

Soft *I* – Sets and Soft *I* – Continuity of Functions

Metin AKDA \check{G}^1 , Fethullah EROL^{1, \triangleq}

¹Cumhuriyet University, Science Faculty, Department Of Mathematics 58140 Sivas, TURKEY

Received:04/04/2014 Accepted:07/08/2014

Abstract

In this paper, we introduce the notion of soft $I - open$ sets and investigate some properties of soft $I - open$ ess. Additionally, we study soft I - continuous and soft I - open functions. Some characterizations and several properties concerning these functions are obtained.

Keywords. Soft sets, soft ideal, soft continuity, soft I – continuouity

1. INTRODUCTION

Molodtsov [1] introduced soft set theory in 1999. Then Shabir and Naz [2] applied this theory to topological structure in 2011. They introduced and studied some concepts such as soft topological space, soft interior, soft closure and soft subspace etc. Kharal and Ahmad [3] defined the notion of soft mappings on soft classes. Then Aygünoğlu and Aygün [4] introduced soft continuity of soft mappings, soft product topology and studied soft compactness. Nazmul and Samanta [5] studied the neighbourhood properties in a soft topological space.

The topic of ideals in general topological spaces is treated in the classic text by Kuratowski [6]. This topic has an excellent potantial for applications in other branches of mathematics. The Cantor-Bendixson Theorem examplifies this potantial. This subject was continued to study by general topologists in recent years [6, 11, 15, 17]. In 1990, Jankovic and Hamlett [7] introduced another topology $\tau^*(I)$ by using a given topology τ , which satisfies $\tau \subset \tau^*(I)$. In 1952, Hashimoto [9,10] introduced the notion of ideal continuity. Then Jankovic and Hamlett [11] defined Iopen set in ideal topological spaces. Later, Abd El-Monsef [12] studied I-continuity for functions. Then Hatır and Noiri [13] introduced the semi-I-open set and semi-I-continuity in 2002. Kale and Guler [8] gave the definition of soft ideal and studied the properties the soft ideal topological space. Moreover they introduced the notion of soft $I - \text{regularity}$ and soft I normality.

The purpose of this paper is to define soft $I - open$ set and soft I – *continuity* of functions and investigate their basic properties.

[♠]Corresponding author, e-mail: feerol@cumhuriyet.edu.tr

2. PRELIMINARIES

Throughout this paper, X will be a nonempty initial universal set and A will be a set of parameters. Let $P(X)$ denote the power set of X and $S(X)$ denote the set of all soft sets over X .

Definition 1. [1] A pair (F, A) is called a soft set over X, where F is a mapping from A to $P(X)$.

Definition 2. [19] Let (F_1, A) and (F_2, A) be soft sets over a common universe X. Then (F_1, A) is said to be a soft subset of (F_2, A) if $F_1(\alpha) \subset F_2(\alpha)$, for all $\alpha \in A$ and this relation is denoted by $(F_1, A) \simeq (F_2, A)$. Also, (F_1, A) is said to be a soft equal to (F_2, A) if $F_1(\alpha) = F_2(\alpha)$, for all $\alpha \in A$ and this relation is denoted by $(F_1, A) = (F_2, A)$.

Definition 3. [20] A soft set (F, A) over X is said to be a null soft set if $F(\alpha) = \emptyset$ for all $\alpha \in A$ and this denoted by $\widetilde{\emptyset}$. Also, (F, A) is said to be an absolute soft set if $F(\alpha) = X$, for all $\alpha \in A$ and this denoted by \tilde{X} .

Definition 4. [21] The complement of a soft set (F, A) is defined as $(F, A)^c = (F^c, A)$, where $F^c(\alpha) = (F(\alpha))^c = X F(\alpha)$, for all $\alpha \in A$. Clearly, we have $(\widetilde{\emptyset})^c = \widetilde{X}$ and $(\widetilde{X})^c = \widetilde{\emptyset}$.

Definition 5. [2] The difference of two soft sets (F_1, A) and (F_2, A) is defined by $(F_1, A) - (F_2, A) = (F_1 - F_2, A)$, where $(F_1 - F_2)(\alpha) = F_1(\alpha) - F_2(\alpha)$, for all $\alpha \in A$.

Definition 6. [22] Let $\{(F_j, A) : j \in J\}$ be a nonempty family of soft sets over a common universe X. The intersection of these soft sets denoted by $\cap_{j\in J}$, is defined by $\cap_{j\in J} (F_j, A) = \cap_{j\in J} (F_j, A)$, where $(\cap_{j\in J} F_j)(\alpha) = \cap_{j\in J} (F_j(\alpha))$, for all $\alpha \in A$. The union of these soft sets denoted by $\cup_{j\in J}$, is defined by $\cup_{j\in J} (F_j, A) = \cup_{j\in J} (F_j, A)$, where $(\cup_{j\in J} F_j)(\alpha) = \cup_{j\in J} (F_j(\alpha))$ for all $\alpha \in A$.

Definition 7. [5] A soft set (E, A) over X is said to be a soft element if $\exists \alpha \in A, \beta \neq \alpha$ such that $E(\alpha) = \{x\}$ and $E(\beta) =$ \emptyset , for all $\beta \in A$. Such a soft element is denoted by E_{α}^x . The soft element E_{α}^x is said to be in the soft set (G, A) if $x \in A$ (G, A) , and denoted by $E^x_\alpha \widetilde{\in} (G, A)$.

Definition 8. [2] Let τ be the collection of soft sets over X. Then τ is said to be a soft topology on X if,

(i) $\widetilde{\emptyset}$, $\widetilde{X} \widetilde{\in} \tau$

(ii) the intersection of any two soft sets in τ belongs to τ

(iii) the union of any number of soft sets in τ belongs to τ .

The triple (X, τ, A) is called a soft topological space over X. The members of τ are said to be τ -soft open sets (simply, soft open set in X). A soft set over X is said to be soft closed in X if its complement belongs to τ .

Definition 9. [2] Let Y be a nonempty subset of X, then \tilde{Y} denotes the soft set (Y, A) over X for which $Y(\alpha) = Y$, for all $\alpha \in A$.

Definition 10. [2] Let (F, A) be a soft set over X and Y be a nonempty subset of X. Then the sub soft set of (F, A) over Y denoted by $({}^Y F, A)$ is defined as ${}^Y F(\alpha) = Y \cap F(\alpha)$, for each $\alpha \in A$. In other word $({}^Y F, A) = \tilde{Y} \cap (F, A)$.

Definition 11. [2] Let (X, τ, A) be a soft topological space over X and Y be a nonempty subset of X. Then $\tau_Y =$ $\{({}^{Y}F,A):(F,A)\in \tau)\}\$ is said to be the soft relative topology on Y and (Y,τ_Y,A) is called a sof subspace of (X,τ,A) .

Definition 12. [2] Let (X, τ, A) be a soft topological space over X and (F, A) be a soft set over X. The soft closure of (F, A) denoted by $Cl(F, A)$ is the intersection of all closed soft super sets of (F, A) . The soft interior of (F, A) denoted by $Int(F, A)$ is the union of all open soft subsets of (F, A) .

Definition 13. [5] Let (X, τ) be a soft topological space over X. A soft set (F, A) is said to be a neighbourhood of the soft set (H, A) if there exist a soft set $(G, A) \in \tau$ such that $(H, A) \in (G, A) \in (F, A)$. If $(H, A) = E_{\alpha}^x$, then (F, A) is said to be a soft neighbourhood of the soft element E_{α}^x . The soft neighbourhood system of soft element E_{α}^x , denoted by $N(E_{\alpha}^x)$, is the family of all its soft neighbourhood. The soft open neighbourhood system of soft element E_{α}^x , denoted by $V(E_{\alpha}^x)$, is the family of all its soft open neighbourhood.

Lemma 1. [5] A soft element $E^x_\alpha \in Cl(F,A)$ if and only if each soft neighbourhood of E^x_α intersects (F,A) .

Definition 14. [23] Let (X, τ, A) be a soft topological space over X, (G, A) be a soft closed set in X and E^X_α be a soft point such that $E^x_\alpha \tilde{\notin} (G, A)$. If there exist soft open sets (F_1, A) and (F_2, A) such that $E^x_\alpha \tilde{\in} (F_1, A)$, $(G, A) \tilde{\subset} (F_2, A)$ and $(F_1, A) \widetilde{\cap} (F_2, A) = \widetilde{\emptyset}$, then (X, τ) is called a soft regular space.

Definition 15. [23] Let (X, τ, A) be a soft topological space over X, and let (G_1, A) and (G_2, A) be two disjoint soft closed sets. If there exist two soft open sets (F_1, A) and (F_2, A) such that $(G_1, A) \cong (F_1, A)$, $(G_2, A) \cong (F_2, A)$ and $(F_1, A) \tilde{\cap} (F_2, A) = \tilde{\emptyset}$, then (X, τ) is called a soft normal space.

Definition 16. [18] A soft ideal I is a nonempty collection of soft sets over X if

(i) $(F, A) \widetilde{\in} I$, $(G, A) \widetilde{\subset} (F, A)$ implies $(G, A) \widetilde{\in} I$

(ii) $(F, A) \widetilde{\in} I$, $(G, A) \widetilde{\in} I$ implies (F, A) $\widetilde{\cup}$ $(G, A) \widetilde{\in} I$.

A soft topological space (X, τ, A) with a soft ideal *I* called soft ideal topological space and denoted by (X, τ, A, I) .

Definition 17. [18] Let (F, A) be a soft set in a soft ideal topological space (X, τ, A, I) and $(.)^*$ be a soft operator from $S(X)$ to $S(X)$. Then the soft local mapping of (F, A) defined by $(F, A)^*(I, \tau) = \{E_{\alpha}^x : (U, A) \cap (F, A) \notin I \text{ for every } I \in \mathcal{F}$ $(U, A) \in V(E_{\alpha}^{x})$ denoted by $(F, A)^*$ simply. Also, the soft set operator Cl^* is called a soft \check{C} -closure and is defined as $Cl^*(F, A) = (F, A)$ $\widetilde{\cup}$ $(F, A)^*$ for a soft subset (F, A) .

Lemma 2. [18] Let (X, τ, A, I) be a soft ideal topological space and $(F, A), (G, A)$ be two soft sets. Then;

(i) $(F, A) \cong (G, A)$ implies $(F, A)^* \cong (G, A)^*$ and $(F, A) \widetilde{\cup} (G, A)^* = (F, A)^* \widetilde{\cup} (G, A)^*$.

(ii) $(F, A)^* \cong \mathcal{C}l(F, A)$ and $((F, A)^*)^* \cong (F, A)^*$.

(iii) (F, A) is soft open and $(F, A) \widetilde{O}(G, A) \widetilde{E} I$ implies $(F, A) \widetilde{O}(G, A) = \widetilde{\emptyset}$

(iv) $(F, A)^*$ is soft closed.

(v) If (F, A) is soft closed then $(F, A)^* \n\tilde{\subset} (F, A)$.

Proposition 1. [18] Let (X, τ, A, I) be a soft ideal topological space and $(F, A), (G, A)$ be two soft sets. Then;

(i) $Cl^*(\vec{\emptyset}) = \vec{\emptyset}$ and $Cl^*(\tilde{X}) = \tilde{X}$.

(ii) $(F, A) \cong Cl^*(F, A)$ and $Cl^*(Cl^*(F, A)) = Cl^*(F, A)$.

(iii) If $(F, A) \in (G, A)$ then $Cl^*(F, A) \in Cl^*(G, A)$

(iv) $Cl^*(F, A) \ \tilde{\cup} \ Cl^*(G, A) = Cl^*((F, A) \ \tilde{\cup} \ (G, A)).$

Definition 18. Let (X, τ, A, I) be a soft ideal topological space, (Y, ϑ, B) be a soft topological space, $P: A \to B$ and $U: X \to Y$ be mappings. Then the mapping $f_{PII}: (X, \tau, A, I) \to (Y, \vartheta, B)$ is defined as follows:

(i) The image of (F, A) a soft set of (X, τ, A) underf_{PII} written as $f_{PI}(F, A) = (f_{PI}(F), P(A))$, is a soft set of (Y, ϑ, B) such that

$$
f_{PU}(F)(y) = \begin{cases} \n\bigcup_{x \in P^{-1}(Y) \cap A} U(F(x)), & \text{if } P^{-1}(y) \cap A \neq \emptyset \\ \n\emptyset & \text{otherwise} \n\end{cases}
$$

for all $y \in B$.

(ii) The inverse image of (G, B) a soft set under f_{PU} written as $f_{PU}^{-1}(G, B) = (f_{PU}^{-1}(G), P^{-1}(B))$, is a soft set of (X, τ, A) such that

$$
f_{PU}^{-1}(G)(x) = \begin{cases} U^{-1}(G(P(x))), P(x) \in B \\ \emptyset, \text{otherwise} \end{cases}
$$

for all $x \in A$

3. SOFT -OPEN SETS AND SOFT -CLOSED SETS

Definition 19. A subset S of an ideal topological space (X, τ, A, I) is said to be

(i) $[15]$ I – open if $S \subset Int(S^*)$

(ii) $[16]$ $\alpha - I$ – open if $S \subset Int(Cl^*(Int(S)))$

(iii) [17] $pre - I - open$ if $S \subset Int(Cl^*(S))$.

(iv) [16] $semi - I - open$ if $S \subset Cl^*(Int(S))$.

Definition 20. A soft subset (F, A) of an soft ideal topological space (X, τ, A, I) is said soft $I - open$ if $(F, A) \widetilde{\subset} Int(F, A)^*.$

We denote by $SIO(X, \tau, A, I) = \{(F, A): (F, A) \in Int(F, A)^*\}$ the family of all soft $I - open$ sets of a soft topological space (X, τ, A, I) .

Remark 1. It is clear that soft $I - openness$ and soft openness are independent concepts.

Example 1. Let a soft ideal topological space (X, τ, A, I) given as follows:

$$
X = \{h_1, h_2\}, A = \{e_1, e_2\},\
$$

 $\tau = \{\{\widetilde{\emptyset}, \widetilde{X}, \{(e_1,\{h_1\})\}, \{(e_2,\{h_2\})\}, \{(e_1,\{h_1\}), (e_2,\{h_2\})\}\},\$

 $I = {\emptyset}, \{(e_2, \{h_1\})\}$. Then $(F, A) = \{(e_1, \{h_2\})\}$ is soft $I - open$ set but is not soft *open set*.

Example 2. Let a soft ideal topological space (X, τ, A, I) given as follows:

 $X = \{h_1, h_2\}, A = \{e_1, e_2\}, \tau = \{\widetilde{\emptyset}, \widetilde{X}, \{(e_1, \{h_1\})\}, \{(e_2, \{h_2\})\}, \{(e_1, \{h_1\}), (e_2, \{h_2\})\}\},$

 $I = {\emptyset}, \{(e_1, \{h_1\})\}$. Then $(F, A) = \{(e_1, \{h_2\}), (e_2, \{h_2\})\}$ is soft *open set* but is not soft I – *open* set.

Definition 21. [25] A soft subset (F, A) of a soft topological space (X, τ, A) is said soft *pre – open* if $(F, A) \subseteq Int(Cl(F, A)).$

Remark 2. Every soft $I - open$ set is soft $pre - open$ set but the converse is not true in general as shown by the following example.

Example 3. Let a soft ideal topological space (X, τ, A, I) given as follows:

$$
X = \{h_1, h_2\}, A = \{e_1, e_2\}, \tau = \{\tilde{\emptyset}, \tilde{X}, \{(e_1, \{h_1\})\}, \{(e_2, \{h_2\})\}, \{(e_1, \{h_1\}), (e_2, \{h_2\})\}\}, I = \{\tilde{\emptyset}\}.
$$

Then $(H, A) = \{(e_1, \{h_2\})\}$ is soft $pre-open$ set but is not soft $I-open$ set.

Remark 3. The intersection of two soft I – open sets need not be soft I – open as shown by the following example.

Example 4. Let a soft ideal topological space (X, τ, A, I) given as follows:

 $X = \{h_1, h_2\}, \qquad A = \{e_1, e_2\}, \qquad \qquad \tau = \{\widetilde{\emptyset}, \widetilde{X}, \{(e_1, \{h_1\})\}, \{(e_2, \{h_2\})\}, \{(e_1, \{h_1\}), (e_2, \{h_2\})\}\},$ $I = {\emptyset}, \{(e_1, \{h_1\})\}$. Then $(F, A) = \{(e_1, \{h_1\}), (e_2, \{h_1\})\}$ and $(G, A) = \{(e_1, \{h_1\}), (e_2, \{h_2\})\}$ are two soft I – open sets but $(F, A) \cap (G, A) = \{(e_1, \{h_1\})\}$ is not soft $I - open$ set.

Theorem 1. For any soft I – open set (F, A) of a space (X, τ, A, I) , we have $(F, A)^* = (Int(F, A)^*)^*$.

Proof Obvious.

Definition 22. A soft subset (F, A) of a soft ideal topological space (X, τ, A, I) is said to be soft I - closed if its complement is soft $I - open$.

By $SLC(X, \tau, A, I)$ we denote the family of all soft $I - closed$ sets of a soft topological space (X, τ, A, I) .

Remark 4. For soft subset (F, A) of a soft ideal topological space (X, τ, A, I) , we have $\tilde{X} - (Int(F, A))^* \neq Int(\tilde{X} (F, A))^*$.

Example 5. Let a soft ideal topological space (X, τ, A, I) given as follows:

 $X = \{h_1, h_2\}, A = \{e_1, e_2\}, \tau = \{\widetilde{\emptyset}, \widetilde{X}, \{(e_1, \{h_2\})\}, \{(e_2, \{h_1\})\}, \{(e_1, \{h_2\}), (e_2, \{h_1\})\}\},$ $I = \{\,\vec{\emptyset}, \{(e_1,\{h_1\})\}, \{(e_2,\{h_2\})\}, \{(e_1,\{h_1\}), (e_2,\{h_2\})\}\}\.$ For a soft subset $(F, A) = \{(e_1,\{h_2\})\}\,$, we have \tilde{X} – $(int(F, A))^* = \tilde{X}$ but $Int(\tilde{X} - (F, A))^* = \{(e_1, \{h_1\}), (e_2, \{h_2\})\}.$

Theorem 2. Let (F, A) be a soft subset of a soft ideal topological space (X, τ, A, I) . If (F, A) is soft $I - closed$ set then $(F, A) \preceq (Int(F, A))^*$.

Proof The proof is obvious from the definition of soft $I - closed$ set and $(F, A)^*$.

Theorem 3. Let (F, A) be a soft subset of a soft ideal topological space (X, τ, A, I) and $\bar{X} - (Int(F, A))^* = Int(\bar{X} - A)$ (F, A) ^{*}. Then (F, A) is soft $I - closed$. Then (F, A) is soft $I - closed$ set iff $(F, A) \preceq (Int(F, A))$ ^{*}.

Proof Obvious.

Theorem 4. Let (X, τ, A, I) be a soft ideal topological space and (F, A) , (G, A) be two soft set in X. Then,

(i) If $\{(F_\alpha, A) : \alpha \in \Delta\}$ is soft-I-open sets, then \Box $\{(F_\alpha, A) : \alpha \in \Delta\}$ is soft *I* – *open* set.

(ii) If $(F, A) \in \text{SIO}(X, \tau, A, I)$ and $(G, A) \in \tau$, then $(F, A) \cap (G, A) \in \text{SIO}(X, \tau, A, I)$.

(iii) If $(F, A) \in \text{SIO}(X, \tau, A, I)$ and (G, A) is α -open set then $(F, A) \cap (\alpha, A) \in \text{SPO}(X, \tau, A)$.

Proof (i) Since $\{(F_\alpha, A) : \alpha \in \Delta\}$ is soft $I - open$ sets, then $(F_\alpha, A) \in Int(F_\alpha, A)^*$ for every $\alpha \in \Delta$. Thus \sqcup $(F\alpha, A) \in \sqcup$ $Int(F_{\alpha}, A)^* \widetilde{\subset} Int(\sqcup (F_{\alpha}, A)^*) \widetilde{\subset} Int(\sqcup (F_{\alpha}, A))^*$ for every $\alpha \in \Delta$.

(ii) $(F, A) \cap (G, A) \subseteq Int(F_{\alpha}, A)^* \cap (G, A) = Int(F_{\alpha}, A)^* \cap (G, A)$). Thus $(F, A) \cap (G, A) \subseteq Int((F_{\alpha}, A) \cap (G, A))^*$.

(iii) Since $(F, A)^*(I)$ is soft closed and $(F, A)^*(I) \subseteq Cl(F, A)$.

Corollary 1. The union of soft $I - closed$ set and soft closed set is soft $I - closed$.

Corollary 2. The union of soft $I - closed$ set and soft α -closed set is soft $pre - closed$.

Theorem 5. If (F, A) is soft $I - open$ and soft semi $- closed$ set in soft ideal topological space (X, τ, A, I) , then (F, A) $Int((F, A)^*)$.

Proof Obvious.

Theorem 6. Let (F, A) is soft I – open set in X and (G, B) is soft I – open set in Y then $(F, A) \times (G, B)$ is soft I – open set in $X \times Y$ if $(F, A)^* \times (G, B)^* = ((F, A) \times (G, B))^*$, where $X \times Y$ is the product space.

Proof $(F, A) \times (G, B) \cong Int((F, A)^*) \times Int((G, B)^*) = Int((F, A)^* \times (G, B)^*) = Int(((F, A) \times (G, B))^*)$. Thus $(F, A) \times (G, B)$ is soft $I - open$ set in $X \times Y$.

Theorem 7. If $(F, A) \cong (G, A) \in Cl(F, A)$ and (F, A) is soft $I - open$ in X, then (G, A) is soft $\beta - open$.

Proof Obvious.

Theorem 8. Let (G, A) be a soft I – open set in a soft ideal topological space (X, τ, A, I) , then $Cl(F, A) \cap G(A) \cong$ $((F, A) \widetilde{\cap} (G, A))^*$, for every $(F, A) \in SO(X, \tau, A)$.

Proof Let $(F, A) \in SO(X, \tau, A)$, then $Cl(F, A) = Cl(int(F, A))$. Since $(G, A) \in \text{SIO}(X, \tau, A, I)$ then $Cl(F,A) \widetilde{\cap} (G,A) \widetilde{\subset} Cl(int(F,A)) \widetilde{\cap} (Int(G,A)))^* \widetilde{\subset} Cl(int((F,A) \widetilde{\cap} (G,A))^*) \widetilde{\subset} Cl((F,A) \widetilde{\cap} (G,A)^*) =$ $((F, A) \widetilde{n} (G, A))^*$.

Theorem 9. If (X, τ, A, I) be a soft ideal topological space, $(F, A) \in \tau$ and $(G, A) \in \mathcal{S}1O(X, \tau, A, I)$, then there exists an soft open set (H, A) of X such that $(F, A) \widetilde{\cap} (H, A) = \widetilde{\emptyset}$, implies $(F, A) \widetilde{\cap} (G, A) = \widetilde{\emptyset}$.

Proof Since $(G, A) \in \text{SIO}(X, \tau, A, I)$, then $(G, A) \in \text{Int}(G, A)^*$. By taking $(H, A) = \text{Int}(G, A)^*$ to be an soft open set such that $(G, A) \n\t\tilde{\subset} (H, A)$, but $(F, A) \n\t\tilde{\cap} (H, A) = \emptyset$, then $(H, A) \n\t\tilde{\subset} \n\t\tilde{X} - (F, A)$ implies that $Cl(H, A) \n\t\tilde{\subset} \n\t\tilde{X} - (F, A)$. Hence $(G, A) \n\t\widetilde{\in}\n\t\widetilde{X} - (F, A)$ and $(F, A) \widetilde{\cap} (G, A) = \widetilde{\emptyset}$.

4. SOFT -**CONTINUOUS FUNCTIONS**

Definition 23. A function $f: (X, \tau, A, I) \to (Y, \sigma, B)$ is said to be soft I – *continuous* if $f^{-1}(F, B)$ is soft I – *open* set in (X, τ, A, I) for each soft open set (F, B) of (Y, σ, B) .

Definition 24. [25] A function $f: (X, \tau, A) \to (Y, \sigma, B)$ is said to be soft *pre continuous* if $f^{-1}(F, B)$ is soft pre open set in (X, τ, A) for each soft open set (F, B) of (Y, σ, B) .

Remark 5. It is obvious that soft I – *continuity* implies soft *pre continuity*. But these converse is not true in general.

Example 6. Let a soft ideal topological space (X, τ, A, I) and a soft topological space (Y, ϑ, B) given as follows: $X =$ $\{h_1, h_2\}, A = \{e_1, e_2\}, \tau = \{\widetilde{\emptyset}, \widetilde{X}, \{(e_1, \{h_1\}), (e_2, \{h_2\})\}, \{(e_1, \{h_1\}), (e_2, \{h_2\})\}\},$ $\{\widetilde{\emptyset}, \{(e_1,\{h_1\})\}, \{(e_2,\{h_2\})\}, \{(e_1,\{h_1\}), (e_2,\{h_2\})\}\}\$, $Y = \{y_1, y_2\}, B = \{k_1, k_2\}, \vartheta = \{\widetilde{\emptyset}, \widetilde{Y}, \{(k_1,\{y_2\})\}\}\$. Also, let $U: X \to Y$, $U(h_1) = y_2$, $U(h_2) = y_1$, $P: A \to B$, $P(e_1) = k_1$, $P(e_2) = k_2$. Then the soft function f_{IP} : $(X, \tau, A, I) \to I$ (Y, ϑ, B) is soft *pre – continuous* but is not soft I – *continuous*.

Definition 25. [25] A function $f: (X, \tau, A) \to (Y, \sigma, B)$ is said to be soft continuous if $f^{-1}(F, B)$ is soft open set in (X, τ, A) for each soft open set (F, B) of (Y, σ, B) .

Remark 6. The following two examples show that the concept of soft continuity and soft I - *continuity* are independent.

Example 7. Let a soft ideal topological space (X, τ, A, I) and a soft topological space (Y, ϑ, B) given as follows: $X =$ $\{h_1, h_2\}, A = \{e_1, e_2\}, \tau = \{\widetilde{\emptyset}, \widetilde{X}, \{(e_1, \{h_1\}), (e_2, \{h_2\})\}, \{(e_1, \{h_1\}), (e_2, \{h_2\})\}\},\$ $I = {\{\widetilde{\emptyset}, \{(\mathcal{e}_1, \{h_1\})\}, \{(\mathcal{e}_2, \{h_2\})\}, \{(\mathcal{e}_1, \{h_1\}), (\mathcal{e}_2, \{h_2\})\}\}, Y = \{y_1, y_2\}, B = \{k_1, k_2\}, \vartheta = {\{\widetilde{\emptyset}, \widetilde{Y}, \{(\mathcal{k}_1, \{y_2\})\}\}}$. Also, let $U: X \to Y$, $U(h_1) = y_1$, $U(h_2) = y_2$, $P: A \to B$, $P(e_1) = k_1$, $P(e_2) = k_2$. Then the soft function $f_{UP}: (X, \tau, A, I) \to$ (Y, ϑ, B) is soft I – continuous but is not soft continuous.

Example 8. Let a soft ideal topological space (X, τ, A, I) and a soft topological space (Y, ϑ, B) given as follows: $X =$ $\{h_1, h_2\}, A = \{e_1, e_2\}, \tau = \{\widetilde{\emptyset}, \widetilde{X}, \{(e_1, \{h_1\}), (e_2, \{h_2\})\}, \{(e_1, \{h_1\}), (e_2, \{h_2\})\}\},$ $I = {\emptyset, \{(e_1, \{h_1\}\}, \{(e_2, \{h_2\})\}, \{(e_1, \{h_1\}), (e_2, \{h_2\})\}, Y = \{y_1, y_2\}, B = \{k_1, k_2\}, \vartheta = {\emptyset, \tilde{Y}, \{(k_1, \{y_1\}), (k_2, \{y_2\})\}}.$ Also, let $U: X \to Y$, $U(h_1) = y_1$, $U(h_2) = y_2$, $P: A \to B$, $P(e_1) = k_1$, $P(e_2) = k_2$. Then the soft function $f_{UP}: (X, \tau, A, I) \rightarrow (Y, \vartheta, B)$ is soft continuous but is not soft I – continuous.

Theorem 10. For a function $f: (X, \tau, A, I) \rightarrow (Y, \sigma, B)$ the following are equivalent:

(i) f is soft I – continuous,

(ii) for each $E^x_\alpha \tilde{\in} (X, A)$ and each $(V, B) \in \sigma$ containing $f(E^x_\alpha)$, there exists $(U, A) \in \text{SO}(X, \tau, A, I)$ containing E^x_α such that $f(U, A) \n\t\tilde{\subset} (V, B),$

(iii) For each $E^x_\alpha \in (X, A)$ and $(V, B) \in \sigma$ containing $f(E^x_\alpha)$, $(f^{-1}(V, B))^*$ is a neighbourhood of E^x_α .

Proof (i) \Leftrightarrow (ii) Since $(V, B) \in \sigma$ containing $f(E_{\alpha}^x)$, then by (i) $f^{-1}(V, B)$ is soft $I - open$ in X. By taking $(U, A) =$ $f^{-1}(V, B)$ which containing $f(E_{\alpha}^{x})$, thus $f(U, A) \in (V, B)$.

(ii)⇒(iii) Since $(V, B) \in \sigma$ containing $f(E_{\alpha}^{x})$, then by (ii) there exists $(G, A) \in \text{SO}(X, \tau, A, I)$ containing $f(E_{\alpha}^{x})$, such that $f(G, A) \in (V, B)$. So, $E_{\alpha}^x \in (G, A) \in Int((G, A)^*) \in Int(f^{-1}(V, B))^* \in (f^{-1}(V, B))^*$. Hence $(f^{-1}(V, B))^*$ is a neighbourhood of E^x_α .

(iii)⇒(i) Obvious.

Theorem 11. For a function $f: (X, \tau, A, I) \rightarrow (Y, \sigma, B)$ the following are equivalent:

(i) f is soft I – continuous,

(ii) The inverse image of each soft closed set in Y is soft $I - closed$,

(iii) $(int(f^{-1}(G, B)))^* \tilde{\subset} f^{-1}((G, B)^*)$ for each *-dense-in-itself soft subset (G, B) of Y,

(iv) $f(int((F, A)))^* \cong (f(F, A))^*$, for each subset (F, A) of X, and for each *-perfect soft subset of Y.

Proof (i)⇒(ii) Let (F, B) be a soft closed set of Y, then $\bar{X} - (F, B)$ is soft open set, and by (i), $f^{-1}(\bar{Y} - (F, B)) = \bar{X} - (F, B)$ $f^{-1}(F, B)$ is soft $I - open$. Thus $f^{-1}(F, B)$ is soft $I - closed$.

(ii)⇒(iii) (G, B) be a soft subset of Y, since $(G, B)^*$ is soft closed, then by (ii), $f^{-1}((G, B)^*)$ is soft $I - closed$. Thus $(int(f^{-1}((G, B)^*))^* \simeq f^{-1}((G, B))^*$. Since (G, B) is *-dense-in-itself soft subset, then $(int(f^{-1}(G, B)))^* \simeq$ $(int(f^{-1}((G, B)^*))^* \widetilde{\subset} f^{-1}((G, B)^*)$.

(iii)⇒(iv) Let (F, A) be a soft subset of X, and $(G, B) = f(F, A)$, then by (iii), $(int(F, A))^* \cong$ $(int(f^{-1}(G, B)))^* \tilde{\subset} f^{-1}((G, B)^*)$. Hence, $f((Int(F, A))^*) \tilde{\subset} (G, B)^* = (f(F, A))^*$.

 $(iv) \Rightarrow (i)$ Let $(G, B) \in \sigma$, $(H, B) = \tilde{Y} - (G, B)$ and $(F, A) = f^{-1}(H, B)$, then $f(F, A) \tilde{\subset} (H, B)$ and by (iv), $f(int((F, A)))^* \cong (f(F, A))^* \cong (H, B)^* = (H, B)$ (because (H, B) is *-perfect). Thus, $(int(f^{-1}(H, B)))^* \cong (Int(F, A))^* \cong f^{-1}(H, B)$, and therefore $f^{-1}(H, B) = f^{-1}(\tilde{Y} - (G, B)) = \tilde{X} - f^{-1}(G, B)$ is soft *I* – closed. Hence $f^{-1}(G, B)$ is soft *I* – open. Thus *f* is soft *I* – continuous.

Theorem 12. A soft function $f: (X, \tau, A, I) \to (Y, \sigma, B)$ is soft I - *continuous* if and only if the graph soft function $g: X \to X \times Y$, defined by $g(E_{\alpha}^{x}) = (E_{\alpha}^{x}, f(E_{\alpha}^{x}))$, for each $E_{\alpha}^{x} \in X$, is soft I – continuous.

Proof (\Rightarrow) Suppose that f is soft *I* – *continuous*. Let $E_{\alpha}^x \in X$ and $(W, A \times B)$ be any soft open set of $X \times Y$ containing $g(E_{\alpha}^{x}) = (E_{\alpha}^{x}, f(E_{\alpha}^{x}))$, Then there exists a basic soft open set $(U, A) \times (V, B)$ such that $g(E_{\alpha}^{x}) = (E_{\alpha}^{x}, f(E_{\alpha}^{x})) \in (U, A) \times$ $(V, B) \in (W, A \times B)$. Since f is soft I – continuous, there exists a soft I – open set (U_0, A_0) of X containing E^x_α such that $f((U_0, A_0)) \cong (V, B)$. Since $(U_0, A_0) \cap (U, A) \in \mathcal{S}(\mathcal{O}(X, \tau, A, I))$ and $(U_0, A_0) \cap (U, A) \cong (U, A)$, then $g((U_0, A_0) \cap (U, A)) \cong (U, A) \times (V, B) \cong (W, A \times B)$. This shows that g is soft I – continuous.

(∈) Suppose that g is soft I – continuous. Let $E^x_\alpha \in X$ and (V, B) be any soft open set of Y containing $f(E^x_\alpha)$. Then $X \times (V, B)$ is open in $X \times Y$. Since g is soft I – continuous, there exists $(U, A) \in \text{SO}(X, \tau, A, I)$ containing E_{α}^x such that $g(U, A) \cong X \times (V, B)$. Therefore, we obtain $f(U, A) \cong (V, B)$. This shows that f is soft I – continuous.

Theorem 13. Let $f: (X, \tau, A, I) \to (Y, \sigma, B)$ be a soft I – *continuous* function and $(U, A) \in \tau$. Then the restriction $f\mid_{(U,A)}:((U,A),\tau\mid_{(U,A)},I\mid_{(U,A)})\rightarrow (Y,\sigma,B)$ is soft I – continuous.

Proof Let (V, B) be any soft open set of (Y, σ) . Then $f^{-1}(V, B) \tilde{\subset} Int(f^{-1}(V, B))$ ^{*} and so, $(U, A) \cap f^{-1}(V, B) \subseteq (U, A) \cap Int(f^{-1}(V, B))^*$. Thus $(f \big|_{(U, A)}^{-1}(V, B) = (U, A) \cap f^{-1}(V, B)$ $\tilde{C}(U, A) \tilde{D}(Int(f^{-1}(V, B))^{*})$, since $(U, A) \in \tau$, then $(f|_{(U, A)})^{-1}(V, B) = Int((U, A) \tilde{D}(((f^{-1}(V, B)))^{*})$ $\tilde{\subset} Int((U, A) \tilde{\cap} (f^{-1}(V, B)))^* = Int((f \mid_{(U, A)})^{-1}(V, B)^*$. Thus we have that $(f \mid_{(U, A)})^{-1}(V, B) \in \text{SIO}((U, A), \tau \mid_{(U, A)})$. This shows that $f|_{(U,A)}$ is soft I – continuous.

Theorem 14. Let $f: (X, \tau, A, I) \to (Y, \sigma, B)$ be a soft I – *continuous* function and $\{(U_\alpha, A): \alpha \in \Delta\}$ be an soft open cover of X. If the restriction function $f\mid_{(U,A)}:((U,A),\tau\mid_{(U,A)})\rightarrow(Y,\sigma,B)$ is soft I – continuous for each $\alpha\in\Delta$, then f is soft I – continuous.

Proof The proof is similar to previous theorem.

Theorem 15. Let $f: (X, \tau, A, I) \to (Y, \sigma, B)$ be a soft I – *continuous* function and soft open function, then the inverse image of each soft $I - open$ set in Y is soft preopen in X.

Proof Obvious.

Theorem 16. Let $f: (X, \tau, A, I) \to (Y, \sigma, B)$ be a soft I – *continuous* function and $(f^{-1}(V, B)^*) \cong (f^{-1}(V, B))^*$ for each soft subset (V, B) of Y. Then the inverse image of each $I - open$ set is soft $I - open$.

Proof Obvious.

Remark 7. The composition of two soft I – *continuous* function need not to be soft I – *continuous*, in general, as shown by the following example.

Example 9. $X = Y = Z = \{h_1, h_2\}, A = B = C = \{e_1, e_2\}, \sigma = \{\widetilde{\emptyset}, \widetilde{X}, \{(e_1, \{h_2\})\}\}, \vartheta = \{\widetilde{\emptyset}, \widetilde{Y}, \{(e_1, \{h_1\})\}, \{(e_2, \{h_2\})\}\}, \sigma = \{\widetilde{\emptyset}, \widetilde{Y}, \{(e_1, \{h_1\})\}\}, \{\{\widetilde{\emptyset}, \{\widetilde{\emptyset}, \widetilde{\emptyset}\}, \{\widetilde{\emptyset}\}, \{\widetilde{\emptyset}\}, \{\widet$ $\tau = \{\vec{\emptyset}, \vec{X}\}\}\ = \{\vec{\emptyset}, \{(e_1, \{h_1\})\}\}, \{(e_1, \{h_1\})\}, \{(e_1, \{h_1\})\}, \{(e_2, \{h_2\})\}\}\}.$ Let U be a identify function from X to X and let P be a identify function from A to A. Then the soft functions $f_{UP}: (X, \tau, A, I) \rightarrow (Y, \vartheta, B)$ and $g_{UP}: (Y, \vartheta, B, J) \to (Z, \sigma, C)$ are soft I – continuous but $g \circ f: (X, \tau, A, I) \to (Z, \sigma, C)$ which the composition of f and g is not soft I – continuous.

Theorem 17. For soft functions $f: (X, \tau, A, I) \to (Y, \sigma, B, I)$ and $g: (Y, \sigma, B, I) \to (Z, \eta, C)$ the following are hold:

(i) if f is soft I – continuous and g is soft continuous then gof is soft I – continuous.

(ii) if f is soft $I-irresolute$ and g is soft $I-continuous$ then gof is soft $I-continuous$.

Proof (i) Let (H, C) be a soft open subset of Z. Since q is soft continuous then $q^{-1}(H, C)$ is soft open in Y. Since f is soft *I* – continuous then $f^{-1}(g^{-1}(H,\mathcal{C})) = (g \circ f)^{-1}$ is soft *I* – open in *X*. Thus gof is soft *I* – continuous.

(ii) Let (H, C) be a soft open subset of Z. Since g is soft I – continuous then $g^{-1}(H, C)$ is soft I – open set in Y. Since f is soft $I-irresolute$ then $f^{-1}(g^{-1}(H,C)) = (gof)^{-1}$ is soft $I-open$ in X. Thus gof is soft $I-continuous$.

Lemma 3. For any soft function $f: (X, \tau, A, I) \rightarrow (Y, \sigma, B), f(I)$ is an soft ideal on Y.

Proof i. Let $f(F, A) \in f(I)$ and $f(G, A) \simeq f(F, A)$. Then $(F, A) \in I$ and $(G, A) \simeq (F, A)$. Since I is soft ideal then $(G, A) \in I$. Thus $f(G, A) \in f(I)$.

ii. Let $f(F, A) \in f(I)$ and $f(G, A) \in f(I)$. Then $(F, A) \in I$ and $(G, A) \in I$. Since I is soft ideal then $(F, A) \cup (G, A) \in I$. Thus $f((F, A) \widetilde{\cup} (G, A)) = f(F, A) \widetilde{\cup} f(G, A) \in f(I)$. Therefore $f(I)$ is soft ideal.

Definition 26. An soft ideal topological space (X, τ, A, I) is said to be soft I – *compact* if for every soft *open* cover $\{(W_i, Ai) : i \in \Delta\}$ of X, there exists a finite subset Δ_0 of Δ such that $\tilde{X} - \Box$ $\{(W_i, A_i) : i \in \Delta_0\} \in I$.

Theorem 18 The image of a soft I – compact space under a I – continuous surjective function is $f(I)$ – compact.

Proof Let $f: (X, \tau, A, I) \to (Y, \sigma, B)$ be a soft I – continuous surjection function and $\{(W_i, A_i): i \in \Delta\}$ an open cover of Y. Then $f^{-1}\{(W_i, A_i): i \in \Delta\}$ is $I - open$ cover of X. By the hypothesis, there exists a finite subset Δ_0 of Δ such that $\bar{X} - \Box$ $\{f^{-1}(W_i, A_i): i \in \Delta_0\} \in I$. Therefore, $f(\tilde{X} - \Delta \{f^{-1}(W_i, A_i): i \in \Delta_0\}) = \tilde{Y} - \Delta \{W_i, A_i\}: i \in \Delta_0\} \in f(I)$ which shows that is $f(I)$ -compact.

5. SOFT *I – Open* AND SOFT *I – Closed* FUNCTIONS

Definition 27. A soft function $f: (X, \tau, A) \to (Y, \sigma, B, J)$ is called soft $I - open$ if $f(U, A) \in \mathcal{S}IO(Y, \sigma, J)$ for each soft open set (U, A) in X .

Definition 28 A soft function $f: (X, \tau, A) \to (Y, \sigma, B, J)$ is called soft $I - closed$ if $f(U, A) \in SL(Y, \sigma, J)$ for each soft closed set (U, A) in X .

Definition 29 [24] A soft function $f: (X, \tau, A) \to (Y, \sigma, B)$ is called soft *open*(resp. *closed*) if $f(U, A) \in SO(Y, \sigma, B)$ $(\text{resp. } f(U, A) \in SC(Y, \sigma, B))$ for each soft *open*(*resp.soft closed*) set (U, A) in X.

Remark 8. (1) Every soft $I - open$ (resp. $I - closed$) function is soft $pre - open$ (resp. $pre - closed$) and the converse is not true in general as shown by the following examples.

(2) Soft I – open function and soft open function are independent as shown by the following example.

Example 10. Let a soft topological space (X, τ, A) and a soft ideal topological space (Y, ϑ, B, I) given as follows: $X =$ $\{h_1, h_2\}, A = \{e_1, e_2\}, \tau = \{\widetilde{\emptyset}, \widetilde{X}, \{(e_1, \{h_1\})\}\}, Y = \{y_1, y_2\}, B = \{k_1, k_2\},$ $\vartheta = {\{\widetilde{\emptyset}, \widetilde{Y}, \{(k_1, \{y_1\}), (k_2, \{y_2\})\}, \{(k_1, \{y_1\}), (k_2, \{y_2\})\}, \{(k_1, \{y_1\}), (k_2, \{y_2\})\}.$ Also, let $U: X \to Y$, $U(h_1) = y_1$, $U(h_2) = y_2$, $P: A \to B$, $P(e_1) = k_1$, $P(e_2) = k_2$. Then the soft function $f_{UP}: (X, \tau, A) \to$ (Y, ϑ, B, J) is soft $pre-open$ but is not soft $I-open$.

Example 11. Let two soft topological space (X, τ, A) and a soft ideal topological space (Y, ϑ, B, I) given as follows: $X = \{h_1, h_2\}, A = \{e_1, e_2\}, \tau = \{\widetilde{\emptyset}, \widetilde{X}, \{(e_1, \{h_2\})\}\}, Y = \{y_1, y_2\}, B = \{k_1, k_2\},$ $\vartheta = {\{\tilde{\vartheta}, \tilde{Y}, \{k_1, \{y_1\}\}, \{k_2, \{y_2\}\}, \{\{k_1, \{y_1\}\}, \{k_2, \{y_2\}\}\}, \{k_1, \{y_1\}, \{k_2, \{y_2\}\}\}, \{k_1, \{y_1\}, \{k_2, \{y_2\}\}\}.$ Also, let $U: X \to Y$, $U(h_1) = y_1$, $U(h_2) = y_2$, $P: A \to B$, $P(e_1) = k_1$, $P(e_2) = k_2$. Then the soft function $f_{UP}: (X, \tau, A) \to$ (Y, ϑ, B, J) is soft I – open but is not soft open.

Example 12. Let a soft topological space (X, τ, A) and a soft ideal topological space (Y, ϑ, B, J) given as follows: $X = \{h_1, h_2\}, \qquad A = \{e_1, e_2\}, \qquad \tau = \{\widetilde{\vartheta}, \widetilde{X}, \{(e_1, \{h_1\}), (e_2, \{h_2\})\}\}, \qquad Y = \{\gamma_1, \gamma_2\}, \qquad B =$ $\tau = {\{\widetilde{\emptyset}, \widetilde{X}, \{(e_1, \{h_1\}), (e_2, \{h_2\})\}\}},$ $\vartheta = {\{\widetilde{\vartheta}, \widetilde{Y}, \{(k_1, \{y_1\}), (k_2, \{y_2\})\}, \{(k_1, \{y_1\}), (k_2, \{y_2\})\}, \{((k_1, \{y_1\}), (k_2, \{y_2\})\})\}.$ Also, let $U: X \to Y$, $U(h_1) = y_1$, $U(h_2) = y_2$, $P: A \to B$, $P(e_1) = k_1$, $P(e_2) = k_2$. Then the soft function $f_{UP}: (X, \tau, A) \to$ (Y, ϑ, B, J) is soft *open* but is not soft $I - open$.

Theorem 19. A soft function $f: (X, \tau, A) \to (Y, \sigma, B, J)$ is $I - open$ function if and only if for each $E_{\alpha}^X \in X$ and each soft neighborhood (U, A) of E^x_α , there exists $(V, B) \in \text{SO}(Y, \sigma, B)$ containing $f(E^x_\alpha)$ such that $(V, B) \tilde{\subset} f(U, A)$.

Proof Suppose that f is a soft I - open function. For each $E^x_\alpha \in X$ and each soft neighborhood (U, A) of E^x_α , there exists $(U_0, A_0) \in \tau$ such that $E^x_\alpha \in (U_0, A_0) \subset (U, A)$. Since f is soft $I - open$, $(V, B) = f((U_0, A_0)) \in \mathcal{S}I\mathcal{O}(Y, \sigma, B)$ and $f(E_{\alpha}^{\chi}) \in (V, B) \widetilde{\subset} f(U, A).$

Conversely, let (U, A) be an soft open set of (X, τ, A, I) . For each $E_{\alpha}^x \tilde{\epsilon}$ (U, A) , there exists $(V, B) \in \text{SO}(Y, \sigma, B)$ such that $f(E_{\alpha}^{x}) \tilde{\in} (V, B) \tilde{\subseteq} f(U, A)$. Therefore, we obtain $f(U, A) = \bigcup \{ (V, B) : E_{\alpha}^{x} \tilde{\in} (U, A) \}$ and $f(U, A) \in \text{SO}(Y, \sigma, B)$. This shows that f is soft $I - open$ function.

Theorem 20. Let $f: (X, \tau, A) \to (Y, \sigma, B, J)$ be a soft $I - open$ (resp. soft $I - closed$) function, (W, A) any soft subset of Y and (F, A) a soft *closed* (resp. soft *open*) subset of X containing $f^{-1}(W, A)$, then there exists a soft $I - closed$ (soft *I* – *open*) subset (H, A) of *Y* containing (W, A) such that $f^{-1}(H, A) \tilde{\subset} (F, A)$.

Proof Suppose that f is a soft I – open function. Let (W, A) be any soft subset of Y and (F, A) a soft closed subset of X containing $f^{-1}(W, A)$. Then $\tilde{X} - (F, A)$ is soft open and since f is soft $I - open$, $f(\tilde{X} - (F, A))$ is soft $I - open$. Hence $(H, A) = \overline{Y} - f(\overline{X} - (F, A))$ is soft $I - closed$. It follows from $f^{-1}(W, A) \in (F, A)$ that $(W, A) \in (H, A)$. Moreover, we obtain $f^{-1}(H, A) \tilde{\subset} (F, A)$. For a soft $I - closed$ function, we can prove similarly.

Theorem 21. For any soft bijective function $f: (X, \tau, A) \to (Y, \sigma, B, I)$ the following are equivalent:

(i) f^{-1} : $(Y, \sigma, B, J) \rightarrow (X, \tau, A)$ is soft I – continuous,

- (ii) f is soft $I open$,
- (iii) f is soft $I closed$.

Proof (i)⇒(ii) Let (F, A) be a soft open subset in X. Since f^{-1} is soft I – *continuous*, then $(f^{-1})^{-1}(F, A) = f(F, A)$ is soft I – open in Y. Then f is soft I – open.

(ii)⇒(iii) Let (F, A) be a soft closed subset in X, then $X - (F, A)$ is soft open set and since f is soft I - open function, then $f(\tilde{X} - (F, A)) = \tilde{X} - f(F, A)$ is soft closed set, then $f(F, A)$ is soft open set. Thus f is soft $I - closed$.

(iii)⇒(i) Let (F, A) be s soft open subset in X. Then $\overline{X} - f(F, A)$ is soft closed set, and since f is soft $I - closed$, then $f(\tilde{X} - (F, A)) = \tilde{X} - f(F, A)$ soft $I - closed$. Thus $f(F, A) = (f^{-1})^{-1}(F, A)$ is soft I-open. Therefore f^{-1} is soft I continuous.

Theorem 22. If $f: (X, \tau, A, I) \to (Y, \sigma, B, J)$ is soft open function and $g: (Y, \sigma, B, J) \to (Z, \eta, C, K)$ is soft I - open function then gof is soft $I - open$ function.

Proof Obvious.

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

- [1] D. Moldtsov, Soft set theory-First results, Computers and Mathematics with Applications, 37 (1999) 19-31.
- [2] M. Shabir and M. Naz, On soft topological spaces, Computers and Mathematics with Applications, 61 (2011) 1786-1799.
- [3] A. Kharal and B. Ahmad, Mappings on soft classes, New Mathematics Computation, Vol.7 No.3 (2011) 471-481.
- [4] A. Aygunoglu and H. A. Aygun, Some notes on soft topological spaces, Natural Computer

Application, DOI 10.1007/s 00521-011-0722-3 $(2011).$

- [5] S.K. Nazmul and S.K. Samanta, Neighbourhood properties of soft topological spaces, Annals of Fuzzy Mathematics and Informatics.
- [6] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- [7] D. Jankovic, T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (4) (1990) 295-310.
- [8] G. Kale and A.C. Guler, On Soft Ideal Topological Spaces.
- [9] H. Hashimoto, On some local properties on spaces, Math. Japonica, (1952) II, 127-134.
- [10] H. Hashimoto, On the *topology and its applications, Fund. Math., (1976) 91, 5-10.
- [11] T.R. Hamlett and D. Jankovic, Ideals in topological spaces and the set operator Ψ, Bollettino U.M.I., (1990) vol. 7, 863-874.
- [12] M.E. Abd El-Monsef, E.F. Lashien and A.A. Nasef, On I-open sets and I-continuous functions, Kyungpook Math. J., (1992) vol. 32 (1), 21-30
- [13] E. Hatır and T. Noiri, On semi-I-continuous sets and semi-I-continuous functions, Acta. Math. Hungar., (2005), 107 (4), 345-353.
- [14] D. Jankovic, T.R. Hamlett, Compatible extensions of ideals, Boll. Un. Mat. Ital. (7), 6-B (1992) 453- 465.
- [15] E. Hatır and T. Noiri, On decompositions o fcontinuity via idealization, Acta. Math. Hungar., 96 (2002), 341-349.
- [16] J. Dontchev, On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J., 2 (1996).
- [17] G. Kale and A.Caksu Guler, On Soft Ideal Topological Spaces, Neural Computing and Applications, 1-14.
- [18] F. Feng, Y.B. Zhao, Soft semirings, Computer and Mathematics with Applications, 56 (2008), 2621- 2628.
- [19] P.K. Maji, B. Biswas and A.R. Roy, Soft set theory, Computer and Mathematics with Applications, 45 (2003), 555-562.
- [20] M.I. Ali, F. Feng, X. Liu, W.K. Min and M. Shabir, On some new operations in soft set theory, Computer and Mathematics with Applications, 57 (2009), 1547-1553.
- [21] I. Zorlutuna, M. Akdag, W.K. Min and S. Atmaca, Remarks on soft topological spaces, to appear in Annals of Fuzzy Mathematics and Informatics.
- [22] W. Rong, The countabilities of soft topological spaces, International Journal of Computational and Mathematical Sciences, 6 (2012).
- [23] J. Mahanta, P.K. Das, On soft topological space via semiopen and semiclosed soft sets.
- [24] A. Kandil, O.A.E. Tantawy, S.A. El-Sheikh, A.M. Abd El-Latif, γoperation and decomposition of some forms of soft continuity in soft topological spaces, Annals of Fuzzy Mathematics and Informatics, 2013.