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ABSTRACT 

 

Compressed sensing seeks to recover an unknown sparse signal with p  entries by making far fewer than p  

measurements. The restricted isometry Constants (RIC) has become a dominant tool used for such cases since if RIC 

satisfies some bound then sparse signals are guaranteed to be recovered exactly when no noise is present and sparse 

signals can be estimated stably in the noisy case. During the last few years, a great deal of attention has been focused 

on bounds of RIC, see, e. g., Candes (2008), Foucart et al (2009), Foucart (2010), Cai et al (2010), Mo et al (2011), 

Ji et al (2012). Finding bounds of RIC has theoretical and applied significance. In this paper, we obtain a bound of 

RIC. It improves the results by Cai et al (2010) and Ji et al (2012). Further, we discuss the problems related larger 

bound of RIC, and give the conditional maximum bound. 
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1. INTRODUCTION 

 

Compressed sensing aims to recover high-dimensional 

sparse signals based on considerably fewer linear 

measurements. We consider  

 

y zβ= Φ + ,                         (1) 

where the matrix 
n p×Φ∈�  with n p� , 

nz∈� is 

a vector of measurement errors, and the unknown signal 

pβ ∈� . Our goal is to reconstruct β  based on y  

and Φ .  

 

A naive approach for solving this problem is to consider 
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0L minimization where the goal is to find the sparsest 

solution in the feasible set of possible solutions. However, 

this is NP hard and thus is computationally infeasible. It is 

then natural to consider the method of 1L minimization 

which can be viewed as a convex relaxation of 

0L minimization. The 1L  minimization method in this 

context is 

 

{ }
1 2

ˆ arg min subject to 
p

y
γ

β γ γ ε
∈

= − Φ ≤
�

  (2) 

 

This method has been successfully used as an effective 

way for reconstructing a sparse signal in many settings. 

See, e. g., [1-8].  

 

Recovery of high dimensional sparse signals is closely 

connected with Lasso and Dantzig selectors, e. g., see, [6, 

9-12]. One of the most commonly used frameworks for 

sparse recovery via 1L minimization is the Restricted 

Isometry Property (RIP) with a RIC introduced by Candes 

and Tao [3]. It has been shown that 1L minimization can 

recover a sparse signal with a small or zero error under 

various conditions on kδ and , 'k kθ (See Section 2). For 

example, the condition , ,2 1k k k k kδ θ θ+ + <  is used in 

[3], 3 43 2k kδ δ+ <  in [4], 2 ,2 1k k kδ θ+ < in [6], 

1.5 ,1.5 1k k kδ θ+ <  in [13] and 1.25 ,1.25 1k k kδ θ+ <  in 

[8]. 

 

The RIP conditions are difficult to verify for a given 

matrixΦ . A widely used technique for avoiding checking 

the RIP directly is to generate the matrix Φ randomly 

and to show that the resulting random matrix satisfies the 

RIP with high probability using the well-known 

Johnson–Lindenstrauss Lemma. (See, for example, [14]). 

This is typically done for conditions involving only the 

restricted isometry constant δ . Attention has been 

focused on 2kδ as it is obviously necessary to have 

2 1kδ <  for model identifiability. In a recent paper, 

Davies and Gribonval [15] constructed examples which 

showed that if 
2 0.7071kδ ≥ , exact recovery of certain 

k sparse signal can fail in the noiseless case. On the other 

hand, sufficient conditions on 2kδ  has been given. For 

example, 
2 0.4142kδ <  is used in [16], 

2 0.4531kδ < in [17], 
2 0.4652kδ < in [18], 

2 0.4721kδ <  in [8], 
2 0.4734kδ <  in [18] and 

2 0.4931kδ <  in [19].  Some sufficient conditions on 

kδ  has been given. For example, 0.307kδ <  is used in 

[20], and 0.308kδ <  in [21] when k is even. In this 

paper 0.308kδ <  is given for any k , and the 

conditional maximum bound 0.5kδ <  is obtained. 

There are several benefits for improving the bound on kδ . 

First, it allows more measurement matrices to be used in 

compressed sensing. Secondly, for the same matrix Φ , it 

allows k  to be larger, that is, it allows recovering a 

sparse signal with more nonzero elements. Furthermore, it 

gives better error estimation in a general problem to 

recover noisy compressible signals. 

 

The rest of the paper is organized as follows. In Section 2, 

some basic notations and known results are introduced. 

Our new RIC bounds of compressed sensing matrices are 

presented in Section 3. In Section 4, we discuss the 

problems related larger bound of RIC, and give 

conditional maximum bound. 

 

2. PRELIMINARIES 

 

Let 
0

u  be the number of nonzero elements of vector 

( ) p

iu u R= ∈ . u  is called k -sparse if 
0

u k≤ . 

For an n p× matrix Φ  and an integer k ,1 k p≤ ≤ , 

the k  restricted isometry constant ( )kδ Φ is the 
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smallest constant such that 

 

2 2 2
1 ( ) 1 ( )k ku u uδ δ− Φ ≤ Φ ≤ + Φ           

(3) 

 

for every k - sparse vector u . If 'k k p+ ≤ , the k , 

'k  restricted orthogonality constant , ' ( )k kθ Φ , is the 

smallest number that satisfies 

 

, ' 2 2
, ' ( ) 'k ku u u uθΦ Φ ≤ Φ            (4) 

 

for all u and 'u such that u and 'u are k -sparse and 

'k -sparse respectively, and have disjoint supports. For 

notational simplicity, we shall write kδ for ( )kδ Φ and 

, 'k kθ for , ' ( )k kθ Φ  hereafter.  

 

The following monotone properties can be easily checked 

 

'k kδ δ≤ ,  if 'k k p≤ ≤ .        (5) 

 

, ' , 'k k j jθ θ≤ , if k j≤ , ' 'k j≤  and 'j j p+ ≤ .              

(6) 

Candes et al [3] showed that the constants and are related 

by the following inequalities 

 

, ' ' , ' 'max( , )k k k k k k k kθ δ θ δ δ+≤ ≤ + .       (7) 

Cai et al [8] showed that for any 1a ≥  and positive 

integers k , 'k such than 'ak  is an integer, then 

 

, ' , 'k ak k kaθ θ≤ .                  (8) 

 

Cai et al [20] showed that for any 
nx∈�  

 

( )2

2 4

x n
x x x

n
∞ −∞

≤ + − .         (9) 

 

where 
1
max i

i n
x x
∞ ≤ ≤
=  and 

1
min i

i n
x x
−∞ ≤ ≤
= . 

 

3. NEW RIC BOUNDS OF COMPRESSED SENSING 

MATRICES 

 

In this section, we consider new RIP conditions for sparse 

signal recovery. Suppose 

 

y zβ= Φ +  

with
2

z ε≤ . Denote β̂  the solution of the following 

1L minimization problem: 

 

{ }1 2

ˆ arg min subject to 
p

y
γ

β γ γ ε
∈

= −Φ ≤
�

 (10) 

 

The following is one of our main results of the paper.  

 

Theorem 1. Suppose β  is k sparse with 1k > . Then 

under the condition 

 

0.308kδ <  

the constrained 1L  minimizer β̂ given in (10) satisfies 

2

ˆ
0.308 k

ε
β β

δ
− ≤

−
. 

In particular, in the noiseless case β̂ recovers β exactly. 

This theorem improves 0.307kδ < in [20] 

to 0.308kδ < , and k is even in [21] to any k . The 

proof of the theorem is very long but elementary. 

 

Proof. Let s , k  be positive integers, 1 s k≤ < , and 
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1

4

k s
t

s k
= + . 

Then from Theorem 3.1 in [20], under the 

condition , 1k k stδ θ+ < , we have 

2
,

2 2 1ˆ
1

k

k k st

δ
β β ε

δ θ

+
− ≤

− −
. 

By (8) 

,
( ),

k s k k
k s s

k s

k
t t t

k s
θ θ δ

−
−

= ≤
−

.        (11) 

We show below that 

1 1 5
( )

4 4

k k s
x f x

k s s k x

 
+ = +  −  

�       

(12) 

where 
s

x
k s

=
−

. The proof is of elementary 

trigonometric functions, but it is very clever. 

Let
2sins k α= , (0, )

2

π
α ∈ , then 

2cosk s k α− = . 

So 

1 1 1 sin

4 cos sin 4

k k s

k s s k

α
α α

   + = +    −   

1 5 1 5
tan

tan 4 4
x

x
α

α
= + = + . 

It is easy to see ( )f x  is increasing when 
4

5
x ≥ and 

decreasing when
4

5
x ≤ . Thus ( )f x  obtains the 

minimum value 

4
5

5
f
  = 
 

. 

That is, if 0(mod9)k ≡ , let
4

9
s k= , then under the 

condition 0.309kδ < , we have, see [20], 

2

ˆ
0.309 k

ε
β β

δ
− ≤

−
.              (13) 

If k  is even, let
2

k
s = , then 

(1) 2.250f = .                         (14) 

If 9k ≥  is odd, let
1

2

k
s

−
= , then 

4 1
(1)

5 1

k
f f f

k

−   ≤ <   +   
.               (15) 

since ( )f x  is increasing when 
4

5
x ≥ . 

When 7k = , then 

3 31 3
2.237

4 24
f
  = = 
 

.                (16) 

When 5k = , then 

2 11
( ) 2.245

3 2 6
f x f

 = = = 
 

.          (17) 

When 3k = , we note from the remark of Theorem 3.1 in 

[20] that in these cases 1s = and t k= , then 

3
3 2.121

2

k
t

k s
= =

−
.             (18) 

From (11) - (18) yield 

 

,
2

+ 3.25 1k k k
k

tδ θ δ≤ <  

if k  is even, and 

 

1
,

2

+ 3.25 1k k k
k

tδ θ δ− ≤ <  

if k  is odd. With the above relations, we can also get 

 

2
,

2 2 1ˆ
1

k

k k st

δ
β β ε

δ θ

+
− ≤

− − 0.308 k

ε
δ

≤
−

. 

 

Corollary 1. Suppose β  is k sparse  

 

with 0(mod9)k ≡ . Then under the condition 

0.309kδ <  
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the constrained 1L  minimizer β̂ given in (10) satisfies 

2

ˆ
0.309 k

ε
β β

δ
− ≤

−
. 

In particular, in the noiseless case β̂ recovers 

β exactly. 

The proof sees (11)-(13). 

 

Corollary 2. Suppose β  is k sparse. If 9k ≥  is odd, 

then under the condition 

k kcδ <  

the constrained 1L  minimizer β̂ given in (10) satisfies 

2

ˆ

k kc

ε
β β

δ
− ≤

−
. 

where  

2

2

4 1

4 1 9 1
k

k
c

k k

−
=

− + −
. 

In particular, in the noiseless case β̂ recovers 

β exactly. 

The proof sees (11)-(12) and (15).  

Note that 0.308 0.309kc< ≤  from (15). 

To the best of our knowledge, this seems to be the first 

result for sparse recovery with conditions that only 

involve kδ and k . In fact, only involving kδ , k and only 

involving kδ  are equivalent. 

 

4. THE CONDITIONAL MAXIMUM BOUND FOR 

RIC 

Let ˆh β β= − . For any subset {1,2, , }Q p⊂ L , we 

define Q Qh hI= , where QI denotes the indicator 

function of the setQ , i.e., ( ) 1QI j = if j Q∈ and 0 

if j Q∉ . LetT be the index set of the k largest elements 

(in absolute value) and letΩ be the support of β . The 

following fact, which is based on the minimality of β̂ , 

has been widely used, see [4]. 

1 1
ch hΩ Ω

≥ .                        (19) 

We shall show that 

1 1
cT T

h h≥ ,                        (20) 

2 2
cT T

h h≥ .                        (21) 

In fact 

1 1 11 1
c cT T

h h h h hΩ Ω
+ = = + , 

and T has the k largest elements (in absolute value) 

andΩ  has at most k elements, so we have by (19) 

1 1 1 1
c cT T

h h h hΩ Ω
≥ ≥ ≥ . 

And 

2 21

1 22 1
c c c

T

T TT T T

h
h h h h h

k∞
≤ ≤ ≤ . 

Definition 1. Let mT  be the index set of the m  largest 

elements (in absolute value). The set mT  is called a 

sparse index set, if 
1 1

c
m m
T T
h h≥ andm k≤ . 

It is obvious that the sparse index set exists. In fact kT  is 

a sparse index set since 
1 1

c
k k
T T
h h≥ .  

Here we prove that any sparse index set mT  instead of 

kT  , Theorem 3.1 in [20] can be improved.  

Theorem 2. Suppose β is k -sparse, and mT  is sparse 

index set. Let 1k , 2k be positive integers such that 

1k m≥  and 1 28( )k m k− ≤ .  
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Let 

1 2 1

2 1 1 2

2( )1

4

k k k m
t

k k k k

−
= + − . 

Then under the condition 

1 1 2, 1k k ktδ θ+ <  

the 1L  minimizer defined in (10) satisfies 

1

1 1 2

2
,

2 2 1
ˆ

1

k

k k kt

δ
β β ε

δ θ

+
− ≤

− −
. 

In particular, in the noiseless case where y β= Φ , 1L  

minimization recovers β  exactly. 

Proof. For any sparse index set mT , let 0 mS T⊃  be the 

index set of the 1k  largest elements (in absolute value). 

Rearrange the indices of 0

cS  if necessary according to 

the descending order of ih , 0

ci S∈ . Partition 0

cS  

into 0

1

c

i

i

S S
≥

=∑ , where 2iS k= , the last iS  

satisfies 2iS k≤ . If 
0

0Sh = , then the theorem is 

trivially true. So here, we assume that
0

0Sh ≠ . Then it 

follows from (9) that 

( )2

2 1
1 1 12

1

4i i i iS S S S

i i i

k
h h h h

k ∞ −∞
≥ ≥ ≥

≤ + −∑ ∑ ∑  

1

2

1
12

1

4iS S

i

k
h h

k ∞
≥

≤ +∑  

10

2

1
2

1

4
c SS

k
h h

k ∞
= +  

( ) 10

2

1 1
2

1

4
c c
m m

ST S T

k
h h h

k ∞
= − +

I
 

( ) 10

2

1 1
2

1

4
c

m m
T SS T

k
h h h

k ∞
≤ − +

I
 

( )0 10

2

1 1
2

1
2

4
c
m

S SS T

k
h h h

k ∞
= − +

I
 

( )
0 1 1

2

1
1

2

1
2( )

4
S S S

k
h k m h h

k ∞ ∞
≤ − − +  

0 1

2 1

1
2 2

2( )1

4
S S

k k m
h h

k k ∞

 −
= + −  

 
 

0

1 2 1

2
2 1 1 2

2( )

4
S

k k k m
h

k k k k

 −
≤ + −  
 

0 2
St h=  

Now 

0 0 0 0

1

, , ,
iS S S S S

i

h h h h h h
≥

Φ Φ = Φ Φ + Φ Φ∑  

( )
1 0 1 2 0

2

,
2 2 2

1

1
ik S k k S S

i

h h hδ θ
≥

≥ − − ∑

( )
1 1 2 0

2

,
2

1 k k k St hδ θ≥ − − . 

Note that 

2 2 2

ˆ 2h y yβ β εΦ ≤ Φ − + Φ − ≤ . 

0 0 1 02 2 2
, 2 1S S k Sh h h h hε δΦ Φ ≤ Φ Φ ≤ + . 

Also the next relation 

0

2 2

2 2 1
c c c c

m m mS T T T
h h h h

∞
≤ ≤

0

2 2
1

1 2 2

m

m m

T

T T S

h
h h h

m
≤ ≤ ≤  

implies 

0 00

22 22

2 2 22

2cS SS
h h h h= + ≤ . 

Putting them together we get 

1

0

1 1 2

2 2
,

2 2 1
2

1

k

S

k k k

h h
t

δ
ε

δ θ

+
≤ ≤

− −
. 

If letm k= , then Theorem 2 is Theorem 3.1 in [20]. 

Let 0m m≤  be smallest positive integer so that 
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1 1
c

m m
T T
h h≥ . 

Then we have 

Theorem 3. Suppose β is k -sparse. Let be 1k , 2k  

positive integers such that 1 0k k m≥ ≥  and 

1 0 28( )k m k− ≤ . Let 

1 01 2

2 1 1 2

2( )1

4

k mk k
t

k k k k

−
= + − . 

Then under the condition 

1 1 2, 1k k ktδ θ+ <  

the 1L  minimizer defined in (10) satisfies 

1

1 1 2

2
,

2 2 1
ˆ

1

k

k k kt

δ
β β ε

δ θ

+
− ≤

− −
. 

In particular, in the noiseless case where y β= Φ , 1L  

minimization recovers β  exactly. 

The proof is similar to of Theorem 2. 

Note that k  is independent of h , but m  and 0m  are 

dependent of h , i.e. ( )m m h=  and 0 0 ( )m m h= . 

The following is one of our main results of the paper. It is 

the consequence of Theorem 2. 

 

Theorem 4. Suppose β is k sparse with 1k > . If 

0(mod5)k ≡  and

5

kT  is sparse index set, then under 

the condition 0.5kδ <  the constrained 1L minimizer 

β̂ given in (10) satisfies 

2

3ˆ
0.5 k

β β ε
δ

− ≤
−

. 

In particular, in the noiseless case β̂ recovers 

β exactly. 

Proof. If 0(mod5)k ≡  and 

5

kT  is sparse index set, 

then in Theorem 2, set 1
5

k
k = , 2

4

5

k
k = . Thus 

1
1 2

2 1 1 2

2( )
1 5 1
4

k
k

k k
t

k k k k

−
= + − = . 

Then under the condition 

4
,

5 5 5

1k k kδ θ+ <  

we have 

5

2
4

,
5 5 5

2 2 1

ˆ
1

k

k k k

δ

β β ε
δ θ

+

− ≤
− −

. 

By (5) and (7) we get 

4
,

5 5 5

2 1k k k kδ θ δ+ ≤ < . 

In this case 

5

2
4

,
5 5 5

2 2 1
2 2 1 3ˆ

1 1 2 0.5

k

k

k k k k k

δ
δ

β β ε ε ε
δ θ δ δ

+
+

− ≤ ≤ ≤
− − − −

.An explicitly example in [20] is constructed in 

which 0.5kδ < , but it is impossible to recover certain 

k sparse signals. Therefore, the bound for kδ cannot go 

beyond 0.5 in general in order to guarantee stable 

recovery of k sparse signals. 
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