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By studying the spectrum of the underlying operator corresponding to the two-unit system with connecting and 

disconnecting effect, we prove that the time-dependent solution of the system converges strongly to its steady-state 

solution as time tends to infinity. 

Keywords: Two-unit system, Connecting and Disconnecting Effect, Eigenvalue, Resolvent Set. 

2010 Mathematics Subject Classification: 47A10, 47D03, 47N20. 

 

1. INTRODUCTION 

Earlier researchers [1,4,5] considered the system 

working in a degraded state instantaneously after the 

failure of one of the units. In most cases, the repair is 

also done instantaneously after the failure of one 

unit, but in practice it can be seen that the criterion is 

not always possible. In certain systems, the failed 

unit should be disconnected for the smooth working 

of the other unit. In 1997 Goel et al. [3] considered 

such cases and established the corresponding model 

by supplementary variable technique [2], then they 

obtained various expression including the system 

reliability, mean time of the failure by using the 

Laplace transforms based on the following 

hypotheses: 

 

Hypothesis 1. The system has a unique and 

nonnegative time-dependent solution. 
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Hypothesis 2. The time-dependent solution of the 

system converges to its steady-state solution. 

 

In 2013, by using strong continuous semigroup 

theory of linear operators Mijit et al. [7]  proved the 

model has a unique nonnegative time-dependent 

solution, that is to say, they proved the Hypothesis 1. 

In this paper, when repair rates are constants, we 

study the asymptotic behavior of the time- 

dependent solution of the system model, i.e., we 

study the Hypothesis 2. First of all, we prove that 0 

is an eigenvalue of the underlying operator with 

geometric multiplicity one. Next, we determine the 

expression of the adjoint operator of the underlying 

operator and obtain the resolvent set of the 

underlying operator by studying the resolvent set of 

its adjoint operator. Last, we prove that 0 is an 

eigenvalue of the adjoint operator with geometric 

multiplicity one. Therefore, by combining these 

results with our previous result we obtain the 

asymptotic behavior of the time-dependent solution 

of the system. 

 

According to Goel et al. [3], the model for a 

two-unit system with connecting and disconnecting 

effect can be expressed by a group of integro- 

differential equations: 
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Where, ),0[),0[),( ∞×∞∈tx ; )(tpi  

represents the probability that the system is in state 

i  at time t , 3,2,1,0=i ; ),( txpi  represents 

the probability that at time t  the failed system is in 

the state i  and has an elapsed service 

time x , HFi ,= ; λ  represents constant failure 

rate of one unit in the system; 
ih

λ  represents 

constant failure rates from the states i  to the state 

H , 2,0=i ; θ represents constant connecting/ 

disconnecting rate of the repaired/failed unit to/from 

the system; µ  represents constant repair rate of a 

unit in the system from degraded state, 

βα / represents repair rates from states HF / . 

 

2. PROBLEM FORMULATION 

 

We first formulate the system (1.1)-(1.9) as an 

abstract Cauchy problem on a suitable state space. 

For convenience we introduce a notation as follows: 
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It is obvious that X  is a Banach space. In the 

following we define operators and their domains: 
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Then the above equations (1.1)-(1.9) can be 

rewritten as an abstract Cauchy problem in the 

Banach space X : 
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In [7], the authors obtained the following result. 

Theorem 2.1 EUA ++  generates a positive 

contraction 0C −semigroup )(tT . )(tT  is 

isometric for the initial value. So, the system (2.1) 

has a unique nonnegative time-dependent solution 

which satisfies the probability condition. 

 

3. ASYMPTOTIC PROPERTY OF THE 

SYSTEM  (2.1) 

 

Lemma 3.1 0 is an eigenvalue of EUA ++  

with geometric multiplicity one. 

Proof We consider the equation  

0)( =++ pEUA . 

It is equivalent to 
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By solving (3.2), (3.3), (3.5), (3.6), we have 
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Which shows that 0 is an eigenvalue of 

EUA ++ . Moreover, by (3.9) – (3.15) we see 

that the geometric multiplicity of 0 is one.  

It is easy to see that 
*X , the dual space of 

X , is equal to 
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It is obvious that 
*X  is a Banach space, then we 

have 

Lemma 3.2 
*)( EUA ++ , the adjoint operator of 

EUA ++ , is as follows:  
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Here M  is a constant which is irrelevant to i . 

 

Proof:  For any )( EUADp ++∈  and 

))(( ** EUADq ++∈ , by using the boundary 

conditions on )( EUADp ++∈  and 

integration by parts, we have 
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From which together with the definition of adjoint 

operator we know that the result of the lemma is 

right. 
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belongs to the resolvent set of 
*)( EUA ++ . 

Particularly, all points on the imaginary axis except 

zero belong to the resolvent set of 
*)( EUA ++ . 

In other words, all points on the imaginary axis 

except zero belong to the resolvent set of 

EUA ++ . 
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, 

 ,1
)( 22

2

2 <
+++

++

µλλ

µλλ

h

h

a

1   ,1  
2222
<

+
<

+ β

β

α

α

aa
. 

The above inequalities mean that all points on the 

imaginary axis except zero belong to the resolvent 

set of 
*)( EUA ++ . From the relation between 

the spectrum EUA ++  and the  spectrum 

*)( EUA ++  we know that all points on the 

imaginary axis except zero belong to the resolvent 

set of EUA ++ . 

 

Lemma 3.4 0 is an eigenvalue of 
*)( EUA ++  

with geometric multiplicity one. 

Proof  Consider the equation  

0)( ** =++ qEUA . 

That is 

)0()2( **

0 00 Hhh qq λλλ ++−  

02 *

1 =+ qλ ,       (3.38) 

0*

2

*

1 =+− qq θθ ,               (3.39) 

)0()( **

22 Fh qq λµλλ +++−  
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0)0(*

2
=+ Hh qλ ,     (3.40) 

0*

0

*

3 =+− qq θθ ,               (3.41) 

0)()( *

3

* =+− qxq
dx

d
F αα ,       (3.42) 

0)()( *

0

* =+− qxq
dx

d
H ββ ,       (3.43) 

Mqq HF =∞=∞ )()( **
.           (3.44) 

Through solving (3.42) and (3.43), and combining 

with (3.41), we have 

∫ −−=
x

xx

FF deqeebxq
0

*

3

* )( τα αταα
 

*

0

*

0 )( qeqb x

F +−= α
,            (3.45) 

)(* xqH
*

0

*

0 )( qeqb x

H +−= β
.      (3.46) 

Combining (3.45), (3.46) with (3.44), we get 

*

0qbb HF == . 

Which imply 

*

0

** )()( qxqxq HF == .           (3.47) 

From (3.38) – (3.41) and (3.47), we have 

*

0

***

3

*

2

*

1 )()( qxqxqqqq HF ===== . 

 

Which shows that the eigenvector space 

corresponding to 0 is one dimensional. Therefore the 

geometric multiplicity of 0 is one. 

 

From Lemma 3.1, Lemma 3.4 and Lemma 27 in [6] 

we know that the algebraic multiplicity of 0 is one. 

Which together with Theorem 2.1, Lemma 3.3 and 

the Theorem 14 in Gupur et al. [6], we conclude the 

desired result in this paper: 

 

Theorem 3.1 The time-dependent solution of the 

system (2.1) converges strongly to its steady-state 

solution as time tends infinity, that is, 

)(),(lim
t

xptxp =
∞→

, 

where )(xp  is the eigenvector corresponding to 0 

in Lemma 3.1. 
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