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ABSTRACT

After a review of some properties of dual quaternions, De Moivre's and Euler's formulas for the matrices
associated with these quaternions are studied. In special case, De Moivre's formula implies that there are

uncountably many matrices of unit dual quaternions satisfying 47— I, for n>3. Also; we give the relation

between the powers of matrices of dual quaternions.
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1. INTRODUCTION

Quatenion algebra has been playing a important role in
several areas of science; namely, in differential
geometry, in analysis, synthesis of mechanism and
machines, simulation of particle motion in molecular
physics and quaternionic formulation of equation of
motion in theory of relativity [2]. Dual numbers and
dual quaternions were introduced in the 19th century by
W.K. Clifford [5], as a tool for his geometrical
investigation. Study [12] and Kotel'nikov[10]
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systematically applied the dual number and dual vector
in their studies of line geometry and kinematics and
independently discovered the transfer principle. The
dual quaternion algebra was applied in kinematics and
statics analysis of space mechanism in [15]. The Euler's
and De-Moivre's formulas for the complex numbers are
generalized for quaternions in [4]. These formulas are
also investigated for the cases of split and dual
quaternions in [9,11]. Some algebraic properties of
Hamilton operators are considered in [2] where real
quaternions have been expressed in terms of 4x4
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matrices by means of these operators. These matrices
have applications in kinematics, mechanics, quantum
physics and computer-aided geometric design [1]. In
addition to, Yayli has considered homothetic motions
with aid of the Hamilton operators in four-dimensional

Euclidean space E* [16]. The eigenvalues, eigenvectors
and the others algebraic properties of these matrices are
studied by several authors [7, 17]. Subsequently, in [6]
eigenvalues and eigenvectors of the dual Hamilton
operators are given and also a special type of dual
quaternion equation by using these concepts are

2. PRELIMINARIES

In this section, we give a brief summary of the dual
number and dual quaternion. For detailed information
about these concepts, we refer the reader to [2] and [3].

Definition 2.1. Let ¢ and 4" be two real numbers, the
combination

A=a+ea’,

is called a dual number. Here gis the dual unit. Dual
numbers are considered as polynomials in g, subject to

the rules
e#0,6?=0,el=1lec=c¢.
The set of dual numbers, D, forms a commutative ring

having the ga” (& real) as divisors of zero, not field.

Definition 2.2. A dual quaternion () is written as
O=A41+Ae + Ae, + Ase,
where Ay, A, A4, and A,are dual numbers and e,e,,e,

are quaternionic units which satisfy the equalities;

2 _ 2 _ 2 _ _
e =e, =e; =¢ee =—1

€6, =6 =766, 6,6, =€ =66,
and
ee =—e, =¢e,.

As a consequence of this definition, a dual quaternion
QO can also be written as;

O=q+eq,
where ¢ and q*,real and pure dual quaternion
components, respectively. The dual quaternionic
multiplication of two dual quaternions (= S, + VQ and

P=S,+V,is defined;

investigated. Recently, we have derived the De-
Moivre's and Euler's formulas for matrices associated
with real quaternion and every power of these matrices
are immediately obtained [8]. Here, after review of
some algebraic properties of the dual quaternions, we
study De-Moivre's and Euler's formulas for the matrices
associated with dual quaternions. With the aid of the De
Moivre's formula, any powers of these matrices can be
obtained. In special case, the nth roots of these matrices
are derived. Also, we give some examples for more
clarification.

OP= 8,8, <V, Vp >+ SV, +S,V,+VyxV,
= (AoBo - AlBl - Asz - Asz ) + (A()Bl + AIBO - AZB3 + Asz )el
+(4,B, + 4B, + A,B; — 4;B,)e, + (4B, + A B, — 4,B, + 4,B,)e;
=qp+&(gp +4 p).

Also, it could be written
4, -4 -4, -4,||B
B 4, -4, 4, || B
4, 4, 4, -4 ||B
-4, 4 4, ||B
So, the multiplication of dual quaternions as matrix-by-

vector product. The norm of a dual quaternion is given by
the sum of the squares of its components:

5

o

o

2 2 2 2
No=4'+4'+4, +4;, N, eD.

It can also be obtained by multiplying the quaternion by
its conjugate, in either order since a dual quaternion and
conjugated commute:

NQ :QQ:QQ

Every non-zero dual quaternion has a multiplicative
inverse given by its conjugate divided by its norm:

o'=0/ N,.
Definition 2.3. Let 5[3) be the set of all unit dual

quaternions and Sé the set of unit dual vector, that is,
S»={0eH,: N,=1cHp,
Sy ={Vy=(A, Ay, A): A’ + 45 + 47 =1}.

Under quaternionic multiplication, Sf) is a group, and is

isomorphic to the group of all 2x2 unitary dual matrices
of determinant 1, namely to SU(2, D) [3].

Definition 2.4. Every nonzero dual quaternion
O=A41+Ae +A4e, + Ae,,
can be written in the polar form

O=r(cosg+ W sin ?),
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with
r= Ny =L+ 4+ 4+ 47,
A+ AL+ 4
cos¢:iandsin¢=#,
r r

¢=p+ep is adual angle and the unit dual vector 7 is
given by

Ae + Aye, + Ase,

W= 42 2 2
AT+ A+ A4
with 4° + 47 + 47 #0.

Since W?=-1, we have a natural generalization of
Euler's formula for dual quaternions

_ ~ 2 ~ 3 4
I otig-L gl
20 31 4

2 4 3 5
- (1—%+%—...)+W(¢—%+%—,,.)
=cosg+W sing,
for any dual number ¢
Theorem 2.1. (De-Moivre's formula) Let
0=¢" =cosp+Wsinge S
where ¢ = ¢ + g¢" is dual angle and W e S} . Then for
every integern ;
0" =e"" = cosng + W sin ng.

Proof: The proof of this theorem can be done using
induction (see [9]).

The formula holds for all integers » since;
0 =cosg—-Wsing,
07" = cos(—n)¢ + W sin(—n)¢
= cos ng —W sin ng.

We investigate some properties of the dual quaternions
by separating them to two cases:

1) Dual quaternions with dual angles; i.e.
0 =r(cos g+ W sin @).

2) Dual quaternions with real angles; i.e.
O=r(cosp+ W sin o).

Theorem 2.2. Let 0 = cosgp+ W sinp e §;.De Moivre's

formula implies that there are uncountably many
unit dual quaternions satisfying Q" =1for n > 3.

The proof can be found in [9].

Example 2.1. Let

1 1 1 1 T = .

=—+—(1+¢)+—(1—-¢)e, +—e, =cos—+Wsin—

Q122( )12( )223 3 3
is of order 6 and

V2

0, :7+%(1+g)e, Jr%(l—g)eﬁOe3
is of order 8.

Remark 2.1. The equation Q" =1 does not have any
solution for a general unit dual quaternion.

Example2.2. Let

13 1 3
Q—(5*57)+591+5ez+(ﬁ*5\/%)es—

cos(% +e)+ W sin(% +¢)

be a unit dual quaternion. There is no »n (n>0) such
that Qn =1.

Also, we find n-th root of O =cosgp+Wsing e s3.The

equation y" = ghas n roots, and they are

o+ 2kﬂ)+WSin(<p+2k7r
n n

X, =cos( ), k=0,1,2,..,n—1.

The relation between the powers of dual quaternion can

be found in the following theorem.

Theorem 2.3. Let O be a unit dual quaternion with the

polar form Q=cosgp+Wsing. If ,, _27 o+ -{1},
@

then n = p(mod m) ifand only if Q" = Q7.

Proof: Let n= p(modm). Then we have n=am+ p,

where g € 7.

0" =cosnp+ W sin np
=cos(am+ p)p+ W sin(am + D)

2 = 2
= cos(a—” +p)o+W sm(a—” +p)o
4 4

=cos(pp+al2r)+ W sin(p6 + a27)

= cos pp+W sin po

=0".
Now suppose Q" =cosng +W sinng and O =cos pp
+Wsin pp. If Q" = Q" then we getcosngp = cos pp
andsin ng =sin pp, Which  means  ngp = pp+27a
,acz. Thus =p+2% xq,0f n= p(modm).

3. De-Moivre's Formula for Matrices of Dual
Qauternions

In this section, we introduce the R-linear
transformations representing left multiplication in gy,

and look for also the De-Moiver's formula for
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corresponding matrix representation. Let O be a dual

quaternion, then ¢ o H,—>H, defined as follows;

(DQ(P):QP,

The Hamilton's operator Pys could be represented as

PeH,.

the matrix;
Ao _Al _Az _A3
_ Al Ao _As Az
" Az A3 Ao _Al
A3 _Az Al Ao

If O be a unit dual quaternion, then o, is orthogonal

linear transformation. Properties of these matrices are
found in [2,6].

Theorem 3.1.The map i defined as

wi(Hpy,+,.) > My, 0,8)
4 A A 4
( A A A ) Al Ao _A3 Az
+Ae + Ae, + (RN ,
w4, + Ae + e, + Ase, A4, A A4, -4

A3 _Az Al Ao
is an isomorphism of algebras.

Proof: See[13] for a similar proof. ad

We can express the matrix A{p in polar form. Let
0
O=A4)1+A4e + Aye, + Ae, be a unit dual quaternion.

Since

O =cosg+Wsing

=cos@d+(w,w,, w;)sing,

so we have
Ao _Al _Az _As
Al Ao _As Az _
Az A3 Ao _Al
A3 _Az A1 Ao
cos¢ —wsing —w,sing —w,sing

w, sin ¢ cos¢  —wysing w,sing

w,sing  w,sing cosg  —wsing |

wysing —w,sing  w,sing cos¢

Theorem 3.2. (De Moivre's formula) For an integer n
and matrix

cos¢g —wsing —w,sing —w,sing
w; sin cos —w, sin w, sin
4o 1'¢ '¢ 3 8in ¢ 2'¢,(3.1)
wysing  w;sing cos¢ —w, sing
wysing —w,sing w,sing cos¢

the 5 -th power of the matrix A4 reads as

cosng —wsinng -—w,sinng —w;sinng
w, sinng cos ¢ —wysing  w,sinng
| w,sinng w,sinng  cosng  —wsinng |
wysinng —w,sinng  w,sinng cosng

The proof follows easily from the induction.

Note that if @, w,,w, and w, are real numbers, then

Theorem 3.2 holds for real quaternions (see [8]).

Example 3.1. Let

1 B 1 3
Q—(E—ST)‘FEQ+€€2+($—5\/%)€3—

cos(% +e)+W sin(% +¢)

be a unit dual quaternion. The matrix corresponding to
this dual quaternion is

(1 B 1 1
2 T2 2 ¢ 2
1 1 .¥ 1t .3 .
e 2 2 2 J2 8

, L. [3 1 3 1

J2 g8 2 2 2
1 3 1 1 B
_$+5\/; -& ) 5—57

every powers of this matrix are found to be with the aid
of Theorem 3.2, for example, 2-th and 12-th powers are

1 1 43 1 5
——-ev3 ——+e— - -————&—F
2 2 2Js
1 3 LG 1 5
——e—  ——-¢ ————f— &
2.2 2 2 N
& ! +& 3 1—5\/3 7+£ﬁ
2 26 2 2
1 5 1 A3 1
Yt - ——— a3
V2 26 2 2 2 |

1 4B 0 —46e
4WB3e 1 —4afee 0

0 4f6e 1 -43e]|
4oe —a4f3e 0 1

AIZ —

Corollary 3.1. De Moivre's formula implies that there
are uncountably many matrices of the unit dual

quaternions with real angle satisfying 4" = [, for every

integer n > 3.
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4. Euler’s Formula for Matrices Associated with Dual Quaternions

0 -w -w -w

Let ,_ w0 —wy W | be 4 dual matrix. One immediately finds 4> =—7,.We have a natural
w, W, 0 -w
Wy oW, W 0

generalization of Euler's formula for matrix A4 ;

e“”=14+A¢+(A¢) +(A¢) +(A¢) +..
2! 3! 4!

=I4(1—%+%—...)+A(¢—%+%—...)

=],cosp+A.sing

0 -w -w, -w
w0 -w |
=],cosg+ .sing
w, W 0 -w
W, —w, W 0
cos¢g —wssing -w,sing —w,sing
w,sing  cos¢g —w;sing w,sing
| wysing  wysing  cosg  —wsing |
wysing —w,sing w,sing cos¢

For detailed information about Euler's formula, see [14].

5. nth Roots of Matrices of Dual Quaternions

Let 0= A1+ Ae + Ae, + Ase, be a unit dual quaternion with real angle, i.e. ¢ = ¢ and ¢7* = (). The matrix associated

with the quaternion () is of the form (3.1). In a more general case, we assume for the matrix of (3.1) by

cos(p+2kr) —wssin(p+2kz) —w,sin(p+2kr) —w;sin(e+2kr)
w, sin(@ + 2kx) cos(p+2kr) —wysin(@+2kz)  w,sin(p +2kr)
- w, sin(@ +2kx)  wysin(ep+2kx) cos(p+2kr) —w, sin(p+2krx) |’
wysin(@+2kr) —w,sin(@+2kz)  wsin(p+2kr) cos(p+2kr)

k el]. The equation X" = 4 has n roots, and they are

_ cos(ij”) -w, sin(%zkﬁ) —w, sin(Z + 2k7r) w, sin(? + 2k,,)‘
Clw Sin(§0+2k7r) cos(szﬂ) - Sin(¢)+2k7r) W, Sin(¢)+2k7r)
4= .
k w, sin(¢+2kﬂ) Wy sin((er 2k”) COS(M) —w, sin((p+n2k7r)

W, sin((er 2kﬂ) -, sin((er 2k7[) W, sin((p+ 2k7f) cos(szﬂ)

Fork =0, the first root is
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cos(g) -w, sin(g)
n n
o [wsin®)  cos®)
A = n n
w, sin(g) w, sin(g)
n n
w, sin(g) -w, sin(g)
L n n
andfor k£ = 1, the second root is
[ 2 _ 2
cos(u) -wW, sm((p * 7[)
n
. 2 2
L sm(¢hL ”) cos(u)
- n
A= +2 +27
w,sin(Z22E)  wysin2EET
n
wysin@T2) _y sin(2F2T)
L n

Similarly, fork = n—1, we obtain the n-th root.

3. Relations Between Powers of Matrices

—w,sin®)  —w,sin(Z)
n n

—W, sin(g) w, sin(f)
n n

cos(g) -w, sin(g)
n n

w, sin(g)
n
. @+2
-w, sm(¢ T
n
. @+2
-w, sm((p il

Qo+2r

cos(

o+2r

w, sin(
n

cos(g)
n
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—w; sin(

. 2
w, sm((p i

)

Qo+2r

—w, sin(

cos(2T27)
n

(p+27[)_
n

)

The relations between the powers of matrice sassociated with a dual quaternion can be realized by the following theorem.

Theorem 5.1. Let Q be a unit dual quaternion with the polar form Q = cos@ + W sin . If 5 = 27 Al _{ 1} then
¢ b

n= p(mod m)ifand onlyif 4" = A”.

The proof of this theorem can be using induction, similarly to the proof of the Theorem 2.3.

Example 5.1.Let 0 = % +% (+e)e, +%(1 -&)e, +le3 be a unit dual quaternion. The matrix corresponding to this dual

quaternion is

1 —(+&) —(1-¢) -1

_1 l+¢ 1 -1 1-¢

2| 1-¢ 1 1 —(1+¢)
1 —(-¢) l+e 1
From the Theorem 5.1, ~_ 27 _ . we have
/3

A'=4=4"=...
A=4=4"=..
A=A =4=..
A® = Alz; A% =..=1,.

The square roots of the matrix 4 can be calculated as;
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OS(Zkﬂ' +60 ) —w Sin(2k7r +60 )
2 2
. 2km+60° 2k +60°
w, sin(————) cos(——
A2 = 2
* _ 2kz+60° . 2kz+60°
w, sin(————)  w, sin(————
2 2
. 2km+60° . 2km+60°
Wy sm(f) —w, sin(————
Thefirstrootfor k=0 is
1
1 -—(+¢
3 (I+¢&)
1 (1+¢) 1
RCIE
e 2 1 (1-¢) —
3 3
1 1
— ——(1-¢
L 3 3 ( )
and the second one for k=1 becomes
[ 1
-1 —(1+¢
3 (I+¢)
1 -——+¢) -1
——(-¢) -
1 1
- —(1-¢
L 3 3 ( )

1 1
Also, it is easy to see that ,405 + AIE =0.
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