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ABSTRACT
By studying the spectrum of the underlying operator corresponding to the two-unit system with connecting and

disconnecting effect, we prove that the time-dependent solution of the system converges strongly to its steady-state

solution as time tends to infinity.
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1. INTRODUCTION

Earlier researchers [1,4,5] considered the system
working in a degraded state instantaneously after the
failure of one of the units. In most cases, the repair is
also done instantaneously after the failure of one
unit, but in practice it can be seen that the criterion is
not always possible. In certain systems, the failed
unit should be disconnected for the smooth working

of the other unit. In 1997 Goel et al. [3] considered

*Corresponding author, e-mail: alimjanmijit@aliyun.com

such cases and established the corresponding model
by supplementary variable technique [2], then they
obtained various expression including the system
reliability, mean time of the failure by using the
Laplace transforms based on the following

hypotheses:

Hypothesis 1. The system has a unique and

nonnegative time-dependent solution.
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Hypothesis 2. The time-dependent solution of the

system converges to its steady-state solution.

In 2013, by using strong continuous semigroup
theory of linear operators Mijit et al. [7] proved the
model has a unique nonnegative time-dependent
solution, that is to say, they proved the Hypothesis 1.
In this paper, when repair rates are constants, we
study the asymptotic behavior of the time-
dependent solution of the system model, i.e., we
study the Hypothesis 2. First of all, we prove that 0
is an eigenvalue of the underlying operator with
geometric multiplicity one. Next, we determine the
expression of the adjoint operator of the underlying
operator and obtain the resolvent set of the
underlying operator by studying the resolvent set of
its adjoint operator. Last, we prove that 0 is an
eigenvalue of the adjoint operator with geometric
multiplicity one. Therefore, by combining these
results with our previous result we obtain the
asymptotic behavior of the time-dependent solution

of the system.

According to Goel et al. [3], the model for a
two-unit system with connecting and disconnecting
effect can be expressed by a group of integro-

differential equations:

d
%@ = =24+ 2, )Py (1) + 65 (1)

+ jo Bp  (x,0)dx . ()

dp,(t) B
& =24p, () — 6, (2), (12)

%:9”1@_(“% +H)py (1), (1.3)
dp;(?) _ B
dt = up, () = 5 (1)

+ jo apF(x,t)dx . (1.4)

8[?1; (x,1) n apF (x,1) =—op, (x,1),(1.5)

ot Oox
opy (x,t)  Opy (x,1)
+ =— 1), (1.6
Py . P (x,1),(1.6)
pr(0,0) =4p, (1), (1.7)

Pu(0,0)=4, poy()+ 4, py(1), (18)
P2,(0)=1,p.(0)=0,i=1,2,3;
p;(x,0)=0,i=F,H.

Where, (x,£) €[0,00)x[0,00) :  p.(t)

(1.9)

represents the probability that the system is in state
i attimet, i=0,123; P, (x,t) represents
the probability that at time ¢ the failed system is in
the state [ and has an elapsed service
timex,i =F,H ; A represents constant failure
rate of one unit in the system; ;th,- represents
constant failure rates from the states I to the state
H ,i=0,2; O represents constant connecting/
disconnecting rate of the repaired/failed unit to/from
the system; /4 represents constant repair rate of a
unit in the system from degraded state,

al ﬂ represents repair rates from states /' /H .
2. PROBLEM FORMULATION
We first formulate the system (1.1)-(1.9) as an

abstract Cauchy problem on a suitable state space.

For convenience we introduce a notation as follows:
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1 0 0 000
0 1 0 000
0 0 1 000

F:
00 0 100
0 0 2 000

Ay 0 4, 0 00

Choose the state space as follows:
p & R x(L'[0,0))*,
3
X=2pll 2= 2l 2r N

i=0

+ || pH ||Ll[0,00)

It is obvious that X is a Banach space. In the

following we define operators and their domains:

9P ¢ 10,0, p,(x)
dx

D(A)=4pe X|(i=F,H) is absolutely
continuous function and
p(0) =Tp(x)

A(py, P15 P> P> Pr (%), Py (X))

= diag(-2A + 4, ), — 6,— (A + A, + ),
~ 0~ —a,~ 5= PPy, 1> Pa> D3>
Pr(x), py ()",

U(po, P1s Pas P3s P (%), Py (X))

0 00 6 0 0) p,
240 0 0 0 0 p,
10 6000 0| p,
1o 0 000 p |
0 0000 0fp,(x)
0000 0 0)\p,x

Po jo‘” Bp b (x)dx
P 0
E P, | 0 ,
Ps L ap . (x)dx
pr(x) 0
Py (x) 0

D(U)=D(E)=X .
Then the above equations (1.1)-(1.9) can be
rewritten as an abstract Cauchy problem in the

Banach space X :

ap() _
0t =(A+U+E)p@), t >0, @1

p(0) =(1,0,0,0,0,0).

In [7], the authors obtained the following result.

Theorem 2.1 A+ U + E generates a positive
contraction C, —semigroup T'(t) . T'(t) is
isometric for the initial value. So, the system (2.1)
has a unique nonnegative time-dependent solution

which satisfies the probability condition.

3. ASYMPTOTIC PROPERTY OF THE

SYSTEM (2.1)

Lemma 3.1 0 is an ecigenvalue of A+U + E

with geometric multiplicity one.

Proof We consider the equation
(A+U+E)p=0.

It is equivalent to

-(24+ /1},0 )Py + s

+ J:O Pp, (x)dx =0, (3.1)

24p, —6p, =0, (3.2)
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h, —(A+ 4, +1)p, =0, (3.3)
up, —6p; + J‘: ap . (x)dx =0, (34

dpy (x) _

—q X), 35
. D (X) (3.5)
dp., (x
dpul) _ —Ppy(x), (3.6)
dx
pr(0)=1p,, 3.7)
pu0)=4, po+4, p,. (3.8)

By solving (3.2), (3.3), (3.5), (3.6), we have

22
b= ?po» (3.9)
22
p, = mpo, (3.10)
pr(x)=a.e ™, (3.11)
py(x)=a,e”™. (3.12)

Combining (3.11) and (3.12) with (3.7) and (3.8), we
obtain

ar = pp(0)=14p,, (3.13)

ay =py(0)=24, py+4,p,. (14

By inserting (3.11) into (3.4), and use (3.10), (3.13),

we calculate

up, —6p, + ajo ape “dx

=up, —ps +a, = up, —p; + Ap, =0
=
+A 2Uu+A
p}zﬂ . = (u+4)
o QA+ 2, + 1)

Do (3.15)

From (3.9) — (3.15), we deduce

3
|| p ||: Z| pi |+ || pF ||L][O,DO) + || pH ||L][O,DO)

i=0

22 24 2AA+ p)
<[+—+ +
0 A+d, +u OA+4, +u

227 A
+—t
a(A+A, +u) B
224,
+—
BA+2,, +p)

Which shows that 0 is an eigenvalue of

1l py | <

A+ U + E. Moreover, by (3.9) — (3.15) we see

that the geometric multiplicity of 0 is one.

It is easy to see that X *, the dual space of

X, isequal to

q € R*x(L"[0,))?,
X" =44"|l¢" |II=sup{sup |q; |,

0<i<3

|| q;’ ||L°°[0,oo)’|| qH ||L°°[O,oo)}

It is obvious that X is a Banach space, then we

have

Lemma 3.2 (A+U +E)’, the adjoint operator of
A+U + E, is as follows:

(A+U+E)'q" =(H+J+5)q",

q €eD(A+U+E)").

where

Hq' (x) = diag(-(24 + 4, ), -6,
—(A+ 4, +1),- 0,5 —a, 5~ p)

(@0 41> G2 G395 (X), g (X)),

Jq’ (x)
00000 4Y g
00000 0| ¢
o000 4 4| 4
loooo0 o0 of ¢ |
000 a0 0)]qg.0)
B OO0 0 0 0 )g,(0

Sq”(x)
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[\)
~

0 00 0 0Y ¢,
0 0 & 0 00 g
100 0 u 00 g
e 0 00 00| g
0 0 0 0 0 0fgr(x
0 0 00 0 O\g,(x
D((A+U+E)")
. . dq; (%) exists and
=<q €X | dx

g, (©)=M,i=F,H

Here M is a constant which is irrelevant to 7 .

Proof: For any peD(A+U+FE) and

g €eD(A+U+E)"), by using the boundary
peD(A+U+E) and

conditions on

integration by parts, we have

(4+U+E)p.q")

=[=(A+ 4, )Py + s + [ Bpu (x)dxla

- @71 )611*
—(A+ 4, + )P, 145

+(24p,
+[6p,

+lup, = Op, + [ ap, (x)dxla;

@ d *
D g, (ol (s

+ J.o00 [_% - Pru (x)]q;; (x)dx

= po[-QRA+2,)q +229, 1+ p,6l—q; + ;]
+ Py [—(A+ Ay + 10)q, + g3 1+ p30lg, — 45 ]

+ |7 pr(nalyl - q; (0))dx

+["pu(0)Blay - q;, (x)]dx

[ LD - [ O
0 x dx

= po[-(2A+ 4, )q, + 229, 1+ p,6l—q; +4,]
+ Po[~(A+ Ay, + 1045 + g3 1+ p36lgy — 45 ]

+ jowPF(x)a[qé‘ — g (x)]dx
+ [y (0)Blay - g ()]
- “ dq ;. (x)
+pr(0)g5 (0)+ [ py (x) =L
X

D O30+ [y (0 A D

= po[-(2A+ ﬂ“ho )% + 2/1‘]1 + ﬂ“ho CIH (0)]
+p, 004, +q;1+ p,[~(A+ 4, + 1),
+pq; + A4, (0) + 2, q,, (0] + p;6lq, —q;]

+ [ prlag; - aq; (0 + D
X
d.
[ P (OBay = Pasy (x) + q”(x)]
dx

=(p.(H+J+8)q").
From which together with the definition of adjoint
operator we know that the result of the lemma is

right.

Lemma 3.3

24+ 4, 0
sup —, ,
|y +24+ 24, | [y +0]
A+, +
yed n TH a

|y + A+ A, +ul Iy +al

B
|y + Bl

1<
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belongs to the resolvent set of (A+U+E )* .
Particularly, all points on the imaginary axis except
zero belong to the resolvent set of (A+U + E )*.
In other words, all points on the imaginary axis

except zero belong to the resolvent set of

A+U+E.

Proof First we prove that (1 — H) ™' (J +S)
and (4 - H )71 exist and are bounded for some
¥, then by using the perturbation theory we obtain
the desired result. For any given y* eX’

consider the equation

(M -H)g =(J+S)y’,

that is
(7 + 24+ 4, )0 =24y + 2,1, (0), (3.16)
(r+0)q, =&, (3.17)

(y+ 2+ 4, +1)q; = my; + 2y (0)
+ 2, 7y (0).  (.18)

(7 +0)q; =6, (3.19)

da:(9) _ (y+a)gr(x)—ay;.  (3:20)
dx

qu( D+ By -y G2

qp(©)=q,(0)=M. (3.22)

By solving (3.20) and (3.21), we know

450 = a,er
x *

— et jo ay,e " dr (323)

Gy (x) =ae” "

x *
e‘”ﬁ)"jo Byoe VAT (324)

—(y+a)x -(y+p)x

By multiplying e and € to two

side of (3.23) and (3.24), taking the limit X —» o©

and using (3.22), it gives

_ J'O ayie " (3.25)

a, = IO Byee TP dr (3.26)

Inserting (3.25) and (3.26) into (3.23) and (3.24), we

calculate

o0
g () = e [“aple O ds
X

a *
= Vs (3.27)
y+a
* ﬂ *
q, (%)= Tﬂyo- (3:28)

If we assume
|y +24+ 4, #0,[y+A+4, +ul#0,
|y+6#0,Rey +a >0,Rey+ >0,

then by (3.16) — (3.19), (3.27), (3.28), we estimate

* 1 *
Q— )
| q | |7+2“/1h0|{ |y, |

*
+ ﬂho || yH ||L°C[O,oo)}

24+ 4, .
S——————1ly . 629
ly+24+4, |
x 0 .
S—- , (3.30)
lq; | |;/+49||||y |
* /’ih +11’l *
< - . (33D
1q, | |7/+/1+/1h2+,u||“y
* H *
S— , (3.32)
1 q; | |y+9||||y |
* (04 *
R , (3.33)
||qF ||L [0,00) |}/+a||||y
B
lan 1. Hy . @34
NPy

(3.29) - (3.34) mean
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" lll=supisup | g; | Il g

0<i<3

[

L7[0,00)?

L”[O,oo)}

2/1+/1h0 2] a
|y +22+ 4, |'ly+0 |y +al

< supt

A+, +u .
Iy
v+ A+ A4, +ul ly+p]
That is to say
14 -H)'(J+9)|
20+ 4, 0 a

< sup{ , , ,
ly+24+ 2, | ly+0]| |r+al

A+, +u Yij
|7+ A+ 4, +ul’ly+p]

Lo (335)

In the same way, for any given y* e X’ , by
considering the equation (Y — H )q* = y* , we
can prove the existence and boundness of
(A - I‘[)_l , and get that
(A = H)™ ||

1 1 1

< supt ) ) )
|y +24+ 24, | |y+6| Rey+a

1
Rey+
By combining
[A—(A+U+E)]"
= —(H+J+9)]"
=[I-(A-H)'(J+8)]"'(A-H)"

with (3.35) and (3.36) we know that the

1. (3.36)

[]/[—(A+U+E')*]_l exists and is bounded

when
(4 -H)(J+9)|
24+ A
< supf o 0 i

|y +22+24, 'ly+0| |y +al

A+, +u Yij
3
ly+A+ 4, +ul |y+p]
In other words, all ) satisfy (3.37) belong to the

y<1. (337

resolvent set of (A +U + E)* .
In particular, if ¥ =ia, a € R\{0},

then all » automatically satisfy (3.37). In fact,

24+ 4, 2]
d <1, ——<1,
Ja' + QA+ 2,)

, Na® +6?

A+, +u
2 <1,
Ja* + A+ 4, + )
a B

<1, <1.

Val +a’ Ja’ + p?
The above inequalities mean that all points on the
imaginary axis except zero belong to the resolvent
setof (A+U+E )* . From the relation between
the spectrum A+ U + E and the spectrum
(A+U+E )* we know that all points on the
imaginary axis except zero belong to the resolvent

setof A+U+E.

Lemma 3.4 0 is an eigenvalue of (4+ U + E)*
with geometric multiplicity one.
Proof Consider the equation

(A+U+E)'q =0.

That is
— QA+ 2,40 + 24,41, (0)

+24q, =0, (3.38)
— g, +6q, =0, (3.39)

—(A+ 4, + 1)q; + Aq;:(0)
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+4,q,(0)=0. (340

—0g, +0g, =0, (3.41)

d * *
(—-a)gp(x)+aq, =0, (3.42)
dx
d * *
(—-Pa,(x)+pq,=0, (3.43)
dx
qr(0) =gy (o) =M. (3.44)

Through solving (3.42) and (3.43), and combining

with (3.41), we have

g, (x)=be™ —e™ J.O ag,e “dr

= (b, —qy)e™ +q,. (3.45)
qy(x) =y —q0)e” +q,.  (3.46)
Combining (3.45), (3.46) with (3.44), we get

b, =b, =q,.

Which imply

qr(¥)=qy(x)=q,. (347)

From (3.38) — (3.41) and (3.47), we have

4 =q=q; =q(x) =q,(x)=q,.

Which shows that the eigenvector space
corresponding to 0 is one dimensional. Therefore the

geometric multiplicity of 0 is one.

From Lemma 3.1, Lemma 3.4 and Lemma 27 in [6]
we know that the algebraic multiplicity of 0 is one.
Which together with Theorem 2.1, Lemma 3.3 and
the Theorem 14 in Gupur et al. [6], we conclude the

desired result in this paper:

Theorem 3.1 The time-dependent solution of the
system (2.1) converges strongly to its steady-state

solution as time tends infinity, that is,

lim p(x,1) = p(x).
t—o0

where p(X) is the eigenvector corresponding to 0

in Lemma 3.1.
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