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ABSTRACT 

 

This paper represents a comparative study of the Lax-Friedrich scheme and Lax-Wendroff’s scheme for the 
numerical solution of Burger’s equation. Performing  the numerical computation of the Burger’s equation by using 

the first order and second order schemes respectively, we verify the numerical features like accuracy, rate of 

convergence and efficiency of the schemes for given initial and boundary values.  
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1. INTRODUCTION 

 

1.1. Lax-Friedrichs scheme for Burger’s equation 

 

A very useful scheme is the Lax-Friedrichs scheme; this 

will be used for the numerical solution of Burger’s 

equation. For this purpose we consider the time 

dependent Cauchy problem in one space dimension [5] 
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We discretize the x-t plane by choosing a mesh width 

tksteptimeaandxh ∆=∆=  and the discrete 

mesh points  ( )nj tx ,   an approximation to a cell 

average of ( )ntxu ,  is defined by  
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We will primarily study the theory of numerical 

methods for the Cauchy problem as indicated in (2). In 

practice we must compute on a finite spatial domain say  

bxa ≤≤    and we require appropriate boundary 

condition at a and or b from the initial data )(0 xu , we 
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have defined data 0U  for our approximate solution. We 

use a time marching procedure to construct the 

approximation 1201 fromUUthenUfromU  and so 

on. There are wide variety of finite difference methods 

that can be used, many of these are derived simply by 

replacing the derivatives occurring in (1) by 

approximate finite difference approximations. For 

example replacing tu by a forward in time 

approximation and xu by a spatially centered 

approximation. We obtain the following difference 

approximation for 1+nU  

                                 

 

0
2

11

1

=








 −
+

− −+
+

h

UU
A

k

UU
n

j

n

j

n

j

n

j                (4) 

 

This can be solved for 
1+n

jU  to obtain the Lax-

Friedrichs scheme    
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Unfortunately despite the quite natural derivative of this 

methods, it suffers from severe stability problems and is 

useless in practice .A far more stable method is 

obtained by evaluating the centered approximation to 

x
u at time   

1+nt  rather than at time 
n
t  

 

So the discrete version of the non-linear PDE 

formulates: 
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The method (5) is explicit and the method (6) is 

implicit. In order to determine  
nn UdatathefromU 1+   in each step. But in any 

practical calculation we would use a bounded integral 

with N grid points and they would be a finite system the 

method (5) and (6) are explicit and implicit 

respectively. In this system a wide variety of methods 

can be devised for the linear system by using difference 

approximations. Most of these are based directly on 

finite difference approximation to the PDE. The Lax-

Friedrich scheme is based on the Taylor series 

expansion  
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Considering xt Auu −=  here we can compute  

 

xxxxtxxttt uAAuAAuAuu 2)( =−−=−=−=                                                 (8) 

  

The equation (7) become in the form as 
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Since the scheme (9) is unstable so if we replaces  [ ]n

j

N

J

N

J UUbyU 11
2

1
+− +  then the unstable method is stable 

provided 
h

k  is sufficiently small. Therefore the L-F scheme takes the form: 
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This difference equation is the analogous with the Lax-Fridrich scheme. 

  

We implement this scheme for our model.   

 

We choose the viscid burgers equation 
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 Now we will discretize the different derivatives of  
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 If 0→µ  then the viscid burgers’ equation becomes in the form as:   
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 Now substituting the equation of (12), (13) and (14) in (11)   then it is obtain: 
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1.2. Lax-Wendroff Scheme for Burger’s Equation 

    

A very popular scheme for general non-linear flux 

function “f” is the Lax–Wendroff scheme. In order to 

develop this scheme we will consider the numerical 

solution.  

 

For the implementation of the numerical solution of the 

viscid Burgers’ equation we would like to use this 

scheme [5].We discretize the x - t  plane by choosing a 

mesh with tksteptimeaandxh ∆=∆=  and define 

the mesh points ( ), nj tx .For simplicity we take a 

uniform mesh, with h and k constant, although most of 

the methods discussed can be extended to variable 

meshes .An approximation to a cell average of 

),( nn txu  is defined by       

 

∫=
b

a

n

n

j
dxtxu

h
u ),(

1
  (17) 

As initial data for the numerical method we use 

)(0 xu to define 0U either by point wise values. We 

will primarily study the theory of numerical methods 

for the Cauchy problem. In practice we must compute 

on a finite spatial domain, bxa ≤≤  and we required 

appropriate boundary conditions at a or b.One simple 

case is obtained if we take periodic boundary 

conditions,  

 

Where u (a,t) = u(b,t) 0≥∀t              (18)              

 

We can use periodicity in applying the finite difference 

methods as well. This is equivalent to Cauchy problem 

with periodic initial conditions, since the solution 

remains periodic and we need compute over only one 

period .For linear equation the study of the Cauchy 

problem is particularly attractive .The study of the 

general initial boundary value problem is more 

complex. From the initial data )(0 xu we have defined 

data 0U  for our approximate solution. A wide variety 

of methods can be devised for the linear system (27) by 

using different finite difference approximations. A few 

possibilities are listed along with their stencils. Most of 

these are based directly on finite difference 

approximations to the PDE. An exception is the Lax-

Wendroff method which is based on the Taylor series 

expansion. 

  

1.3. Lax-Wendroff Scheme 

 

Expansion by Taylor series: 

 

This scheme is very important for the numerical 

solution of Burger’s equation so we need to check the 
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performance of the scheme, for this purpose we would 

like to choose the viscid burger’s equation as follows  
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1.4. The Lax-Wendroff Scheme Expansion by Tailor’s Series                                                                                            
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If 0→µ  then the viscid burgers’ equation becomes in the form as   
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 Now inserting (20), (21) and (22) in (19) then the discrete version formulates in the form: 
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1.5. Comparisons Between the Lax-Friedrich 

Scheme and Lax-Wendroff Scheme 

 

(i) The Lax-Friedrichs scheme has one degree precision 

along time and two degree precision along space 

(ii) The Lax-Wendroff scheme has two degree precision 

along both time and space. 

(iii) Since Lax-Wendroff scheme has two degree 

precision along time whether Lax-Wendroff scheme has 

one two degree precision along time, so Lax-Wendroff 

scheme gives more accurate solution than that of Lax-

Friedrich scheme. 

(iv) Since in implementing Lax-Wendroff scheme, we 

need to calculate derivatives up to 4th order w.r.to x 

whether in implementing Lax-Friedrichs  scheme, we 

need to calculate derivatives up to 2nd order w.r.to x, so 

it needs more computational time in implementing Lax-

Wendroff scheme than that of Lax-Friedrich scheme.   

  

 

1.6. Numerical implementation of Lax-Friedrichs 

scheme 
 

In this chapter we implement our numerical methods by 

choosing the same initial condition and the boundary 

conditions and using computer programming. In 

implementation of our scheme, we consider the spatial 

domain over the space [ ]π2,0  and the maximum time 

step T=5 

 

We consider the initial condition  

 

xxuxu sin)()0,( 0 ==               (27) 

We would like to consider the Homogeneous Dirichlet 

boundary conditions  

 

),2(0),0( tutu π==                           (28) 

 

For this purpose we need to provide the stability 

condition is given below: 

   

k

hh

22

2

≤≤ ν                                          (29) 

 

We see that the discrete values of h and k depend on 

ν but for very small values ofν , there we are able to 

perform the numerical solutions of Burger’s equation 

using E.F.D.S. 

 

For 1.0=ν , we get the stability condition.  

 

From (29) we have  
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Since 05.02.0 ≤≤ kandh , so let h = 0.1 and      

k =0 .01 

 

For h=.15 and k=.02 

For h=0.1and k=.03 

For h=.12 and k=.04 

For h=0.1and k=.02 

For h=0.1and k=.04 

 

If we will continue this process, then we will get several 

numerical solutions of this scheme. 

 

 

 

 

 

 1.7. Solution of Burger’s equation using Lax-Friedrichs for 03.0,1.0,1.0 =∆=∆= txν    

 

 

 
              Figure 1. Solution of Burger’s equation using Lax-Friedrichs for 03.0,1.0,1.0 =∆=∆= txν    

 



1049 GU J Sci, 27(4): 1045-1051 (2014)/ Awal SHEIKH, Laek ANDALLAH, Arefin KOWSER  

 

1.8. Numerical Implementation of Lax-Wendroff 

Scheme  

 

For the implementation of the numerical solution of the 

viscid Burgers’ equation we would like to use this 

scheme [5].   

 

We discretize the x-t plane by choosing a mesh with 

xh ∆= and a time step tk ∆=  and define the mesh 

points ( ), nj tx .For simplicity we take a uniform 

mesh, with h  and k  constant, although most of the 

methods discussed can be extended to variable meshes  

An approximation to a cell average of ),( nn txu  

In implementation of our scheme, we consider the 

spatial domain over the space [ ]π2,0  and the 

maximum time step 5=T   

 

We consider the initial condition:  

 

xxuxu sin)()0,( 0 ==    

      

Numerical implementation of Lax-Wendroff sheme at 

5,3,1,0=t                                                                                  

 

 
Figure 2.  Numerical implementation of Lax-Wendroff scheme at 5,3,1,0=t . 

 

In figure 2, we observe that the curve is very steeper while the time is progresses.  

 

 

1.9. Relative Error for Lax-Friedriches Scheme 

  

We perform our numerical scheme for 01.051.0 =∆== tintimettoupν   time steps in spatial domain  [ ]π2,0  

with 1.0=∆x  which guarantees the stability condition 

2
1.0

2

2hh
≤≤  and the obtained graph of relative error is shown 

in figure 3;         
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Figure 3: Relative error for Lax-Friedrichs scheme 

 

Convergences of relative errors to zero when we use Lax-Friedrich scheme as shown in Figure 3. Convergence of relative 

error curve for explicit finite difference scheme to x-axis that actually describes the convergence of the numerical solution 

to analytical solution 

 

1.10. Relative Error for Lax-Wendroff Scheme  
 

We perform our numerical scheme for 1.0=ν up to time t =5 in 01.0=∆t  time steps in spatial domain [ ]π2,0  with 

mesh width 1.0=∆x .We also perform the numerical operation for some other pairs ),( kh  each for 1.0=ν  to the rate 

of convergence of numerical solution to analytical one. 

 

Relative error for Lax-Wendroff scheme: 

 

 
Figure 4: Relative error for Lax-Wendroff scheme 

 

 

Convergence of relative errors to zero when we use Lax-Wendroff’s scheme shown in Figure 4.               

 

CONCLUSION 

 

The Lax-Friedrichs scheme has one degree precision 

along time and two degree precision along space. The 

Lax-Wendroff scheme has two degree precision along 

both time and space. Since Lax-Wendroff scheme has 

two degree precision along time whether Lax-Wendroff 

scheme has one two degree precision along time,so 

Lax-Wendroff scheme gives more accurate solution 

than that of Lax-Friedrich scheme. Since in 

implementing Lax-Wendroff scheme, we need to 

calculate derivatives up to 4th order w.r.to x whether in 

implementing Lax-Friedrichs  scheme, we need to 

calculate derivatives up to 2nd order w.r.to x, so it needs 

more computational time  implementing Lax-Wendroff 

scheme than that of Lax-Friedrich scheme. We obtain 

the numerical solution at different time steps and 

obtained the better result of theme scheme. 
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