

Fixed Point Theory for Cyclic^(\u03c6) - Contractions in Uniform Spaces

S. FIROUZIAN¹, S. SEDGHI^{2,*}, N. SHOBKOLAEI³

¹Payame Noor University, IRAN

²Islamic Azad University, Department of Mathematics, Qaemshahr Branch, Qaemshahr, IRAN ³Islamic Azad University, Department of Mathematics, Babol Branch, Babol, IRAN

Received: 28.02.2013 Accepted: 08.07.2013

ABSTRACT

In this paper, we apply the concept of $\operatorname{cyclic}^{(\phi)}$ -contraction for presenting a fixed point theorem on Hausdorff uniform space. Some more general results are also obtained in Hausdorff uniform space.

Key Words: *Fixed point, Uniform Space, Cyclic* $^{(\phi)}$ *-contraction.*

1. INTRODUCTION

Let X be a nonempty set and let \mathcal{G} be a nonempty family of subsets of $X \times X$. The pair (X, \mathcal{G}) is called a uniform space if it satisfies the following properties:

(i) if G is in \mathcal{G} , then G contains the diagonal $\{(x,x) \mid x \in X\};$

(ii) if G is in \mathcal{G} and H is a subset of $X \times X$ which contains G, then H is in \mathcal{G} ;

(iii) if G and H are in \mathcal{G} , then $G \cap H$ is in \mathcal{G} ;

(iv) if G is in \mathcal{G} , then there exists H in \mathcal{G} , such that, whenever (x, y) and (y, z) are in H, then (x, z) is in G;

(v) if G is in \mathcal{G} , then $\{(y,x) | (x,y) \in G\}$ is also in \mathcal{G} .

 \mathcal{G} is called the uniform structure of X and its elements are called entourages or neighbourhoods or surroundings. In Bourbaki [5] and Zeidler [17], (X, \mathcal{G}) is called a quasiuniform space if property (v) is omitted. Some authors such as Berinde [3], Jachymski [6], Kada et al [7], Rhoades [12], Rus [13], Wang [16] and Zeidler [17] studied the theory of fixed point or common fixed point for contractive selfmappings in complete metric spaces or Banach spaces in general.

Later, Aamri and El Moutawakil [2] proved some common fixed point theorems for some new contractive or expansive maps in uniform spaces by introducing the notions of an A-distance and an E-distance. Diagonal

^{*}Corresponding author, e-mail: sedghi.gh@qaemshahriau.ac.ir

uniformity introduced by Weil, this approach was largely developed and pursued by Bourbaki [5].

For any set X, the diagonal $\{(x, x) | x \in X\}$ will be denoted by Δ where confusion might occur. If $V, W \in X \times X$, then $V \circ W = \{(x, y) | \text{ there exists } z \in X : (x, z) \in W \text{ and } (z, y) \in V\}$ and $V^{-1} = \{(x, y) | (y, x) \in V\}$.

If $V \in \mathcal{G}$ and $(x, y) \in V$, $(y, x) \in V$, x and y are said to be V -close, and a sequence $\{x_n\}$ in X is a Cauchy sequence for \mathcal{G} , if for any $V \in \mathcal{G}$, there exists $N \ge 1$ such that x_n and x_m are V -close for $n, m \ge N$. An uniformity \mathcal{G} defines a unique topology $\tau(\mathcal{G})$ on X for which the neighborhoods of $x \in X$ are the sets $V(x) = \{y \in X \mid (x, y) \in V\}$ when V runs over \mathcal{G} .

A sequence $\{x_n\}$ in X is convergent to x for \mathcal{G} , if for any $V \in \mathcal{G}$, there exists $n_0 \in \mathbb{N}$ such that $x_n \in V(x)$ for every $n \ge n_0$ and denote by $\lim_{n\to\infty} x_n = x$. A uniform space (X,\mathcal{G}) is said to be Hausdorff if and only if the intersection of all the $V \in \mathcal{G}$ reduces to the diagonal Δ of X, i.e., if $(x, y) \in V$ for all $V \in \mathcal{G}$ implies x = y. This guarantees the uniqueness of limits of sequences. $V \in \mathcal{G}$ is said to be symmetrical if $V = V^{-1}$. Since each $V \in \mathcal{G}$ contains a symmetrical $W \in \mathcal{G}$ and if $(x, y) \in W$ then x and y are both W and V close, then for our purpose, we assume that each $V \in \mathcal{G}$ is symmetrical. When topological concepts are mentioned in the context of a uniform space (X, \mathcal{G}) , they always refer to the topological space $(X, \tau(\mathcal{G}))$.

Now, we introduce the concept of A-distance, E-distance and prove fixed point theorems in Uniform spaces which are nice generalization of the known results in metric spaces.

Definition 1. Let (X, \mathcal{G}) be a uniform space. A function $p: X \times X \to \mathbb{R}^+$ is said to be an A-distance if for any $V \in \mathcal{G}$ there exists $\delta > 0$ such that if $p(z, x) \leq \delta$ and $p(z, y) \leq \delta$ for some $z \in X$, then $(x, y) \in V$.

Definition 2. Let (X, \mathcal{G}) be a uniform space. A function $p: X \times X \to \mathbb{R}^+$ is said to be an E-distance if

$$(p_1) \ p$$
 is an A -distance,
 (p_2)
 $p(x,y) \le p(x,z) + p(z,y). \quad \forall x, y, z \in X$

Let us give some examples of A and E -distance.

Example 1. Let (X, \mathcal{G}) be a uniform space and let dbe a distance on X: Clearly (X, \mathcal{G}_d) is a uniform space where \mathcal{G}_d is the set of all subsets of $X \times X$ containing a "band" $B_{\varepsilon} = \{(x, y) \in X^2 \mid d(x, y) < \varepsilon\}$ for some $\varepsilon > 0$. Moreover, if $\mathcal{G} \subseteq \mathcal{G}_d$, then d is an Edistance on (X, \mathcal{G}) .

The following Lemma contain some useful properties of A-distances. It is stated in [7] for metric spaces and in [1, 2] for uniform spaces. The proof is straightforward.

Lemma 1. Let (X, \mathcal{G}) be a Hausdorff uniform space and p be an A-distance on X. Let $\{x_n\}$ and $\{y_n\}$ be sequences in X and $\{\alpha_n\}$, $\{\beta_n\}$ be sequences in \mathbb{R}^+ converging to 0. Then, for $x, y, z \in X$, the following holds:

(a) If $p(x_n, y) \le \alpha_n$ and $p(x_n, z) \le \beta_n$ for all $n \in \mathbb{N}$, then y = z. In particular, if p(x, y) = 0 and p(x, z) = 0, then y = z,

(b) if $p(x_n, y_n) \le \alpha_n$ and $p(x_n, z) \le \beta_n$ for all $n \in \mathbb{N}$, then $\{y_n\}$ converges to z,

(c) if $p(x_n, x_m) \le \alpha_n$ for all $n, m \in \mathbb{N}$ with $m \ge n$, then $\{x_n\}$ is a Cauchy sequence in (X, \mathcal{G}) .

Let (X, \mathcal{G}) be a uniform space with an A-distance p. A sequence in X is p-Cauchy if it satisfies the usual metric condition. That is, for every $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that $p(x_n, x_m) < \varepsilon$ for all $n, m \ge n_0$. There are several concepts of completeness in this setting

Definition 3. Let (X, \mathcal{G}) be a uniform space and p be an A-distance on X.

• X is S-complete if every p-Cauchy sequence $\{x_n\}$, there exists x in X with $\lim_{n\to\infty} p(x_n, x) = 0$.

• X is p-Cauchy complete if every p-Cauchy sequence $\{x_n\}$, there exists x in X with $\lim_{n\to\infty} x_n = x$ respect to $\tau(\mathcal{G})$.

Remark 1. Let (X, \mathcal{G}) be a Hausdorff uniform space and let $\{x_n\}$ be a p-Cauchy sequence. Suppose that X is S-complete, then there exists $x \in X$ such that $\lim_{n\to\infty} p(x_n, x) = 0$. Lemma 1(b) then gives $\lim_{n\to\infty} x_n = x$ with respect to the topology $\tau(\mathcal{G})$. Therefore S-completeness implies p-Cauchy completeness.

Definition 4. Let (X, \mathcal{G}) be a Hausdorff uniform space and p be an A-distance on X. Two selfmappings fand g of X are said to be weak compatible if they commute at their coincidence points, that is, fx = gximplies that fgx = gfx.

One of the most important results used in nonlinear analysis is the well-known Banach's contraction principle. Generalization of the above principle has been a heavily investigated branch research. Particularly, in [10] the authors introduced the following definition.

Definition 5. Let X be a nonempty set, \mathcal{M} a positive integer and $T: X \rightarrow X$ a mapping. $X = \bigcup_{i=1}^{m} A_i$ is said to be a cyclic representation of X with respect to T if

• $A_i, i = 1, 2, \dots, m$ are nonempty sets.

•
$$T(A_1) \subset A_2, \cdots, T(A_{m-1}) \subset A_m, T(A_m) \subset A_1$$

Remark 2. For convenience, we denote by F the class of functions $\phi:[0,\infty) \to [0,\infty)$ nondecreasing and continuous satisfying $\phi(t) > 0$ for $t \in (0,\infty)$ and $\phi(0) = 0$.

Recently, fixed point theorems for operators T defined on a complete metric space X with a cyclic representation of X with respect to T have appeared in the literature (see e.g. [8, 9, 11, 14, 15]). Now, we present a modification the main result of [11]. Previously, we need the following definition.

Definition 6. Let (X, d) be a metric space, M a positive integer, A_1, A_2, \dots, A_m nonempty subsets of X and $X = \bigcup_{i=1}^m A_i$. An operator $T: X \to X$ is a cyclic (ϕ) -contraction if

• $X = \bigcup_{i=1}^{m} A_i$ is a cyclic representation of X with respect to T,

• $d(Tx,Ty) \le \phi(d(x,y))$, for any $x \in A_i$, $y \in A_{i+1}$, $i = 1,2,\cdots,m$, where $A_{m+1} = A_1$ and $\phi \in F$.

Previously, we need the following definitions.

Definition 7. [13]. A function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ is called a comparison function if it satisfies:

- ϕ is increasing, i.e., $t_1 \le t_2$ implies $\phi(t_1) \le \phi(t_2)$, for $t_1, t_2 \in \mathbb{R}^+$;
- $\{\phi^n(t)\}_{n\in\mathbb{N}}$ converges to 0 as $n \to \infty$, for all $t \in \mathbb{R}^+$.

Definition 8. [4]. A function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ is called a (c)-comparison function if:

• ϕ is increasing,

• there exist $k_0 \in \mathbb{N}$, $a \in (0,1)$ and a convergent series of nonnegative terms $\sum_{k=1}^{\infty} v_k$ such that

$$\phi^{k+1}(t) \le a\phi^k(t) + v_k, \quad (1.2)$$

for $k \ge k_0$ and any $t \in \mathbb{R}^+$.

In [4] the following are also proved:

Lemma 2. [4]. If $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ is a (c)-comparison function, then the following hold:

- ϕ is comparison function,
- $\phi(t) < t$, for any $t \in \mathsf{R}^+$,
- ϕ is continuous at 0,

• the series
$$\sum_{k=0}^{\infty} \phi^k(t)$$
 converges for any $t \in \mathsf{R}^+$.

Our main result is the following.

The main aim of this paper is to present a generalization of Theorem 2.1[11].

2. MAIN RESULT

First, we present the following definition.

Definition 9. Let X be a nonempty set, **m** a positive integer and $T_i: X \rightarrow X$ be **m** mappings. $X = \bigcup_{i=1}^m A_i$ is said to be a cyclic representation of X with respect to T_i if • $A_i, i = 1, 2, \dots, m$ are nonempty sets.

•
$$T_1(A_1) \subset A_2, \cdots, T_{m-1}(A_{m-1}) \subset A_m, T_m(A_m) \subset A_1$$

Definition 10. Let (X, \mathcal{G}) be a uniform space, m a positive integer, A_1, A_2, \dots, A_m nonempty subsets of X and $X = \bigcup_{i=1}^m A_i$. m operators $T_i: X \to X$ are cyclic ϕ -contraction if

• $X = \bigcup_{i=1}^{m} A_i$ is a cyclic representation of X with respect to T_i ,

• $\max\{p(T_ix, T_{i+1}y), p(T_{i+1}y, T_ix)\} \le \min\{\phi(p(x, y)), \phi(p(y, x))\},\$ for any $x \in A_i$, $y \in A_{i+1}$, $i = 1, 2, \dots, m$, where $A_n = A_r$, $T_n = T_r$ for $r \in \{1, 2, \dots, m\}$ such that $n \equiv^m r$ and $\phi \in \mathsf{F}$.

Our main result is the following.

Theorem 1. Let (X, \mathcal{G}) be a S-complete Hausdorff uniform space such that p be a E-distance on X and m a positive integer, A_1, A_2, \dots, A_m nonempty subsets of X and $X = \bigcup_{i=1}^m A_i$. Let $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ is a (c)-comparison function and $T_i : X \to X$ be mcyclic ϕ -contraction such that A_i closed subsets of Xrespect to $\tau(\mathcal{G})$. Then there exists $z \in \bigcap_{i=1}^m A_i$ such that $T_i z = z$ and z is unique.

Proof. Let x_1 be an arbitrary point in A_1 . By cyclic representation of X with respect to T_i , we choose a point x_2 in A_2 such that $T_1(x_1) = x_2$. For this point x_2 there exists a point x_3 in A_3 such that $T_2(x_2) = x_3$, and so on there exist a point $x_m \in A_m$ such that $T_m(x_m) = x_{m+1} \in A_1$ and $T_1(x_{m+1}) = x_{m+2} \in A_2$. Continuing in this manner we can define a sequence $\{x_n\}$ as follows

 $T_r(x_{mk+r}) = x_{mk+r+1}$ or $T_r(x_n) = x_{n+1}$,

where $n \equiv^{m} r$ for $r \in \{1, 2, \dots, m\}$. We prove that $\{x_n\}$ is a Cauchy sequence. Then, since $X = \bigcup_{i=1}^{m} A_i$, for any $n \ge 0$ there exists $i_n \in \{1, 2, \dots, m\}$ such that $x_{n-1} \in A_{i_n}$ and $x_n \in A_{i_{n+1}}$. Since T_i is a cyclic (ϕ) -contraction, we have

$$p(x_n, x_{n+1}) = p(T_r x_{n-1}, T_{r+1} x_n)$$

$$\leq \max\{p(T_r x_{n-1}, T_{r+1} x_n), p(T_{r+1} x_n, T_r x_{n-1})\}$$

$$\leq \min\{\phi(p(x_{n-1}, x_n)), \phi(p(x_n, x_{n-1}))\}$$

$$\leq \phi(p(x_{n-1}, x_n)),$$

where $n \equiv^{m} r$ for $r \in \{1, 2, \dots, m\}$. From (1) and taking into account that ϕ is (c)-comparison, we get by induction that

$$p(x_n, x_{n+1}) \le \phi^{n-1}(p(x_1, x_2))$$
 for any $n = 1, 2, \cdots$.

Then by above inequality we obtain that

$$p(x_n, x_{n+1}) \rightarrow 0 \quad as \quad n \rightarrow \infty.$$

Therefore, since p is a E-distance we obtain that

$$p(x_n, x_m) \le p(x_n, x_{n+1}) + \dots + p(x_{m-1}, x_m), \quad (2.2)$$

hence

$$p(x_n, x_m) \le \phi^{n-1}(p(x_1, x_2)) + \dots + \phi^{n+m-2}(p(x_1, x_2))$$

In the sequel, we will prove that $\{x_n\}$ is a p-Cauchy sequence.

Since $\sum_{n=1}^{\infty} \phi^n(t)$ is convergent for each $t \ge 0$, then $\{x_n\}$ is a p-Cauchy sequence in the uniform space (X, \mathcal{P}) . Since (X, \mathcal{P}) is S-complete then from Remark 1, the sequence $\{x_n\}$ is p-complete, therefore there exists $x \in X$ such that

$$p(x_n, x) \to 0. \tag{2}$$

In fact, since $\lim_{n\to\infty} x_n = x$ and, as $X = \bigcup_{i=1}^m A_i$ is a cyclic representation of X with respect to T_i , the sequence $\{x_n\}$ has infinite terms in each A_i for $i \in \{1, 2, \dots, m\}$. Since A_i is closed for every i, it follows that $x \in \bigcap_{i=1}^m A_i$, thus we take a subsequence x_{n_k} of $\{x_n\}$ with $x_{n_k} \in A_{i+1}$ (the existence of this subsequence is guaranteed by the above mentioned comment). Using the contractive condition, we can obtain

$$p(T_r x, x) \le p(T_r x, x_{n_k+1}) + p(x_{n_k+1}, x)$$

$$\le p(T_r x, T_{r+1} x_{n_k}) + p(x_{n_{n_k+1}}, x)$$

$$\le \min\{\phi(p(x, x_{n_k})), \phi(p(x_{n_k}, x))\} + p(x_{n_k}, x)$$

$$\leq p(x_{n_k}, x) + p(x_{n_k}, x)$$

where $n_k \equiv^m r+1$ for $r \in \{1, 2, \dots, m\}$. Since $x_{n_k} \to x$ and ϕ is (c)-comparison, letting $n_k \to \infty$ in the last inequality, we have $p(T_r x, x) = 0$. Similarly we can show that $p(T_r x, T_r x) = 0$ therefore, x is a fixed point of T_r .

Finally, in order to prove the uniqueness of the fixed point, we have $y, z \in X$ with y and z fixed points of T_r . The cyclic character of T_r and the fact that $y, z \in X$ are fixed points of T_r , imply that $y, z \in \bigcap_{i=1}^m A_i$. Using the contractive condition we obtain

$$p(y,z) = p(T_r y, T_{r+1} z) \le \max\{p(T_r y, T_{r+1} z), p(T_{r+1} z, T_r y)\}$$

$$\le \min\{\phi(p(y,z)), \phi(p(z,y))\} \le p(y,z)$$

and from the last inequality

p(y,z) = 0

Similarly we can show that p(y, y) = 0 and, consequently, y = z. This finishes the proof.

Corollary 1. Let (X, \mathcal{G}) be a S-complete Hausdorff uniform space such that p be a E-distance on X and m a positive integer, A_1, A_2, \dots, A_m nonempty subsets of X and $X = \bigcup_{i=1}^m A_i$. Let $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ is a (c)-comparison function and $T: X \to X$ is a cyclic ϕ -contraction such that A_i closed subsets of Xrespect to $\tau(\mathcal{G})$. Then there exists $z \in \bigcap_{i=1}^m A_i$ such that Tz = z and z is unique.

Proof. Take $T_i = T$ in Theorem 1.

Corollary 2. Let (X,d) be a complete metric space and m a positive integer, A_1, A_2, \dots, A_m nonempty closed subsets of X and $X = \bigcup_{i=1}^{m} A_i$. Let $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ is a (c)-comparison function and $T_i: X \to X$ be *m* cyclic ϕ -contraction. Then there exists $z \in \bigcap_{i=1}^{m} A_i$ such that $T_i z = z$ and z is unique. Proof. Take $\mathcal{G} = \mathcal{G}_d$ in Theorem 1.

Corollary 3. Let (X, d) be a complete metric space and M a positive integer, A_1, A_2, \dots, A_m nonempty closed subsets of X and $X = \bigcup_{i=1}^m A_i$. Let $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ is a (c)-comparison function and $T: X \to X$ is a cyclic ϕ -contraction. Then there exists $z \in \bigcap_{i=1}^m A_i$ such that Tz = z and z is unique.

Proof. Take $T_i = T$ in Corollary 2.

Corollary 3 is a generalization of the main results of [11](see [[11], Theorem 2.1).

Example 2. Let (X, \mathcal{G}) be a S-complete Hausdorff uniform space where p(x, y) = y, $X = \{\frac{1}{n}\} \cup \{0\}$ and $\mathcal{G} = \tau_d$ such that d = |,|. Set $A_1 = \{\frac{1}{2n}\} \cup \{0,1\}$ and

$$A_{2} = \{\frac{1}{2n+1}\} \cup \{0,1\}. \text{ If define } \phi: \mathbb{R}^{+} \to \mathbb{R}^{+}$$

by $\phi(t) = kt \text{ for } 0 < k < 1 \text{ and } T_{i}: X \to X \text{ by}$
 $T_{1}(0) = T_{1}(1) = 0, \quad T_{1}(\frac{1}{n}) = \frac{1}{6n+1} \text{ and}$
 $T_{2}(0) = T_{2}(1) = 0, \quad T_{2}(\frac{1}{2n+1}) = \frac{1}{6n}. \text{ Then for}$
every $x, y \neq 0, 1$ we have

$$\frac{1}{6n} = p(T_1(\frac{1}{2n}), T_2(\frac{1}{2n+1}))$$
$$= \max\{\frac{1}{6n+1}, \frac{1}{6n}\}\}$$
$$\leq kp(\frac{1}{2n}, \frac{1}{2n+1})$$

$$= k \min\{p(\frac{1}{2n}, \frac{1}{2n+1}), p(\frac{1}{2n+1}, \frac{1}{2n})\}.$$

Also, for x, y = 0, 1 the above inequality obviously is hold for $\frac{1}{2} \le k < 1$. This shows that the contractive condition of Corollary 1 is satisfied for $\phi(t) = kt$ and 0 is a fixed point for T_1, T_2 .

REFERENCES

- Aamri, M., Bennani, S., El Moutawakil, D., "Fixed points and variational principle in uniform spaces", *Siberian Electronic Mathematical Reports*, 3: 137– 142 (2006).
- [2] Aamri, M., El Moutawakil, D., "Common Fixed Point Theorems for E-contractive or E-expansive Maps in Uniform Spaces", *Acta Math. Acad. Paedagog. Nyh'azi (N.S.)*, 20(1): 83-91(2004).
- [3] Berinde, V., "Iterative Approximation of Fixed Points", *Editura Efemeride*, Baia Mare, (2002).
- [4] Berinde, V., "Contractii Generalizate si Aplicatii", vol. 22, *Editura Cub Press*, Baia Mare, (1997).
- [5] Bourbaki, N., "'E l'ements de math'ematique. Fasc. II. Livre III: Topologie g'en'erale. Chapitre 1: Structures topologiques. Chapitre 2: Structures uniformes", Quatri'eme 'edition., *Actualit'es Scientifiques et Industrielles*, No. 1142, Hermann, Paris, (1965).
- [6] Jachymski, J., "Fixed Point Theorems for Expansive Mappings", *Math. Japon.*, 42(1):131-136(1995).
- [7] Kada, O., Suzuki, T., Takahashi, W., "Nonconvex Minimization Theorems and Fixed Point Theorems in Complete Metric Spaces", *Math. Japon.*, 44(2): 381-391(1996).
- [8] Karapnar, E., "Fixed point theory for cyclic weak φ -contraction", *Appl.Math. Lett.*, 24(6): 822-825 (2011).

- [9] Karap nar, E., Sadarangani, K., "Fixed point theory for cyclic $(\phi - \psi)$ -contractions", *Fixed Point Theory and Applications*, 69, (2011) doi: 10.1186/1687-1812-2011-69.
- [10] Kirk, W.A., Srinivasan, P.S., Veeramani, P., "Fixed points for mappings satisfying cyclical weak contractive conditions", *Fixed Point Theory*, 4(1): 79–89(2003).
- [11] Pacurar, M., Rus, I.A., "Fixed point theory for cyclic φ -contractions", *Nonlinear Amal.*, 72: 1181-1187(2010).
- [12] Rhoades, B.E., "A Comparison of Various Definitions of Contractive Mappings", *Trans. Amer. Math. Soc.*, 226: 257-290 (1977).
- [13] Rus, I.A., "Generalized Contractions and Applications", *Cluj University Press*, Cluj-Napoca, (2001).
- [14] Rus, I.A., "Cyclic representations and fixed points", Ann. T. Popoviciu, Seminar Funct. Eq. Approx. Convexity, 3: 171-178(2005).
- [15] De La Sen, M., "Linking contractive self-mappings and cyclic Meir-Keeler contractions with Kannan self-mappings", *Fixed Point Theory and Applications*, Article ID 572057(2010).
- [16] Wang, S.Z., Li, B. Y., Gao, Z. M., Is'eki, K., "Some Fixed Point Theorems on Expansion Mappings", *Math. Japon.*, 29(4): 631-636(1984).
- [17] Zeidler, E., "Nonlinear Functional Analysis and its Applications", Vol. 1, Springer- Verlag, New York, (1986).