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ABSTRACT 

 

Jódar et. al. [Util. Math. 46 (1994) 129-141] introduced the concept of Bessel matrix functions of the first kind. In 
this paper, we derive integral representations for these functions. 
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1. INTRODUCTION 

The mathematicians have interested in some properties of 
the special matrix functions and polynomials [5, 6, 8, 9].  
For example, in the 1990s, Bessel matrix functions are 
introduced and defined by Jódar et. al. in [2, 3, 4, 6]. The 
authors consider Bessel type differential equation 

2 2 2( ) ( ) ( ) ( ) ,0t X t tX t t I A X t tθ′′ ′+ + − = < < ∞  

where � is a matrix in ���� and ���� is a ���	-valued 
function. They obtain different solutions of Bessel type 
differential equations according to matrix �. They also 
define Bessel matrix functions of the first kind and the 
second kind and give the general solution of this equation. 
In this paper, we obtain some integral representations for 
these Bessel matrix functions. 

We first recall some concepts and properties of the matrix 
functional calculus. Throughout the paper, 
 represents the � -dimensional Jordan block defined by 


 �
��
��� 1 0 … 00 � 1 ⋱ ⋮⋮ ⋱ ⋱ ⋱ 00 … ⋱ ⋱ 10 0 … 0 ����

�� ∈ ���� .   (1.1) 

As usual, � and � denote the identity matrix and the null 
matrix in ����, respectively. In [1], if ���� and g��� are 
holomorphic functions in an open set Ω  of the complex 
plane, and if � is a matrix in ���� for which  ��� ⊂ 	#, 
where  ��� denotes the spectrum of �, then 

( ) ( ) ( ) ( ).f A g A g A f A=  

The reciprocal scalar Gamma function, Γ%	��� � 	&�'�, is 

an entire function of the complex variable �. Thus, for any �	 ∈ ����, the Riesz-Dunford functional calculus [1] 
shows that  Γ%	��� is well defined and is, indeed, the 
inverse of Γ���. Hence: if �	 ∈ ����, is such that  � ( 0 
and � is not a negative integer for every  � ∈  ���, it 
follows that 
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1 1
( ) ( )...( ) ( ( 1) ).A A A I A kI A k I

− −Γ = + + Γ + +         (1.2) 

Let us consider now the Bessel function of the first kind of 
order � defined by 

2( 1) 1( ) ( 1) ,0 .
! 20

mm tJ t m t
mm

ν
νν

 
 
 

+∞ − −= Γ + + < < ∞∑
=

 

 
From [7], )*��� is an entire function of paremeter �.  Thus, 
if 
 is a Jordan block of the form (1.1), � > 0, we can 
write the image by means of the matrix functional calculus 
acting on the matrix 
 and the function of	�, )*���, one has 
Bessel matrix function of the first kind of order 
 as 
follows: 

(1.3)
2( 1) 1( ) ( ( 1) )

! 20

mI Hm tJ t H m IH mm

 
 
 

+∞ − −= Γ + +∑
=

 

where	, is not a negative integer for every , ∈  �
� [3]. 
Let us take	�	 ∈ ���� satisfying that 

, is not a negative integer for every , ∈  ���.        (1.4) 

In [3], the Bessel matrix function of the first kind of order � was defined as follows: 

2( 1) 1( ) ( ( 1) ) . (1.5)
! 20

mI Am tJ t A m IA mm

 
 
 

+∞ − −= Γ + +∑
=

 

We now consider the general case. Let � be a matrix 
satisfying condition (1.4) and 
 � -./0�
	, … , 
2� be the 
Jordan canonical form of �, where 
3	 is a Jordan block 
defined in the following form, for 43 ≥ 1,  


3 � ��
���3 1 0 … 00 �3 1 ⋱ ⋮⋮ ⋱ ⋱ ⋱ 00 … ⋱ ⋱ 10 0 … 0 �3��

��� ∈ �67�67 	, 4	 + 49 +⋯+ 42 � �	(1.6) 

and 
3	 � ��3� if 
3	is a Jordan block of size 1 � 1 for �3 is 
not a negative integer for 1 ≤ . ≤ <. Bessel matrix 
function of the first kind can be written 

( , ) [ ( ( ))].1J t H diag J tHi k i
= ≤ ≤

 

Furthermore, if = is a invertible matrix in ���� such that 

1
( , ..., ) ,1H diag H H PAPk

−= =  

then we have the same Bessel matrix function of the first 
kind of order � in (1.5) (see [3]). 

Definition 1. Let = be a positive stable matrix in	����, that 
is, >?�@� > 0 for ∀@ ∈  �=�. Then Gamma matrix 
function in [5] is defined by 

( ) , exp[( ) ln ].
0

t P I P I
P e t dt t P I t

∞ − − −Γ = = −∫     (1.7) 

Definition 2.  Let � and B be positive stable matrices 
in	���� . Then Beta matrix function in [5] is defined by 

1
( , ) (1 ) .

0

X I Y I
X Y t t dtΒ − −= −∫      (1.8) 

Lemma 1.  Let �, B, � + B  be positive stable matrices in 	���� and �B � B�. Then we have 

C��, B� � Γ���Γ�B�Γ%	�� + B�, see [5]. 

Lemma 2. Let � and B be matrices in ���� satisfying that �B � B� and � + D�, B + D�, � + B + D� are invertible 
for ∀D ∈ ℕ. Then 

1
( , ) ( ) ( ) ( )B X Y X Y X Y

−= Γ Γ Γ +                         (1.9) 

holds (see [8]). 

2. SOME NEW INTEGRAL REPRESENTATIONS 

FOR BESSEL MATRIX FUNCTIONS 

Let 
 be a Jordan block in (1.1) satisfying the condition  

>?��� > − 	9  for  ∀� ∈  �
�.  
Consider the integral  

1
2

1 2
(1 ) , 0. (2.1)

1

H I ixtS t e dt x
−

= − >∫
−

 

Using Taylor series for ?3�G, (2.1) can be written as 
follows: 

1
2

1( ) 2
(1 ) .

0 1!

H Ik
ix kI

S t t dt
k k

−∞
∑= −∫
= −

                (2.2) 

If  < is odd, integrand in (2.2) is � since the integrand is an 

odd function. For	< � 2I, we have
1
2

1
2

2 1( ) 2 2
(1 )

0 (2 )! 1

2 1( ) 2 2
2 (1 ) .

0 (2 )! 0

H I

H I

m
ix mI

S t t dt
m m

m
ix mI

t t dt
m m

−

−

∞
= −∑ ∫

= −

∞
= −∑ ∫

=
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Then, taking J � �9, we get 

11
22

2 1( 1)
(1 ) .

0 (2 )! 0

m IH Im m
x

S u u du
m m

 
 
 

−−∞ −
= −∑ ∫

=
 

From the Beta matrix function in Definition 2 and Lemma 
2, we obtain that 

( )

2

0

2
1

0

( 1) 1 1
,

(2 )! 2 2

1 ( 1) 1
( 1) .

2 (2 )! 2

m m

m

m m

m

x
S B H I m I

m

x
H I m I H m I

m

∞

=

∞
−

=

−   = + +  
  

−     = Γ + Γ + Γ + +    
    

∑

∑
 
We also get 

1 12
(2 )! 2 ! .

2

m
m m m

π
= Γ +

 
 
 

 

Thus, we can write 

( )
2

1

0

1 ( 1)
( 1)

2 2 ! 2

1
( ).

2 2

H H mIm

m

H

H

x x
S H I H m I

m

x
H I J x

π

π

− +∞
−

=

−

−    = Γ + Γ + +    
    

  = Γ +  
  

∑

 

Now, we ready to give the first integral representation for 
the Bessel matrix functions. 

Theorem 1.  Let 
 be a Jordan block in (1.1) satisfying 
the condition  

>?��� > − 	9  for  ∀� ∈  �
�.  
For K > 0,		the Bessel matrix function holds the following 
representation:  

1 1
1 2 2

1

1 1
( ) (1 ) .

2 2

H
H I ixt

H

x
J x H I t e dt

π

−−

−

  = Γ + −  
   ∫

 (2.3) 

Now, we generalize for this theorem. Let 
3	 be the same 
as in (1.1) and 
 � -./0�
	, … , 
2� be a matrix in ����. 

Here �3 satisfies the condition >?��3� > − 	9 for ∀�3 ∈ �
3�,	1 ≤ . ≤ <. For the matrix	
 � -./0�
	, … , 
2�, 
(2.3) can be provided, easily. 

Now let 
 and L be Jordan blocks in (1.1) satisfying 
condition 

>?��� ∉ ℤ%	for			∀� ∈  �
�>?�R� ∉ ℤ%		for	∀R ∈  �L�and	>?��� > >?�R� V.                                (2.4) 

Then, consider the integral 

1 2
(1 ) ( ) , 0.

0

H M I M I
S t t J xt dt xM

− − +
= − >∫           (2.5) 

Using (1.3), we can write (2.5) as follows: 

21
( 1) ( ( 1) )

0 ! 2

1 2 (2 1)2
(1 ) .

0
(2 . 6)

M mIm
M m I x

S
m m

M m IH M I
t t dt

+−− Γ + +
= ∑

≥

+ +− −× −∫

 
 
   

Then, taking J � �9, we get 

2 1
1

0 0

1 ( 1)
( ( 1) ) (1 ) .

2 ! 2

M mIm
H M I M mI

m

x
S M m I u u du

m

+
− − − +

≥

−  = Γ + + − 
 

∑ ∫
 

From the Beta matrix function in Definition 2 and Lemma 
2, we obtain that 

2

1

0

2

1

0

2

1

0

1 ( 1)
( ( 1) ) ( , ( 1) )

2 ! 2

1 ( 1)
( ) ( ( 1) )

2 ! 2

1 ( 1)
( ) ( ( 1) )

2 2 ! 2

1
( ) ( ).

2 2

M mIm

m

M mIm

m

M H H mIm

m

M H

H

x
S M m I B H M M m I

m

x
H M H m I

m

x x
H M H m I

m

x
H M J x

+
−

≥

+
−

≥

− +
−

≥

−

−  = Γ + + − + + 
 

−  = Γ − Γ + +  
 

−   = Γ − Γ + +   
   

 = Γ −  
 

∑

∑

∑

 

Then, we get the next theorem. 

Theorem 2. Let 
 and L be Jordan blocks in (1.1) 
satsifying the conditions in (2.4). Then for K > 0, the 
Bessel matrix function satisfies the following 
representations: 

1
1 2

0

( ) 2 ( ) (1 ) ( ) .
2

H M

H M I M I
H M

x
J x H M t t J xt dt

−
− − − + = Γ − − 

  ∫ (2.7) 

One can also generalize the above result as follows. 

Theorem 3.  If � and L are matrices in ����	satisfy 
condition 

>?��� ∉ ℤ%	for			∀� ∈  ���,>?�R� ∉ ℤ%		for	∀R ∈  �L�,>?�@� ∉ ℤ%⋃X0Y		for	∀@ ∈  �� −L�and	�L � L� Z, 
then we obtain  

1
1 2

0

( ) 2 ( ) (1 ) ( ) , 0.
2

A M

A M I M I
A M

x
J x A M t t J xt dt x

−
− − − + = Γ − − > 

  ∫
Now, we obtain integrals involving Bessel matrix 
functions.  
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Theorem 4.  Let 
 be a Jordan block in (1.1) satisfying 
the condition  

>?��� > 0		for  ∀� ∈  �
�.  
Then we get 

�.�[ )\�]K�K\?%^�-K � 2\Γ_
 + 12 �`√b ]\�/9 + ]9�%\%		9cd
e

�..�[ )\�]K�K\fc?%^�-K � / 2\fcΓ _
 + 3�2 `√b ]\�/9 + ]9�%\%		h9cd
e

 

where /  and ] are arbitrary positive real numbers. 

Proof.  From (1.3), the left-hand side of  (i) can be written 

0

2

1 2 2

0 0

( )

( 1)
( ( 1) ) .

! 2

H ax
H

H mIm
H mI ax

m

J bx x e dx

b
H m I x e dx

m

∞
−

+ ∞
− + −

≥

−  = Γ + +  
 

∫

∑ ∫

 

Taking J � /K and using the Gamma matrix function, we 
have 

0

2

1 (2 (2 1) )

0

2

1 (2 (2 1) )

0

( )

( 1)
( ( 1) ) (2 (2 1) )

! 2

( 1)
2 ( ) (2 2 ) .

! 2

H ax
H

H mIm
H m I

m

H mIm
H m I

m

J bx x e dx

b
H m I H m I a

m

b
H mI H mI a

m

∞
−

+
− − + +

≥

+
− − + +

≥

−  = Γ + + Γ + + 
 

−  = Γ + Γ + 
 

∫

∑

∑

 

On the other hand, with the help of matrix fuctional 
calculus in [1], we get 

2 (2 1)1 1
(2 2 ) ( ) 2 .

2
H m IH mI H mI H m I

π
+ −  Γ + = Γ + Γ + +  

  
 

Using the above equation, we write 

2

00

2 (2 1) (2 (2 1) )

2 ( 1)
( )

! 2

1
2 .

2
(2.8)

H mIm
H ax

H
m

H m I H m I

b
J bx x e dx

m

H m I a

π

+∞
−

≥

+ − − + +

 −  =   
 

  ×Γ + +   
   

∑∫  

We also obtain that 

1
2 2 2

2
2

2
0

2
2 1

2
0

( )

1

2
( 1)

!

1

21
( 1) . (2 .9)

2 !

H I

m

H I m m

m

m

H I m

m

a b

H I
b

a
m a

H m I
b

a H I
m a

− −

− −

≥

− − −

≥

+

 +    = −  
 

  Γ + +       = Γ + −   
   

∑

∑
   

Hence, the proof is completed from (2.8) and (2.9). 

(ii) For the proof of (ii), it is enough to differentiate both 
sides with respect to / in (i). 

Now, let us give a generalization for this theorem. Let  
3		be the same as in (1.1) and 
 � -./0�
	, … , 
2� be a 
matrix in ���� . Here �3 satisfies the condition >?��3� > 0 
for ∀�3 ∈  �
3�,	1 ≤ . ≤ <. For the matrix 
 �-./0�
	, … , 
2�, Theorem 4 can be easily provided. 

Furthermore, if =	  is an invertible matrix in ����such that  

1
1( ,..., ) ,kH diag H H PAP−= =  

then one can get the following theorem for the matrix �. 

Theorem 5. If � is a matrix in ����  satisfying the 
condition  

>?��� > 0  for  ∀� ∈  ���,  
then we obtain 

�.�[ )i�]K�Ki?%^�-K � 2iΓ _� + 12 �`√b ]i�/9 + ]9�%i%		9cd
e

�..�[ )i�]K�Kifc?%^�-K � / 2ifcΓ _� + 3�2 `√b ]i�/9 + ]9�%i%	h9cd
e

 

where / and ] are arbitrary positive real numbers. 

Theorem 6.  Let 
 be a Jordan block in (1.1) satisfying 
the condition  

>?��� > −1  for  ∀� ∈  �
�.  
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Then we obtain that 

2

2

2

0

2 2
3 2

0

( ) ( ) (2 ) exp
4

( ) ( ) 2 (2 ) 1 exp ,
4 4

H I ax H H I
H

H I ax H H I
H

b
i J bx x e dx b a

a

b b
ii J bx x e dx b a H I

a a

∞
+ − − −

∞
+ − − −

 
= − 

 

    
= + − −    

    

∫

∫
 

where / and ] are arbitrary positive real numbers. 

Proof. The proof of the theorem is very similar to 

Theorem 4. 

Now, let 
3 , �3	�. � 1,2,… ,<� and 
, = be as stated 

before. Then, we get the final result. 

Theorem 7.  If � is a matrix in ����  satisfying the 
condition 

>?��� > −1  for  ∀� ∈  ���,  
then we obtain 

2

2

2

0

2 2
3 2

0

( ) ( ) (2 ) exp
4

( ) ( ) 2 (2 ) 1 exp ,
4 4

A I ax A A I
A

A I ax A A I
A

b
i J bx x e dx b a

a

b b
ii J bx x e dx b a A I

a a

∞
+ − − −

∞
+ − − −

 
= − 

 

    
= + − −    

    

∫

∫

 

where / and ] are arbitrary positive real numbers. 
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