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ABSTRACT

In this paper, we deal with some properties of the matrix extension of the multivariable Humbert polynomials
defined by Aktas et.al [Aktas, R., Cekim, B. and Sahin, R., The matrix version for the multivariable Humbert
polynomials, Miskolc Mathematical Notes, 13(2) (2012), 197-208]. We give differential equations for the products
of these matrix polynomials and some other multivariable matrix polynomials, and also we present some new
relations for the multivariable Humbert matrix polynomials.
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1. INTRODUCTION

Special matrix functions seen in the study of many area
such as statistics, Lie group theory and number theory are
well known. Recently, the matrix versions of the classical
families orthogonal polynomials such as Jacobi, extended
Jacobi, Hermite, Gegenbauer, Laguerre, Bessel and
Chebyshev polynomials and some other special functions

were introduced by many authors for matrices in C"*"
and various properties satisfied by them were given from
the scalar case, see for example [2,3,6-8,11-16,20,28-
32,37,38].

Orthogonal matrix polynomials comprise an emerging
field of study with important results in both theory and
applications in literature. As theoretical examples, the
property of orthogonality, Rodrigues formula, matrix
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differential equation, a three-term matrix recurrence
relation, see [15,16,17,20,21]. As practical points,
statistics, group representation theory, scattering theory,
interpolation and quadrature and splines, see for example
[18,25,27,33,36]. Furthermore, one can see more papers
concerning other matrix polynomials. Recently, the matrix
version of multivariable extension of generalized Humbert
polynomials which are an interesting generalization of
Humbert, Gegenbauer, Legendre, Tchebycheff
polynomials and several other polynomial systems have
been studied in [4]. See also [34] for other matrix
extension of Humbert polynomials in one variable. In [4],
the authors presented the matrix extension of the
multivariable Humbert polynomials generated by
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where A eCVN X=(X1,...,Xr),
y=(Yy-Y,), C=(C,...C,) and
m=(m,...m), meN (i=12,..r).

From (1), the explicit representation of these matrix
polynomials is
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where, as usual, (A)n denotes the Pochhammer symbol

given by [31]

(A),=1;

(A), =A(A+1)...(A+(n-1)1)
(n>1)

@

We notice that since A =¢;, € C inthecase N =1,

these polynomials reduce to the multivariable Humbert
polynomials defined by [5].

The case r =1 of the polynomials gives Humbert matrix
polynomials, which is the matrix version of generalized

Humbert polynomials given by Gould [26] and they are
generated by

(C—mxt+ yt" )7A

= i P (m,x,y,C)t"

n=0

3)

where
mxt —yt"| <|C|, C#0,AeC"™, m isa
positive integer.

For the special cases of (3), including Gegenbauer matrix
polynomials, see [30].

It is clear that in the special case
C=1,x=0y=-x,i=12..r,

the matrix polynomials given by (1) reduce to the matrix
version of the Erkus-Srivastava multivariable polynomials
generated by [22]:

TT{(@-x) ")

i=1

n=0

e < min {x ™ ™ x| ]

(4)
X, )t"

where A e CcMN (i =1,2,...,I’).

For N=1weget A =¢; €C in(4)so, it gives the
generating function for the Erkus-Srivastava multivariable
polynomials [24]. Taking M =1 and m; =i

(i =12,.., r) respectively in (4) gives the matrix

versions of the Chan-Chyan-Srivastava polynomials and
multivariable Lagrange-Hermite polynomials, which are
generated by

r
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and
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where A € CV™ (i

For N=1 we get

=12,.., I’), respectively [22].

A =0 cC that these

polynomials turn out Chan-Chyan-Srivastava and
multivariable Lagrange-Hermite polynomials, respectively
[9,10].

The purpose of this paper is to give various differential
equations for the products of the multivariable Humbert
matrix polynomials and some well-known multivariable
matrix polynomials such as the matrix extensions of Chan-
Chyan-Srivastava, Erkus-Srivastava and multivariable
Lagrange-Hermite polynomials. Furthermore, we present
some new equalities for the multivariable Humbert matrix
polynomials.

Throughout this paper, for a matrix Ae CN™ its
spectrum is denoted by G(A) . The two-norm of A,

which will be denoted by || A, is defined by

A= SUIOIIAXII

I,

where, for a vector y € C, ||y||2 = ( y' y)ﬂz is the

Euclidean norm of Y. | and & will denote the identity

matrix and the null matrix in (CNXN

matrix A in CNVN

, respectively. A

is a positive stable if Re(ﬂ,) >0 for
al A e O'(A) where G(A) is the set of all eigenvalues
of A.1f Ay, A,..., A are elements of CVN and

A, # 0, then we call

P(x)= AX"+ A X" +..+ AX+ A
a matrix polynomial of degree N in X. For any matrix

A in CVN
[31]

we will exploit the following relation due to

749

X <1 @)

L-x)"= :20 (A) X"

n!

where (A)
@)

|, denotes the Pochhammer symbol given by

2. SOME RESULTS FOR THE MATRIX
POLYNOMIALS P,4~*)(m,xy,C)

Firstly, we discuss differential equations satisfied by the
products of the multivariable Humbert matrix polynomials
and some other multivariable matrix polynomials by
considering the method given in the multivariate case in
[23], which is motivated by the method given in [35] in
one variable. Before giving main theorem, recall that the
multivariable Humbert matrix polynomials verify the
following equation [4]:

r

0
Z;‘ b ox, +myJay R**)(m,xy,C)
J:

_ npnw---*\ (m,xy,C). @

From [22], for Erkus-Srivastava matrix polynomials,
differential equation

holds. For M; = J and m; =1 (j :1,2,...,I’), the

equality (9) gives the differential equation for the
multivariable Lagrange-Hermite matrix polynomials and
Chan-Chyan-Srivastava matrix polynomials, respectively
[22]:

(10)

and

(11)
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Let's consider the following differential operators:

L 0

L= a(x)—+bly,)—
> (a2 0i) 2|

and

N=S c(u )i+d.(v)— (12)
= i J@uj [N J

Theorem 2.1 Let {Sﬁ”‘ """ M(XQY)} |::0 and

L )y |7,

satisfying

be matrix polynomials

respectively, where U = (ul,...,us) and
V=V V).

Then for the product matrix polynomials

n=0

=[S (ey) QB ()] 15,0

the following differential equation holds:
L[w]+N[w]=nw. (13)

Proof. Considering

w(xy;uv) =S (xy) Q) (u;v),

we can write that

Liw]= 4, w=(n—kw

and
N [w]=rm,w=kw.

Then, it follows

L[w]+ N[w]=nw
which completes the proof.

Now, we apply this theorem for the products of the
multivariable Humbert matrix polynomials and Erkus-
Srivastava, Chan-Chyan-Srivastava, multivariable
Lagrange-Hermite matrix polynomials.

Remark 2.1 Let { S,Epl """ A) (X;Y)} |:=0 and

:) (u; V)} |okO:0 be the multivariable Humbert

{lEBl ..... B

matrix polynomials so that

Uy} [,

Then, it follows that from (8)

L= Z ’aa +myla§ and
X

\ 0 0
M = u,—+nyv, —
Z Jauj J Javj

=

Hence, differential equation for the matrix polynomials
given by the equality (14) is in the following form:

Remark 2.2 Let {S(A‘ """ (X y)} |OO:0 be the

multivariable Humbert  matrix

{Qk ..... (

polynomials. Then we have the matrix polynomials

polynomials  and

0
)} |k:0 be Erkus-Srivastava matrix
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so that we get the differential operators from (8) and (9)

L=>" xji+mjyji and
-1 OX; oy

j
: 0
N=> nu —.
; J Jauj

Thus, the differential equation (13) becomes

Remark 2.3 By taking N; = ] (j :1,2,...,5) in the

equality (15), for the product of the multivariable Humbert
matrix polynomials and multivariable Lagrange-Hermite
matrix polynomials given by

Remark 2.4 The case N, =l(j =1,2,...,S) in the

relation (15) gives the differential equation

for the products of the multivariable Humbert matrix
polynomials and  Chan-Chyan-Srivastava  matrix
polynomials defined by

Since we hae A =¢, €C (i =1,2,...,I’)and

Bj Z,Bj eC (j =l,2,...,S) inthe case N =1,

Remark 2.1-2.4 reduces to the results given by [1] for the
multivariable Humbert polynomials, Erkus-Srivastava,
Chan-Chyan-Srivastava and multivariable Lagrange-
Hermite polynomials.

Now, we get some relations for the matrix polynomials

Theorem 2.2 For the multivariable Humbert matrix
polynomials, we have the following equalities

(i)

>8l-3B
P

where Bij eC¥™ (i=12,...k;j=12,..r)

and these matrices are commutative.
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(i)
Z P(Al AL ATL Ay Ar)(mxyc)

M +Ny+.. 4N =n

P

x. XP(Ai SALLAFL AL A’)(m,x,y,C)

:C_pz nim](p)kﬂ(mlxl) Yi (_1)I

Ck1Nn

where Aj eCVN (G=12,...,r)and
AA=AA (i,j=12,..,r).

Proof. (i) From the generating function given by (1), one
can easily prove this.

(ii) Taking PA; (P € N) instead of A, inthe

generating function (1), we get

If we differentiate F (X, y;t) with respect to
x (i=12,...,

r) P times, we obtain

ap
ax_"F(X y;t) (16)

- ( pA )p (mit)p (CI _mixit + yitmi )‘P(AH)

m.x, )k y, (—1)I

C.k+'k!l !

On the other hand, we can write the relation (16) again in
the form

p

%F(X,y;t)
=(pA), (mt)’
X(ip"m A “(m,X.y,c)t”jp

n
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,,,,,,,

X
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>
>
t
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x
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From these two last equalities, we have the desired
addition formula.

Remark 2.5 The special cases of Theorem 2.2 give similar
results for the matrix versions of Chan-Chyan-Srivastava,
Erkus-Srivastava and Lagrange-Hermite multivariable
polynomials defined by [22].

Remark 2.6 Since
Aj =05j eC (] :1,2,...,I’)and
B/=b'eC (i=12..k; j=12..r)

for N =1, Theorem 2.2 reduces to the results given for
the multivariable Humbert polynomials in [1].
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