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ABSTRACT 

In this study, a new collocation method based on Bernstein polynomials defined on the interval [a, b] is introduced 
for approximate solutions of initial and boundary value problems involving higher order linear differential 
equations with variable coefficients. Error analysis of the method is demonstrated. Some numerical solutions are 
given to illustrate the accuracy, efficiency and implementation of the method, and the results of the proposed 
method are also compared with the other methods in several examples. 
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1. INTRODUCTION 

Differential equations, which describe how quantities 
change across time or space, arise naturally in science, 
engineering, and in almost every field of study where 
measurements can be taken. Most realistic mathematical 
models cannot be solved through the traditional pencil-
and-paper techniques providing an excellent means to 
put across the underlying theory; instead, they must be 
dealt with the computational methods that deliver 
approximate solutions. 

Polynomials have played a central role in 
approximation theory and numerical analysis for many 
years. They are useful mathematical tools as they are 
precisely defined, calculated rapidly on a modern 
computer system and can represent a great variety of 
functions. Moreover they can be differentiated and 
integrated simply. 

Bernstein polynomials have many useful properties 
such as the positivity, the continuity, recursion's 
relation, symmetry and unity partition of the basis set 
over the interval [0, 1], [1]. For this reason, they have 
been studied in an enormous number of publications, 
and are frequently used both in approximation theory 
and computer aided geometric design [2]. 

In recent years, many researchers have been interested 
with the Bernstein polynomials. These polynomials 
have been utilized for solving several equations by 
using various numerical methods. For example; 
Bernstein polynomials have been used for solving 
differential equations [3-8], integral equations [9, 10], 
partial differential equations [11-13], integro-
differential equations [14]. Especially, Işık and et al. [6] 
have introduced a new method to solve high order linear 
differential equations with initial and boundary 
conditions. The method is numerically based on rational 
interpolation and Bernstein series solution depending on 
collocation method. Doha and et al. [4, 5] have proved 
new formulas about derivatives and integrals of 
Bernstein polynomials, and have used the Galerkin and 
Petrov-Galerkin methods based on Bernstein 
polynomials for solving high even-order differential 
equations. Bhatti and Bracken [3] have given solutions 
of linear and non-linear differential equations with 
linear combinations of Bernstein polynomials, and their 
coefficients have been determined by Galerkin method. 
Ordokhani and Davaei far [8] have proposed an 
operational matrix by an expansion of Bernstein 
polynomials in terms of Legendre polynomials for 
solving differential equations. 
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The Bernstein polynomials and their basis form that can 
be generalized on the interval [a, b],  are defined as 
follows: 

Definition 1.1 Generalized Bernstein basis polynomials 
can be defined on the interval [a, b] by 

( )
( ) ( ),

1
( ) ; 0,1, , .

i n i

i n n

n
p x x a b x i n

ib a

− 
= − − = 

−  
K  

For convenience, we set p i,n(x) = 0, if i < 0 or i  > n .  

We give the properties of the generalized Bernstein 
basis polynomials in the following list: 

(a) Positivity property: 

, ( ) 0i np x >  is hold for all i=0,1,...,n and all [ ],x a b∈ . 

(b) Unity partition property:  

 
1 1

, , 1 ,1
0 0 0

( ) ( ) ( ) 1.
n n

i n i n i
i i i

p x p x p x
−

−
= = =

= = = =∑ ∑ ∑K  

(c) Recursion's relation property: 

 
( )1

, , 1 1, 1( ) ( ) ( ) ( )i n i n i nb a
p x b x p x x a p x− − −−  = − + −  . 

Definition 1.2 Let [ ]: ,y a b → �  be continuous 

function on the interval [a, b]. Generalized Bernstein 
polynomials of degree n are defined by 

 ( ) ,
0

( ; ) ( ).
n

b a
n i nn

i

B y x y a i p x−

=

= +∑  

Theorem 1.1 If [ ]C ,ky a b∈ , for some integer 0,m ≥  

then 

 ( ) ( )lim ( ; ) ( ); 0,1, ,k k
n

n
B y x y x k m

→∞
= = K  

converges uniformly. 

For more information about Bernstein polynomials 
defined on the interval [0, 1], see [15]. 

In this paper, the purpose is to approximate the solution 
of mth-order linear differential equations 

 ( )

0

( ) ( ) ( ),  
m

k
k

k

a x y x f x a x b
=

= ≤ ≤∑                     (1) 

under the initial conditions 

 ( ) [ ]
1

0

( ) ; ,
m

k
jk j

k

y c c a bλ µ
−

=

= ∈∑                              (2) 

or boundary conditions 

 ( ) ( )
1

0

( ) ( )
m

k k
jk jk j

k

y a y bα β γ
−

=

 + = ∑                       (3) 

for  0,1,..., 1j m= − , with the generalized Bernstein 

polynomials: 

 ( ) ( ) ( ) ( )( )( )
,

0

( ) ; ( ).
n

k kb a ik
n i nn

i

y x B y x y a p x−

=

≅ = +∑    (4) 

Here ( )ka x  and f(x) are continuous functions on the 

interval [a, b], jkα , jkβ , jkλ , jµ  and jγ  are known 

constants, and y(x) is an unknown function. 

The paper is organized as follows: In Section 2, some 
fundamental relations are given and a new relation that 
can be qualified as key between the generalized 
Bernstein basis polynomials and its derivatives is 
introduced. Then, Bernstein collocation method is 
discussed in Section 3. In Section 4, convergence of the 
method is analyzed and some errors are defined. In 
Section 5, the presented method is applied to three 
problems and numerical results are compared with the 
other methods for showing the accuracy and efficiency 
of the proposed method. The Section 6 is ended with 
the conclusions. 
 

2. FUNDAMENTAL RELATIONS 

Theorem 2.1 On the interval [a, b], any generalized 
Bernstein basis polynomials of degree n can be written 
as a linear combination of the generalized Bernstein 
basis polynomials of degree n + 1: 

 
, , 1 1, 1

1 1( ) ( ) ( )
1 1i n i n i n

n i ip x p x p x
n n+ + +
− + += +
+ + . 

Proof. By using Definition 1.1, we have 

( )
( ) ( )

( )
( ) ( )

,

1
1 1 ( 1)1

1

1, 1 1, 11
1

1
( )

/ 1
1

1
( ) ( )

1

i n i

i n n

n n
i n ii i

n

n
i

i n i nn
i

x a x a n
p x x a b x

ib a b a b a

n
x a b x

ib a

i
p x p x

n

−

   +       + + − ++   
+

 
 
 

+ + + ++ 
 + 

− −  = − − − −  −

+ = − − + −

+
= =

+

 

and 

( )
( ) ( )

( )
( ) ( )

, ,

1
1

1

, 1 , 11

1 ( ) ( )

1
=

/ 1
=

1
= ( ) ( ).

1

i n i n

i n i

n

n n
i n ii i

n

n
i

i n i nn
i

x a b x
p x p x

b a b a

b x n
x a b x

ib a b a

n
x a b x

ib a

n i
p x p x

n

−

   +       + −   
+

 
 
 

+ ++ 
 
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− − − = − − 
−   − − −  −

+  − − 
 −

− +
=

+

 

By summing both sides of these expressions, we have 
desired result. 

Theorem 2.2 The derivatives of nth-degree generalized 
Bernstein basis polynomials are given by: 

 ( ) ( ) ( ), 1, 1 , 1i n i n i n

d n
p x p x p x

dx b a − − − = − −
       (5) 

for 0,1, , .i n= K  

Proof. By using Definition 1.1, this expression can be 
obtained as: 
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( )
( ) ( )

( )
( ) ( ) ( )( ) ( )

( )
( ) ( ) ( ) ( )

( )
( ) ( )

,

1 1

1 1

1 1 ( 1)

1

1
( )

1
=

1 1
=

1

1 11
=

1
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i n n

i n i i n i

n

i n i i n i

n
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n

nd d
p x x a b x
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−
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− − − −

−

  
= − −  

−   

   − − − − − −   −  

 − −   
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( ) ( )( )1

1

1, 1 , 1

1

= ( ) ( ) .
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n
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−
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 
− − 
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Theorem 2.3 The first derivatives of nth-degree generalized Bernstein basis polynomials can be written as a linear 
combination of the generalized Bernstein basis polynomials of degree n: 

 ( ) ( ) ( ), 1, , 1,

1
( ) 1 ( ) 2 ( ) 1 ( ) .i n i n i n i np x n i p x i n p x i p x

b a − + = − + + − − + −
 

 

Proof. By utilizing Theorem 2.1, the following 
equalities can be written as 

 
, 1 , 1,

1, 1 1, ,

1( ) ( ) ( ),

1( ) ( ) ( ).

i n i n i n

i n i n i n

n i ip x p x p x
n n

n i ip x p x p x
n n

− +

− − −

− += +

− += +
 

Substituting these relations into the right hand side of 
the expression (5), the desired relation is obtained. 

Theorem 2.4 There is a relation between generalized 
Bernstein basis polynomials matrix and their derivatives 
of the form 

 ( )( ) ( ) ;    1,2, , .k kx x k m= =P P N K  

Here the elements of (n + 1) × (n +1) matrix ( )ijm=N , 

i, j = 0,1,…,n are defined by: 

 

, if 1

2 , if1
.

, if 1

0, otherwise

n i j i

i n j i
m

ij b a i j i

− = +
 − =

= 
− − = −



 

Proof. From Theorem 2.3 and condition , ( ) 0i np x =  if 

0i <  or 0i > , we have 

0, 0, 1,

1, 0, 1, 2,

2, 1, 2, 3,

1, 2, 1, ,

,

1

1

1

1

1

( ) ( ) ( )

( ) ( ) (2 ) ( ) 2 ( )

( ) ( 1) ( ) (4 ) ( ) 3 ( )

( ) 2 ( ) ( 2) ( ) ( )

( )

n n n

n n n n

n n n n

n n n n n n n n

n n

b a

b a

b a

b a

b a

p x np x p x

p x np x n p x p x

p x n p x n p x p x

p x p x n p x np x

p x p

− − −

−

−

−

−

−

′  = − − 

′  = + − − 

′  = − + − − 

′  = + − − 

′ =

M

1, ,( ) ( ) .n n n nx np x− + 

 

Hence we obtain the matrix relation 

 ( ) ( )x x′ =P P N  

such that 

 
0, 1, ,

0, 1, ,

( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ,

n n n n

n n n n

x p x p x p x

x p x p x p x

 = … 

′ ′ ′ ′ = … 

P

P
 

0 0 0 0

1 2 1 0 0 0

0 2 4 0 0 0

0 0 3 0 0 01 .

0 0 0 4 2 0

0 0 0 1 2 1

0 0 0 0

n n

n n

n

b a

n

n n

n n

− 
 − − − 
 − −
 

− =  −
 

− 
 − − 
 − 

N

K

K

K

K

M M O M

K

K

K

 

In a similar way, the second derivative becomes 

 ( )  ( ) ( ) ².x x x′′ = ′ =P P N P N  

Thus we get derivatives of the generalized Bernstein 
basis polynomials in the form 

 ( ) ( 1)( ) ( )  ( ) .k k kx x x−= =P P N P N  

This completes the proof. 
 

3. METHOD OF  SOLUTION 

The main idea of the Bernstein collocation method is to 
seek a solution of the problem in the form of the 
Bernstein polynomials. For this reason, a higher order 
linear differential equation with variable coefficients is 
satisfied by the Bernstein polynomials at the collocation 
points. Therefore the main matrix equation is obtained 
as follows: 

Theorem 3.1 Let [ ],ix a b∈ ; i = 0,1,…,n be collocation 

points. General mth-order linear non-homogen 
differential equation (1) can be written as the matrix 
form 

 
0

.
k

k

m
k

=

=∑A PN Y F                                                (6) 
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Here the matrices are ( )( ) /y a b a i n=  + −  Y , 

( )diagk k ia x=   A , ( ),j n ip x =  P  and ( )if x=   F ; 

, 0,1, ,i j n= K . 

Proof. The expression (4) can be denoted by the matrix 
form 

 ( ) ( )( ) ; ( )k k k
ny x B y x x≅ =( ) ( )P Y . 

By utilizing Theorem 2.4, the derivatives of the 
unknown functions can also be written by 

 ( ) ( ) ( ) ; 0,1,..., .k ky x x k m≅ =P N Y                     

(7) 

Substituting the collocation points and relation (7) into 
equation (1), we obtain the linear algebraic equation 
system 

 ( ) ( ) ( )
0

; 0, ,
m

k
k i i i

k

a x x f x i n
=

= =∑ P N Y K  

such that ( ) ( )( )( ) ;k k
i n iy x B y x= . This equation system 

can be denoted by the matrix form (6) and the proof is 
completed. 

We can solve the differential equation with variable 
coefficients (1) under the conditions (2) or (3) as 
following the steps: 

Step 1. The equation (6) can be written in the compact 
form 

 [ ] or ;=WY F W F                                             (8) 

so that 
0

km

k k=∑ PNW A= . This matrix equation (8) 

corresponds to a linear algebraic system with unknown 
coefficients 0 1, , , .ny y yK

 

Step 2. From expression (7), matrix forms of the 
conditions (2) and (3) can be written respectively 

 
1

,0 ,1 ,
0

( ) ,
m

k
j jk j j j n

k

c v v vλ
−

=

 = = … ∑V P N  

 

1

0

,0 ,1 ,

[ ( ) ( ) ]
m

k k
j jk jk

k

j j j n

a b

u u u

α β
−

=

= +

 = … 

∑U P N P N
 

or implicitly 

 or  [ ; ],j j jµ µ= jV Y     V                                      (9) 

 or  [ ; ].j j jµ µ= jU Y     U                                    

(10) 

Step 3. To obtain the solution of equation (1) under the 
conditions (2) or (3), we add the elements of the row 
matrices (9) or (10) to the end of the matrix (8). In this 

way, we have the new augmented matrix ;  W F% % . Here 

the augmented matrix is a ( ) ( )1 1n m n+ + × +  
rectangular matrix. This new matrix equation shortly 

can be denoted by =WY F% % . 

Step 4. If ( ) ; 1rank rank n = = + W W F% % % , then 

unknown coefficients ; 0,1, ,iy i n= K  are uniquely 

determined. These kinds of systems can be solved by 
the Gauss Elimination, Generalized Inverse and QR 
factorization methods. 
 

4. ERROR ANALYSIS 

Definition 4.1 Error of approximation is denoted by 

( )( ) ( ) ;n ne x y x B y x= −  such that y(x) is an exact 

solution and ( );nB y x  is a Bernstein approximate 

solution. Then the maximum error can be defined as 

 [ ]( ); , = ( )= ( ) = max | ( )|,n n n n
a x b

E y a b E y e x e x
∞ ≤ ≤

 

and on the collocation points, maximum and mean error 
can also be numerically computed respectively by 

 ( ) ( )max mean
1

1= max|e |, = .
i

n

n i n i
x

i
nE x E e x

=
∑  

Besides, the relative error at the points ix  is the number 

 ( ) ( )rel n i iE e x y x=  

such that ( ) 0iy x ≠ . 

Definition 4.2 If we obtain not the exact solution y but 
an approximate solution ny , one can test ny  by 

substituting equation (1) to see whether it is closed to y. 
Thus we obtain the residual error as noted below: 

 ( )

0

( ) ( ) ( ; ) ( ) .
m

k
n k n

k

R x a x B y x f x
=

= −∑  

Definition 4.3 Let y(x) be defined on the interval [a, b]. 
The modulus of continuity of y(x) on [a, b], ω(δ), is 
defined for 0δ >  by 

 ( )
[ ]1 2

1 2

1 2
, ,

= sup | ( ) ( )|.
x x a b

x x

y x y x

δ

ω δ
∈

− ≤

−  

Lemma 4.1 If 0λ > , then ( ) ( ) ( )1ω λδ λ ω δ= + . [16] 

Lemma 4.2 y(x) is uniformly continuous on the interval 

[a, b] if and only if ( )
0

lim 0
δ

ω δ
→

= . [16] 

Lemma 4.3 Let the generalized Bernstein basis 
polynomials be defined on the interval [a, b]. Then we 
have 

 

( ) ( )

( ) ( )( )
( )

( )

,
0

2

2
, 2

0

,

1
.

n

i n
i

n

i n
i

n x a
ip x

b a

n n x a n x a
i p x

b ab a

=

=

−
=

−

− − −
= +

−−

∑

∑
 

Proof. From property (b) and Definition 1.1, desired 
expressions can be written as respectively, 
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( )
( )

( ) ( )

( ) ( ) ( )
( ) ( )

( )
( )

( ) ( )

( )

,
0 0

1

1
1

1
0

1

, 1
0

1

1 !
                =

1 ! !

1 1
                =

               = ( )

             

n n
i n i

i n n
i i

n
i n i

n
i

n
i n i

n
i

n

i n
i

n
ip x i x a b x

ib a

n
x a b x

i n ib a

n x a n
x a b x

ib a b a

n x a
p x

b a

−

= =

−

=

−
− −

−
=

−

−
=

 = − − 
 −

− −
− −−

− −  − − −  −

−

−

∑ ∑

∑

∑

∑
( )

  = ,
n x a

b a

−

−

 

 

( ) ( ) ( )

( )( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
,

0 0

1 1

1
1 1

2 0

1 1 ! 1 !

1 ! ! 1 ! !

1 ! 1 !

2 ! ! ! 1 !

1

( )

( )

( )

( 1)(

n n
i n i

i n n
i i

n n
i n i i n i

n
i i

n n
i n i i n i

n
i i

i n n

i n i i n i

n n

i n i i n i

n
i p x i x a b x

ib a

n
x a b x x a b x

b a

n
x a b x x a b x

b a

n n

−

= =

− −

= =

−
− + − −

= =

− − −
− − − −

− −
− − − −

 = − − −  

 
= − − + − − 

−  

 
= − − + − − 

−  

−
=

∑ ∑

∑ ∑

∑ ∑

( ) ( ) ( ) ( )2 1

2 2 1
2 1

2
0 0

2 2 1

, 2 , 12
0 0

2

2

2 11 1
( ) ( )

) ( )

( )

( 1)( ) ( )
( ) ( )

( )

( 1)( ) ( )
.

( )

n n

n n
i n i i n i

i i

n n

i n i n
i i

n n

i ib a b a

x a n x a
x a b x x a b x

b a b a

n n x a n x a
p x p x

b a b a

n n x a n x a

b a b a

− −

− −
− − − −

= =

− −

− −
= =

− −

− −

− −      − − + − −      
− −      

− − −
= +

− −

− − −
= +

− −

∑ ∑

∑ ∑

 

Lemma 4.4 Generalized Bernstein basis polynomials defined on the interval [a, b] have the following relation: 

 ( )( ) ( )( )2

,
0

( ) .
n

i n
i

b a
n

x a b x
x a i p x

n=

− − −
− + =∑  

Proof. From Lemma 4.3 and property (b), we obtain 

 

( ) ( ) ( )( )
2

2

, ,2
0 0

2
2 2

, , ,2
0 0 0

2 2 21

1( ) ( )

2( )( ) ( )
( ) ( ) ( )+ ( )

( ) 2( ) + ( 1)( ) ( )( )

( )( ) / .

n n

i n i n
i i

n n n

i n i n i n
i i i

b a i

n

n

x a p x n x a b a i p x
n

x a b a b a
x a p x ip x i p x

n n

x a x a n x a x a b a
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−  − + = − − −    

− − −
= − −

 = − − − − − + − − 
= − −

∑ ∑

∑ ∑ ∑  

Theorem 4.2 Let Bny be Bernstein approximate solution on the interval [a, b]. If exact solution y(x)  is continuous on the 
interval [a, b], then 

 lim 0.n
n

y B y
∞→∞

− =  

Proof. Considering the properties of generalized Bernstein basis polynomials and modulus of continuity of y(x), the 
absolute error can be written as 
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Applying Cauchy-Schwarz inequality to the right hand side of the sum expression and using Lemma 4.4, we have 
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Therefore, the maximum error is obtained as 

 

( )

( ) ( )( )( )
( )

1/ 2
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−
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Since y(x) is continuous on the interval [a, b] in view of Lemma 4.2, ( )1/ 2nω − → ∞  as n → ∞ , and theorem is proved. 
 

5. NUMERICAL RESULTS 

Three numerical examples are considered by using the 
presented method on the collocation points 

( ) / ; 0,1,ix a b a i n i n= + − = K . Numerical results 

obtained the Bernstein collocation method, using the 
algorithm written in MATLAB 7.1, are compared with 
the other methods. 

Example 5.1 Consider the 

 
2 cos 3sin ,  0 1;

(0) 0,  (0) 1

y xy y x x x x

y y

′′ ′+ − = − ≤ ≤

′= =
 

initial value problem that the exact solution is 
sin( )y x= . 

Using the Bernstein collocation method, the mean 
errors are given in Table 1. The maximum errors are 
also compared with the Rational Bernstein 
approximation [6] in Table 2. Table 1 and Table 2 show 
that our method is very effective and more accurate 
than the other method. 

 

Table 1. Mean errors of Example 5.1. 

n Emean n Emean 

5 9.6e-006 15 1.3e-015 

6 8.6e-007 16 3.0e-015 

7 1.7e-008 17 9.5e-015 

8 1.3e-009 18 4.7e-016 

9 2.2e-011 19 7.7e-015 

10 1.4e-012 20 2.6e-015 

 

Table 2. Comparison the maximum errors for Ex. 5.1. 

n Presented Method Rational [6]  

5 2.1e-005 7.2e-003 

7 3.7e-008 4.2e-004 

10 3.1e-012 3.6e-008 
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Example 5.2 For [ ]1,1x∈ − , consider the following 

boundary value problem: 

( ) ( ) ( )6 2 4 2(5 1) 185 25 10 cos( ) 270 36 sin( )y x y x x x x x x+ + = − + + −

( 1) 4cos(1), (1) 2cos(1),

( 1) cos(1) 4sin(1), (1) cos(1) 2sin(1),

( 1) 16cos(1) 2sin(1), (1) 14cos(1) 2sin(1).

y y

y y

y y

− = = −

′ ′− = + = +

′′ ′′− = − + = −

 

The analytic solution of the above equation is 
( ) (2 ³ 5 1)cos( ).y x x x x= − +  

Table 3. Mean errors of Example 5.2. 

n Emean n Emean 

12 4.7e-006 24 1.5e-014 

14 6.1e-014 28 1.4e-014 

16 4.1e-015 30 7.3e-015 

18 1.5e-015 32 7.5e-015 

20 4.1e-015 35 2.6e-014 

22 2.4e-015 40 1.5e-014 

 
Table 4. Comparison the maximum errors for Ex. 5.2. 

n Presented Method Septic [17] 

16 1.0e-013 1.2e-004 

32 1.3e-013 1.6e-005 

64 2.9e-010 3.8e-006 

128 7.3e-008 9.5e-007 

In Table 3, the mean errors are computed with 
increasing n. The maximum errors are compared with 
the Septic spline method [17] in Table 4. Tables show 
that the presented method converges more rapidly than 
the other method for especially small n. 

Example 5.3 Consider the following boundary value 
problem: 

 
( ) ( )36 2 720;  0 1

(0) (0) (0) (1) (1) (1) 0.

x xy e y x x e x

y y y y y y

− −+ = − − ≤ ≤

′ ′′ ′ ′′= = = = = =
 

The exact solution of  the problem is ( ) ³(1 )³.y x x x= −  

Using the presented method, the mean errors are given 
in Table 5. The absolute relative errors are compared 
with the Sinc-Galerkin method [18] in Table 6. Table 5 
and Table 6 show that the proposed method has high 
accuracy, and better results than the other method for 
various points x. 

Table 5. Mean errors of Example 5.3. 

n Emean n Emean 

6 1.4e-014 16 7.5e-018 

8 5.5e-014 18 1.9e-017 

10 1.1e-014 20 1.7e-018 

12 1.4e-015 22 2.7e-017 

14 6.6e-017 24 3.9e-017 

15 1.4e-018 25 1.3e-017 

Table 6. Comparison of the absolute relative errors. 

x 
Presented Method Sinc-Galerkin 

65m =  6n =  15n =
 

65n =
 0.167 8.0e-012 6.1e-016 5.5e-012 4.5e-004 

0.276 2.6e-012 5.0e-016 3.5e-012 3.2e-004 

0.345 1.6e-012 4.4e-016 1.3e-012 2.8e-004 

0.420 9.9e-013 9.9e-017 4.8e-012 2.6e-004 

0.5 5.6e-013 6.3e-020 4.1e-012 2.5e-016 

0.655 2.5e-013 1.5e-016 7.2e-013 2.8e-004 

0.782 9.2e-013 1.8e-016 6.7e-012 3.7e-004 

0.832 4.6e-012 3.4e-016 1.4e-011 4.5e-004 

0.904 2.2e-011 7.5e-016 7.4e-011 7.3e-004 

 

6. CONCLUSIONS 

In this study, a collocation method based on the 
generalized Bernstein polynomials has been developed 
for the solution of higher order differential equations 
under the initial or boundary conditions. If y(x) and its 
derivatives are continuous functions on bounded 
interval [a, b], then the method can be applied to any 
initial or boundary value problems. In collocation 
method, the residual error Rn is forced to become zero  
at the 1n +  collocation points ( ) /ix a b a i n= + − ; 

0,1, ,i n= K  to evaluate the 1n +  unknown constants 

y(xi). If these values are not equal to zero, this case is 
rounding error resulted from computer. Proposed 
method presents useful advantages as it construct the 
main matrix equation simply and it is applicable for 
algorithms based on computer. Moreover, this method 
has been tested on three problems, and numerical results 
have been compared with the other methods. 
Consequently, all of the reasons are revealed that the 
proposed method is very effective and encouraging. 
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