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ABSTRACT 

 

In this paper, we deal with some properties of the matrix extension of the multivariable Humbert polynomials 

defined by Aktaş et.al [Aktaş, R., Çekim, B. and Şahin, R., The matrix version for the multivariable Humbert 

polynomials, Miskolc Mathematical Notes, 13(2) (2012), 197-208]. We give differential equations for the products 

of these matrix polynomials and some other multivariable matrix polynomials, and also we present some new 
relations for the multivariable Humbert matrix polynomials. 
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1. INTRODUCTION 

 

Special matrix functions seen in the study of many area 

such as statistics, Lie group theory and number theory are 

well known. Recently, the matrix versions of the classical 

families orthogonal polynomials such as Jacobi, extended 

Jacobi, Hermite, Gegenbauer, Laguerre, Bessel and 

Chebyshev polynomials and some other special functions 

were introduced by many authors for matrices in 
N N

 

and various properties satisfied by them were given from 

the scalar case, see for example [2,3,6-8,11-16,20,28-

32,37,38].   

 

Orthogonal matrix polynomials comprise an emerging 

field of study with important results in both theory and 

applications in literature. As theoretical examples, the 

property of orthogonality, Rodrigues formula, matrix 

differential equation, a three-term matrix recurrence 

relation, see [15,16,17,20,21]. As practical points, 

statistics, group representation theory, scattering theory, 

interpolation and quadrature and splines, see for example 

[18,25,27,33,36]. Furthermore, one can see more papers 

concerning other matrix polynomials. Recently, the matrix 

version of multivariable extension of generalized Humbert 

polynomials which are an interesting generalization of 

Humbert, Gegenbauer, Legendre, Tchebycheff 

polynomials and several other polynomial systems have 

been studied in [4]. See also [34] for other matrix 

extension of Humbert polynomials in one variable. In [4], 

the authors presented the matrix extension of the 

multivariable Humbert polynomials generated by 
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where, as usual,  nA  denotes the Pochhammer symbol 

given by [31]    
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We notice that since 

i iA    in the case 1N , 

these polynomials reduce to the multivariable Humbert 

polynomials defined by [5]. 

The case 1r  of the polynomials gives Humbert matrix 

polynomials, which is the matrix version of generalized 

Humbert polynomials given by Gould [26] and they are 

generated by 
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where 

, 0, ,m N Nmxt yt C C A m     is a 

positive integer. 

For the special cases of (3), including Gegenbauer matrix 

polynomials, see [30]. 

It is clear that in the special case 

,,...,2,1,,0,1 rixyxC iiii   

the matrix polynomials given by (1) reduce to the matrix 

version of the Erkus-Srivastava multivariable polynomials 

generated by [22]: 
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where  1,2,...,N N

iA i r  . 

For 1N   we get i iA    in (4) so, it gives the 

generating function for the Erkus-Srivastava multivariable 

polynomials [24]. Taking 1im  and im i

 1,2,...,i r  respectively in (4) gives the matrix 

versions of the Chan-Chyan-Srivastava polynomials and 

multivariable Lagrange-Hermite polynomials, which are 

generated by 
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where  1,2,..., ,N N

iA i r   respectively [22]. 

For 1N   we get i iA    that these 

polynomials turn out Chan-Chyan-Srivastava and 

multivariable Lagrange-Hermite polynomials, respectively  

[9,10]. 

The purpose of this paper is to give various differential 

equations for the products of the multivariable Humbert 

matrix polynomials and some well-known multivariable 

matrix polynomials such as the matrix extensions of Chan-

Chyan-Srivastava, Erkus-Srivastava and multivariable 

Lagrange-Hermite polynomials. Furthermore, we present 

some new equalities for the multivariable Humbert matrix 

polynomials. 

Throughout this paper, for a matrix 
N NA   its 

spectrum is denoted by  A . The two-norm of A , 

which will be denoted by A , is defined by 

2
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where, for a vector  
1/2

2
,N Ty y y y   is the 

Euclidean norm of .y I  and   will denote the identity  

matrix and the null matrix in 
N N

, respectively. A 

matrix A  in 
N N

 is a positive stable if  Re 0   for 

all  A   where  A  is the set of all eigenvalues 

of A . If nAAA ,...,, 10 are elements of 
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 and 

nA , then we call   
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a matrix polynomial of degree n  in x . For any matrix 

A  in 
N N

 we will exploit the following relation due to 

[31]                                      
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where  nA  denotes the Pochhammer symbol given by 

(2). 

 

  2. SOME RESULTS FOR THE MATRIX     

     POLYNOMIALS 
   1 ,...

,rA A

nP m,x y,C  

 

Firstly, we discuss differential equations satisfied by the 

products of the multivariable Humbert matrix polynomials 

and some other multivariable matrix polynomials by 

considering the method given in the multivariate case in 

[23], which is motivated by the method given in [35] in 

one variable. Before giving main theorem, recall that the 

multivariable Humbert matrix polynomials verify the 

following equation [4]: 
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From [22], for Erkus-Srivastava matrix polynomials, 

differential equation 
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holds. For jm j   and  rjm j ,...,2,11  , the 

equality (9) gives the differential equation for the 

multivariable Lagrange-Hermite matrix polynomials and 

Chan-Chyan-Srivastava matrix polynomials, respectively 

[22]: 
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Let's consider the following differential operators: 
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Now, we apply this theorem for the products of the 
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Remark 2.4 The case  sjn j ,...,2,11   in the 
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multivariable Humbert polynomials, Erkus-Srivastava, 

Chan-Chyan-Srivastava and multivariable Lagrange-
Hermite polynomials. 

Now, we get some relations for the matrix polynomials 

   1 ,...,
.rA A

nP m,x,y,C  

Theorem 2.2 For the multivariable Humbert matrix 

polynomials, we have the following equalities 

(i) 

       

 

 
 

 
 

1

1 1

1

1 1

1

1 2

1

,...,

,...,

...

,...,

...

k k
r

i i
i i

r

k

r

k k

k

n

n

n n n n

n

B B
P

B B
P

B B
P

 

 
 
 
 

   

 



 



m,x,y,C

m,x,y,C

m,x,y,C

 

where , ( 1,2,...,  ;  1,2,..., )j N N

iB i k j r    

and these matrices are commutative. 



752 GU J Sci, 27(2):747-754 (2014)/ Rabia AKTAŞ 

(ii)  

   

   

      

   

1 1 1

1

1 2

1 1 1

1

,..., , , ,...,

...

,..., , , ,...,

/

0 0

,...,

...

1

! !

i i i r

p

i i i r

p

i

r

i

A A A I A A

n

n n n n

A A A I A A

n

k lln k mn
i i ip k l

i k l
k l i

pA pA

n k m l

P

P

p m x y
C

C k l

P

 

 



   



  
 


 

 

 








 

m,x,y,C

m,x,y,C

m,x,y,C

 

where ( 1,2,..., )N N

jA j r  and 

( , 1,2,..., ).j i i jA A A A i j r   

Proof. ( i) From the generating function given by (1), one 

can easily prove this. 

(ii) Taking  jpA p  instead of jA  in the 

generating function (1), we get  

    
   1

1

,...,

0

; :

.

i
i

r

r
pA

m

i i i i

i

pA pA n

n

n

F t C m x t y t

P t









  







x,y

m,x,y,C

 

If we differentiate  ;F tx,y  with respect to 

  prixi ,...,2,1  times, we obtain 

   ;
p

p

i

F t
x




x,y                                           (16)          

     
 

  

     

   

      

       

1

1

1

,...,

0

/

0 0 0

,...,

1

! !

i
i

j
j

i

r

i

r

i

p A Ip m

i i i i i ip

r pA
m

j j j j

j
j i

pIp m

i i i i i ip

pA pA n

n

n

k lln k mn
i i ik l

k l
n k l i

p pA pAp n

i i i n k m lp

pA m t C m x t y t

C m x t y t

pA m t C m x t y t

P t

p m x y

C k l

pA m t C P t

 












   



  



 

  

  

  












 

m,x,y,C

m,x,y,C .

 

On the other hand, we can write the relation (16) again in 
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From these two last equalities, we have the desired 

addition formula. 

Remark 2.5 The special cases of Theorem 2.2 give similar 

results for the matrix versions of Chan-Chyan-Srivastava, 

Erkus-Srivastava and Lagrange-Hermite multivariable 

polynomials defined by [22]. 

Remark 2.6 Since  

 1,2,...,j jA j r   and 

 1,2,..., ; 1,2,...,j j

i iB b i k j r     

for 1N  , Theorem 2.2 reduces to the results given for 

the multivariable Humbert polynomials in [1]. 
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