

2

was

introduced to cope with the measure of the inaccuracy of an estimator of a scale parameter
specifically when distribution is defined on positive real line. Bayes estimators and their
posteriors risk of α and β by using K-loss function are:

α̂ =
[ ∑

A
Γ(c+s+1)Γ(r+a)

d(c+s+1)(b+D1−D2)(r+a)∑
A

Γ(c+s+1)Γ(r+a+2)
d(c+s+1)(b+D1−D2)(r+a+2)

] 1
2

(2.25)

β̂ =
[ ∑

A
Γ(c+s+)Γ(r+a+1)

d(c+s+)(b+D1−D2)(r+a+1)∑
A

Γ(c+s+2)Γ(r+a+1)
d(c+s+2)(b+D1−D2)(r+a+1)

] 1
2

(2.26)
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R(α̂) = 2
[( ∑

A

Γ(c + s + 1)Γ(r + a)
d(c+s+1)(b + D1 − D2)(r+a)

)( ∑
A

Γ(c + s + 1)Γ(r + a + 2)
d(c+s+1)(b + D1 − D2)(r+a+2) − 1

)]
(2.27)

R(β̂) = 2
[( ∑

A

Γ(c + s)Γ(r + a + 1)
d(c+s)(b + D1 − D2)(r+a+1)

)( ∑
A

Γ(c + s + 2)Γ(r + a2 + 1)
d(c+s+2)(b + D1 − D2)(r+a+1) − 1

)]
(2.28)

2.5. Credible intervals
Lower and upper bounds of α using Mathematica 12 Software are obtained as:

∑
A

[(b + D1 − D2)(r+a+1)(L)(−r−a−1)
(

L
(b+D1−D2)

)(r+a+1)
Γ

(
r + a + 1, b+D1−D2

L

)
Γ(r + a + 1)

]
(2.29)

and

∑
A

[ (b+D1−D2)(r+a+1)

[(
1

b+D1−D2

)r+a+1

Γ(r+a+1)−U(−r−a−1)

(
U

b+D1−D2

)r+a+1

Γ

(
r+a+1,

b+D1−D2
L

)
Γ(r+a+1)

]
(2.30)

Similarly, expressions of lower and upper bound of β are obtained.

∑
A

[(d)(c+s+1)(L)(−c−s−1)
(

L
d

)(c+s+1)
Γ

(
c + s + 1, d

L

)
Γ(c + s + 1)

]
(2.31)

and

∑
A

[(d)(c+s+1)
[(

1
d

)c+s+1
Γ(c + s + 1) − U (−c−s−1)

(
U
d

)c+s+1
Γ

(
c + s + 1, d

U

)]
Γ(c + s + 1)

]
(2.32)

3. Results and discussions
In this section, we provide a numerical analysis comprising of simulation analysis and

real data analysis to illustrate the properties and behavior of derived estimators.

3.1. Simulation study
A simulation study is conducted for different values of n, m, s and r, where r is fixed.

We firstly obtain simulated values for α, β by taking a = 3, b = 1, c = 5 and d = 2.4 from
independently distributed prior distribution given in (2.11) using Mathematica program.
Values of hyper parameters are obtained equating the value of a parameter to the prior
mean. The simulated values for parameters using 1000 replications are obtained as: α =
1.0827 and β = 1.3024. After the simulation of prior parameters, data is generated from
the Rayleigh distribution in the presence of outliers and without outliers using simulated
parameters. Further data is generated for dropout units that are Ri and RAj for the case
of outliers and without outliers respectively from a binomial distribution given as.
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R1 ∼ Bin[n − m − (r − s), 0.05]

R1|R1,R2,...,Rr−1 ∼ Bin[n − m − (r − s) −
r−1∑
i=1

Ri, 0.05]

RA1 ∼ Bin[m − s, 0.05]

RAj |RA1 ,RA2 ,...,RAr−1
∼ Bin[m − s −

r−1∑
j=1

Rj , 0.05]

Simulated Bayes estimates with 1000 replications are obtained using the informative
inverse Gamma prior utilizing the expressions given in (2.17)-(2.28). The same procedure
is repeated for non-informative Jeffreys prior to obtain Bayes estimates and posterior risks
forα and β by setting the prior parameters a = b = c = d = 0. Credible intervals are
obtained for α and β using IP as well as NIP.

Table 1. ML estimates with MSEs in parenthesis and Bayes estimates with pos-
terior risks using IP when n=50 and r=9

Estimates
m s αML βML αSELF βSELF αP LF βP LF αKLF βKLF

28 1 1.5034 0.5655 1.8533 0.1644 1.9581 0.1707 1.8326 0.1589
(0.5234) (0.1721) (0.3901) (0.0021) (0.1994) (0.0211) (0.1667) (0.1420)

2 1.5344 0.5647 1.5340 0.1647 1.6558 0.1709 1.5234 0.1591
(0.5180) (0.1502) (0.2717) (0.0020) (0.1898) (0.0213) (0.1666) (0.1424)

3 1.5632 0.5648 1.8636 0.1648 1.9974 0.1711 1.8341 0.1593
(1.4190) (0.3645) (0.3913) (0.0021) (0.2088) (0.0215) (0.1666) (0.1426)

30 1 1.4190 0.3645 1.9409 0.1645 1.9984 0.1707 1.8398 0.1589
(0.5803) (0.1635) (0.4082) (0.0021) (0.1987) (0.0212) (0.1666) (0.1420)

2 1.4952 0.3647 1.8950 0.1647 1.9670 0.1709 1.8316 0.1591
(0.5935) (0.1621) (0.3998) (0.0021) (0.2012) (0.0213) (0.1666) (0.1424)

3 1.5244 0.3648 1.9245 0.1648 1.9558 0.1711 1.7934 0.1592
(0.5556) (0.1225) (0.4055) (0.0021) (0.1926) (0.0215) (0.1666) (0.1426)

33 1 1.5890 0.3645 1.889 0.1644 1.9758 0.1707 1.8435 0.1589
(0.5807) (0.2633) (0.3855) (0.0021) (0.1875) (0.0211) (0.1666) (0.1420)

2 1.5975 0.3021 1.8578 0.0021 1.9699 0.1709 1.8170 0.1591
(0.5782) (0.3132) (0.3728) (0.0020) (0.1801) (0.0213) (0.1666) (0.1424)

3 1.6170 0.3648 1.9073 0.1648 1.9697 0.1711 1.8004 0.1592
(0.4953) (0.2031) (0.3932) (0.0021) (0.1809) (0.0215) (0.1666) (0.1426)

36 1 2.3442 0.4021 2.5442 0.00208 2.6876 0.1707 2.3917 0.1589
(0.6552) (0.2001) (0.6372) (0.0021) (0.2291) (0.0212) (0.1666) (0.1420)

2 2.4901 0.4647 2.4951 0.1647 2.6841 0.1709 2.4141 0.1591
(0.6397) (0.4901) (0.6191) (0.0021) (0.2286) (0.0213) (0.1667) (0.1424)

3 2.5450 0.1648 2.5403 0.1648 2.6510 0.1710 2.4437 0.1592
(0.6373) (0.1905) (0.6343) (0.0021) (0.2258) (0.0215) (0.1666) (0.1426)
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Table 2. Credible intervals using IP when n=50 and r=9

m s αL(ML) αU(ML) βL βU αL αU βL βU

28 1 0.4775 2.5292 0.2281 0.9028 0.5744 3.6333 0.0979 0.9955
2 0.5191 2.5496 0.2703 0.8590 0.5795 3.6435 0.0984 0.9922
3 0.5191 2.5496 0.2703 0.8590 0.4569 2.8377 0.0993 0.9855

30 1 0.2816 2.5563 0.0440 0.6849 0.6153 3.8920 0.0979 0.9955
2 0.3319 2.6584 0.0469 0.6824 0.4567 2.8713 0.0984 0.9922
3 0.4354 2.6133 0.1247 0.6049 0.6273 3.8963 0.0993 0.9855

33 1 0.4508 2.7271 -0.1515 0.8805 0.4665 2.9507 0.0979 0.9955
2 0.4642 2.7307 -0.1157 0.7199 0.4945 3.1090 0.0984 0.9922
3 0.6462 2.5877 -0.0332 0.7628 0.6384 3.9649 0.0993 0.9855

36 1 1.0600 3.6283 0.0099 0.7942 0.6899 4.3641 0.0979 0.9951
2 1.2362 3.7439 0.0921 0.8372 0.7792 4.8989 0.0984 0.9922
3 1.2958 3.7941 0.0914 0.8381 0.6273 3.8960 0.0993 0.9855

Table 3. Bayes estimates and posterior risks using NIP

Estimates n=50 r=9
m s αSELF βSELF αP LF βP LF αKLF βKLF

28 1 2.3950 0.1025 2.5686 0.1085 2.2663 0.0975
(0.8948) (0.0012) (0.3615) (0.0119) (0.2222) (0.2113)

2 1.9173 0.1026 2.1016 0.1086 1.8947 0.0976
(0.6022) (0.0012) (0.3123) (0.0119) (0.2222) (0.2119)

3 2.3436 0.1027 2.5487 0.1087 2.3372 0.0976
(0.8578) (0.0012) (0.3227) (0.0120) (0.2222) (0.2121)

30 1 2.4099 0.1025 2.6559 0.1085 2.3018 0.0975
(0.8892) (0.0012) (0.3495) (0.0119) (0.2222) (0.2113)

2 2.4309 0.1026 2.5915 0.1086 2.2656 0.0976
(0.9166) (0.0012) (0.3429) (0.0119) (0.2222) (0.2119)

3 2.4404 0.1027 2.5692 1.7552 0.0976 0.0976
(0.9049) (0.0012) (0.3380) (0.0120) (0.1666) (0.2121)

33 1 2.4155 0.1025 2.5514 0.1085 0.0975 0.0975
(0.8779) (0.0012) (0.3126) (0.0119) (0.2222) (0.2113)

2 2.3676 0.1026 2.6002 0.1086 2.3361 0.0976
(0.8635) (0.0012) (0.3086) (0.0119) (0.2222) (0.2119)

3 2.4068 0.1027 2.5352 0.1087 2.3506 0.0976
(0.8690) (0.0012) (0.3466) (0.0120) (0.2222) (0.2121)

36 1 3.2249 0.1025 3.4308 0.1085 3.0703 0.0975
(1.4126) (0.0012) (0.3954) (0.0119) (0.2222) (0.2113)

2 3.2388 0.1026 3.4379 0.1086 3.1009 0.0976
(1.4345) (0.0012) (0.3957) (0.0119) (0.2222) (0.2119)

3 3.2500 0.1027 3.4691 0.1087 3.0533 0.0976
(1.4455) (0.0012) (0.4008) (0.0120) (0.2222) (0.2121)

From the results reported in Tables 1–4, it is observed that parameter α is estimated
a bit higher when non-informative prior is used while the parameter β seems quite con-
sistent under both priors. However, the performance of informative prior is found more
impressive as compare to non-informative prior because posterior risks of both param-
eters are smaller under informative prior. It is also noted that KLF worked well for α
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as again posterior risks are smaller under KLF than PLF, and SELF. In fact posterior
risks of α using SELF are the highest. But it is interesting to see that for parameter β,
performance of loss functions is totally opposite. Here SELF comes up with posterior risks
that are smaller than PLF, and KLF. Though the objective of the study was to conduct
Bayesian analysis but estimates for the parameters of the model are also acquired using
MLE for comparison purposes. It is observed that Bayesian paradigm works well in the
current scenario as MSEs obtained under MLE are found to be higher when compared
PRs obtained under Bayesian framework. Credible intervals given in Table 2 and Table
4 are in accordance with the estimates obtained for both priors but credible intervals ob-
tained using non-informative prior are broader than credible intervals under informative
prior. Further intervals obtained under MLE are more consistent and narrower than Bayes
credible intervals. But interest lies the situation that accounts for lesser risk which can
appropriately be obtained using the Bayesian technique.

Table 4. Credible intervals using NIP when n=50 and r=9

m s αL αU βL βU

28 1 0.3912 3.3111 0.0562 2.3054
2 0.4384 3.6839 0.0566 2.5962
3 0.4813 3.9878 0.0572 2.2621

30 1 0.4208 3.5614 0.0562 2.3054
2 0.4485 3.7687 0.0566 2.5962
3 0.4701 3.8953 0.0572 2.2621

33 1 0.5725 4.8457 0.0562 2.3054
2 0.3872 3.2539 0.0566 2.5962
3 0.3502 2.9018 0.0572 2.2621

36 1 0.6616 5.5996 0.0562 2.3054
2 0.4313 3.6244 0.0566 2.5962
3 0.5523 4.5759 0.0572 2.2621

3.2. Data analysis
Application of the opted model under the proposed scheme of study is shown by con-

ducting Bayesian estimation of three data sets. Bayes estimates and their posterior risks
for informative as well as non-informative priors are estimated by using three loss func-
tions; i.e., SELF, PLF, and KLF. 100(1 − α)% credible intervals are also estimated for
both priors.

Data set 1. This data set is taken from Shanker et al. [23] which represents the strength
of 1.5cm glass fibers measured at the National Physical Laboratory, England. The data is
given in Table 5 and is divided into two parts to form data sets with and without outliers.

Table 5. Data on strength of glass fibers

X observations Y observations
0.55 0.74 0.77* 0.81 1.24 0.93 1.25*
1.36 1.49 1.52* 1.58* 1.61 1.64 1.68
1.73* 1.81 2.00 1.04 1.27 1.39 1.49*
1.53 1.59 1.61 1.50* 1.54 1.60 1.62*
1.66 1.69 1.76 1.84 1.66* 1.70 1.77
1.84* 0.84 1.30 1.48 1.51

1.66 1.68 1.76* 1.82 2.01 1.11* 1.28
1.42 2.24 1.13* 1.29* 1.48 1.50 1.55*
1.61 1.62 1.55 1.61* 1.63 1.67* 1.70
1.78* 1.89
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Here in this data set n1 = 40, n2 = 23, n = n1 + n2, m = 35, r = 10 and the total number
of removals is “n − m − r” having the scheme of prefixed removals as;
R1 = {0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,
0, 0} and R2 = {0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0} from no outliers and
outlier observations. The obtained results are presented in Tables 6–9.

Table 6. ML estimates with MSEs in parenthesis and Bayes estimates with pos-
terior risks using IP

Estimates n=63, m=35, r=10
s αML βML αSELF βSELF αP LF βP LF αKLF βKLF

1 3.0602 0.25601 2.6010 0.1536 2.7072 0.15898 2.5064 0.1487
(0.7636) (0.0107) (0.5637) (0.0017) (0.2124) (0.0.0107) (0.1539) (0.1318)

2 3.0102 0.26101 2.6015 0.1538 2.7072 0.1592 2.5064 0.1489
(0.7031) (0.0155) (0.5637) (0.0017) (0.2124) (0.0108) (0.1539) (0.1322)

3 3.1060 0.2601 2.6014 0.1538 2.7072 0.1592 2.5064 0.1489
((0.7636) (0.0158) (0.5637) (0.0016) (0.2124) (0.0108) (0.1539) (0.1323)

Table 7. Confidence interval and credible intervals using IP

Credible Intervals n=63, m=35, r=10
s αL(ML) αU(ML) βL(ML) βU(ML) αL αU βL βU

1 1.56340 4.55699 0.23507 0.27694 1.27421 7.90486 0.09205 1.02473
2 1.63198 4.38841 0.23061 0.29141 1.27667 7.88323 0.09246 1.02205
3 1.60920 4.60279 0.22913 0.2911 1.28157 7.84078 0.09314 1.01653

Table 8. Bayes estimators and posterior risks for NIP

Estimates n=63,m=35, r=10
s αSELF βSELF αP LF βP LF αKLF βKLF

1 3.2813 0.0927 3.4587 0.0975 3.1286 0.0886
(1.1963) (0.0009) (0.3549) (0.0095) (0.2000) (0.1898)

2 3.2813 0.0928 3.4587 0.0976 3.1286 0.0887
(1.1963) (0.0009) (0.3549) (0.0095) (0.2000) (0.1902)

3 3.2813 0.0928 3.4587 0.0976 3.1286 0.08874
(1.1963) (0.0009) (0.3549) (0.0096) (0.2000) (0.1904)

Table 9. Credible intervals for NIP

Credible Intervals n=63,m=35, r=10
s αL αU βL βU

1 1.4674 11.8263 0.05163 2.4353
2 1.4705 11.7880 0.0519 2.4232
3 1.4767 11.7127 0.05242 2.3984

It is concluded from Tables 6–9 that calculated Bayes estimators using IP which rep-
resents average estimates of strength of fiberglass can be thought of to be 2.50 to 2.60
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for first parameter while the 2nd parameter is estimated to be 0.15. Posterior risks ob-
tained for these estimates are smaller for IP than NIP which establish the superiority of
IP employed. When obtained Bayes estimates are compared with ML estimates, we get
estimates with MSEs that are higher than posterior risks. Credible intervals for infor-
mative prior found pretty narrow while these are broader for non-informative prior. But
ML confidence intervals are narrower than Bayes credible intervals. When we compare
the performance of loss functions, KLF performs better than PLF and PLF proved to be
better than SELF on the basis of respective posterior risks for first parameter. For the
case of the second parameter, SELF outperformed the two other loss functions.

Data set 2. The data set for analysis is taken from Abushal [1] that represents the survival
times (in years) of a group of patients having the treatment of Chemotherapy. Survival
of patients may largely depend upon different types of treatments and on other factors as
well. Hence, such data is found suitable to be analyzed by mixture model containing two
types of data, with and without outliers. The data is divided into two parts to extract
information for a mixture model and is given in Table 10.

Table 10. Data set of survival times of patients

X observations Y observations
0.260* 0.282 0.296 0.334 0.395 0.458
0.466 0.501 0.841 0.863 1.099 1.219
1.271 1.326 1.447 1.458 2.830 3.578
3.658 3.743 3.978 4.003 4.033 0.047*
0.115* 0.121* 0.132* 0.164* 0.197
0.203

0.507 0.529 0.534 0.540 0.570 0.641
0.644 0.696 1.553 1.581 1.589* 2.178*
2.343* 2.416* 2.444* 2.825*

Here, in this data set n1 = 30, n2 = 16, n = n1 + n2, m = 25, r = 9 and the total number
of removals are “n − m − r” and we take the removals from the scheme as;
R1 = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0} and R2 = {0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1} respectively from no outliers and outliers observations. The
results can be viewed from Tables 11–14.

Table 11. ML estimates with MSEs in parenthesis and Bayes estimates with
posterior risks for IP

Estimates n=46, m=25, r=9
s αML βML αSELF βSELF αP LF βP LF αKLF βKLF

1 3.5974 0.1819 3.1543 0.1645 3.2947 0.1707 3.0306 0.1589
(0.1420) (0.3800) (0.0265) (0.9045) (0.0021) (0.2805) (0.0125) (0.1667)

2 3.4957 0.1801 3.1544 0.1647 3.2947 0.1710 3.0306 0.1592
(0.2985) (0.0250) (0.9045) (0.0021) (0.2805) (0.0125) (0.1667) (0.1424)

3 3.3945 0.1801 3.1544 0.1648 3.2947 0.1711 3.0306 0.1592
(0.2955) (0.0250) (0.9045) (0.0021) (0.2805) (0.0125) (0.1667) (0.1427)

Table 12. Confidence interval and credible intervals using IP

Credible Intervals n=46, m=25, r=9
s αL(ML) αU(ML) αL αU βL βU

1 2.8526 6.4500 1.5401 9.7412 0.0979 0.9955
2 2.9106 6.4063 1.5440 9.7064 0.0984 0.9923
3 2.8153 6.2098 1.5518 9.6380 0.0993 0.9856
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Table 13. Bayes estimators and posterior risks for NIP

Estimates n=46,m=25, r=9
s αSELF βSELF αP LF βP LF αKLF βKLF

1 4.0947 0.1025 4.3431 0.1085 3.8846 0.0975
(2.0959) (0.0013) (0.4967) (0.0119) (0.2222) (0.2113)

2 4.0947 0.1026 4.3431 0.1086 3.8846 0.0976
(2.0958) (0.0012) (0.4967) (0.0119) (0.2222) (0.2119)

3 4.0947 0.1027 4.3431 0.1087 3.8846 0.0976
(2.0958) (0.0013) (0.4967) (0.0120) (0.2222) (0.2121)

Table 14. Credible intervals using NIP

Credible Intervals n=46, m=25, r=9
s αL αU βL βU

1 1.80675 15.2907 0.05622 2.30547
2 1.81187 15.2248 0.05662 2.59624
3 1.82206 15.0955 0.05728 2.26215

From results presented in Tables 11–14, we come to conclude that the average survival
of patients measured through informative prior is nearly 3.0 to 3.15 years for first parame-
ter which is slightly higher when estimated under non-informative prior. Also informative
prior was found better than non-informative prior by producing smaller risks, which is
desirable in Bayesian estimation. Comparing ML and Bayes estimates it is concluded that
Bayesian estimation is preferred over classical as PRs are much smaller than the MSEs
obtained under use of the classical technique. Conclusion about loss functions remains the
same as discussed earlier for simulation analysis and data set 1.

Data set 3. The data given in Kohansal [19] has been used in estimation of the stress-
strength reliability for inverted exponentiated Rayleigh distribution which is about the
strength measured in GPA for single carbon fiber. The data set modified for the mixture
model (modeled by two different density functions) is given in Table 15.

Table 15. Data on strength of carbon fiber

X observations Y observations
1.865* 2.382 2.809 2.675 3.377 2.490
3.537 2.616 2.514 1.944* 2.426 1.901*
2.738 3.871 2.648 2.027* 2.937 3.012
1.958* 2.566 2.132* 2.740 3.408 2.880
2.274 3.264 2.397 2.140* 2.570 2.203
3.125 3.886 2.361 2.511 3.554 2.618
2.179* 2.586 2.474 3.139 3.971 2.614
2.684 2.055* 2.224 2.773 2.518 3.145
2.021* 2.937 2.954 2.301 2.382 2.800
2.522 3.346 2.272 3.243 2.396 2.697

1.966* 2.434 2.818 2.257 3.220 4.024
2.301* 3.294 2.454 1.997* 2.435 2.821
2.350 3.223 4.027 2.535 3.628 2.659
2.006* 2.478 2.848 2.532 3.235 2.977
2.726 2.098* 3.030 2.240 2.629 2.228*
2.57 5 3.435 3.272 2.445 2.359 3.332
2.253* 2.633 2.525 2.917 3.493 3.562
2.624 2.554 3.852 2.270 2.642 2.856
2.928 3.501 2.063* 2.996 2.770
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In this data set n1 = 60, n2 = 53, n = n1 + n2, m = 80, r = 15 and the total number
of removals are “n − m − r” and we take the removals from the scheme as;
R1 = {1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0} and R2 = {1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}
respectively from no outliers and outliers observations. Obtained results are given in
Tables 16–19.

Table 16. ML estimates with MSEs in parenthesis and Bayes estimates with
posterior risks for IP

Estimates n=113, m=80,r=15
s αML βML αSELF βSELF αP LF βP LF αKLF βKLF

1 1.6564 0.1372 1.5127 0.1157 1.5566 0.1187 1.4724 0.1130
(0.0987) (0.0079) (0.1346) (0.0006) (0.0877) (0.0059) (0.1111) (0.0979)

2 1.5966 0.1387 1.5127 0.1158 1.5566 0.1188 1.4724 0.1130
(0.0897) (0.0091) (0.1346) (0.0007) (0.0877) (0.0059) (0.1111) (0.0980)

3 1.5892 0.1388 1.5128 0.1158 1.5566 0.1188 1.4724 0.1131
(0.0886) (0.0090) (0.1346) (0.0007) (0.0877) (0.0059) (0.1111) (0.0980)

Table 17. Confidence interval and credible intervals using IP

Credible Intervals n=113, m=80,r=15
s αL(ML) αU(ML) αL αU βL βU

1 1.4629 1.8499 0.7633 4.2295 0.0716 1.1429
2 1.4208 1.7724 0.7639 4.2254 0.0717 1.1416
3 1.4155 1.76289 0.7649 4.2174 0.0719 1.1389

Table 18. Bayes estimators and posterior risks for NIP

Estimates n=113, m=80,r=15
s αSELF βSELF αP LF βP LF αKLF βKLF

1 1.74865 0.06305 1.81002 0.06516 1.69312 0.06114
(0.21841) (0.00027) (0.12275) (0.00422) (0.13333) (0.12732)

2 1.74865 0.06307 1.81002 0.06518 1.69312 0.06115
(0.21841) (0.00027) (0.12275) (0.00423) (0.13333) (0.12739)

3 1.74865 0.06307 1.81002 0.06519 1.69312 0.06115
(0.21841) (0.00027) (0.12275) (0.00423) (0.13333) (0.12741)

Table 19. Credible intervals using NIP

Credible Intervals n=113, m=80,r=15
s αL αU βL βU

1 0.83151 5.44884 0.03710 3.00268
2 0.83211 5.44291 0.03720 2.99602
3 0.83330 5.43127 0.03736 2.98256

From these obtained Bayes estimates given in Tables 16–19, we can assume that strength
of a single fiber fall in the range of 1.47 to 1.53. Here again informative prior performed
better than non-informative prior.
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4. Conclusion
In this study, an attempt has been made to estimate parameters of Rayleigh distribution

when data are contaminated with outliers using the Bayesian approach. ML estimation
is also conducted to establish a comparison between the two techniques. Inverse Gamma
prior and Jeffreys prior are used for Bayesian estimation. While three loss functions SELF,
PLF, and KLF are used. Prior information which is the basis of Bayesian estimation when-
ever available enhances the utility of analysis. In this study informative prior throughout
got superiority by providing better estimates along with smaller posterior risks and pretty
good credible intervals. When performance of loss functions is compared, it is found that
KLF is better for α (shape parameter) and SELF is better for β (outlying parameter).
When comparing the results of the simulation study for informative prior, it is found that
KLF is better for α (shape parameter) and SELF is better for β (outlying parameter).
When sample size increases, posterior risks decrease continuously for α under PLF. For
non-informative prior, KLF provides better results for α and SELF provides better results
for β for each sample size. For data sets 1 and 2, KLF performs better for α and gives less
posterior risks as compared to SELF and PLF for informative and non-informative prior
as well. Further, it is also observed that β gives more efficient results under SELF, PLF
and KLF when informative prior is used. It is also observed that all the Bayes estimates
lie in the range of credible intervals. It is also observed that Bayesian approach gives
better results as PRs are found lesser than MSEs which we obtain by using the classical
approach in all the cases.
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