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ABSTRACT 

 

In this paper, a collocation method based on Lucas polynomials for solving high-order linear differential equations 

with variable coefficients under the boundary conditions is presented by transforming the problem into a system of 
linear algebraic equations with Lucas coefficients. The proposed approach is applied to fourth, fifth, sixth and 

eighth-order two-point boundary values problems occurring in science and engineering, and compared by existing 

methods. The technique gives better approximations than other methods, and has a lower computational cost. In 
addition, the error analysis based on residual function is developed for the present method and the improved 

approximate solution is obtained. Moreover, numerical examples are included to illustrate the practical usefulness 

and efficiency of the method. 
 

Keywords : Lucas polynomials, boundary value problems, high-order differential equations, collocation method, 

residual error analysis. 

 

1. INTRODUCTION 

 

In recent years, much attention have been given to solve 

the high-order boundary value problems (BVPs) which 

have application in various branches of pure and 

applied sciences. Several numerical and analytical 

methods have been developed for solving these 

problems. But it may not be possible to find the 

analytical solutions of such problems for all coefficient 

functions. 

 

A very special form of high-order problems is the 

fourth-order BVPs. It is well known that these problems 

arise in the mathematical modelling of viscoelastic and 

inelastic flows [1-3], deformation of beams [2], plate 

deflection theory [2,3], stress distribution in a spherical 

membrane, fluid dynamics and bending of lateral load 

circular plate [1]. 

 

Several numerical and analytical methods including 

finite difference method, Adomian decomposition 

method, differential transform method and variational 

iteration method [2], homotophy perturbation method 

[2,3], nonpolynomial spline method [1,3], B-spline 

collocation method [1] have been developed for solving 

general fourth-order BVPs. 

 

Special fifth-order BVPs arise in the mathematical 

modelling of viscoelastic flows and other branches of 

mathematical, physical and engineering sciences [4,5]. 

Fifth-order BVPs investigated by many authors using 

finite difference method, quartic spline method [4], 

spectral Galarkin and collocation method [5] and 

therein. 

 

Sixth-order BVPs arise in astro-physics [6-9]; the 

narrow convecting, layers bounded by stable layers 

which are believed to surround A-type stars can be 

modelled by sixth-order BVPs. Also, when an infinite 

horizontal layers of fluid is heated from below and is 

subject to rotation, instability occurs. When this 

instability is like ordinary convection, the differential 
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equation is sixth-order. The analytic solution of this 

type equations subject to boundary conditions can not 

be obtained for arbitrary choices of coefficient 

functions. For the numerical solutions of the sixth-order 

BVPs, the following methods have been used in the 

literature [3,6,7,8]: Spline collocation method, quartic 

spline method, septic spline method and Sinc-Galerkin 

method [9]. 

 

In the literature, the eighth-order BVPs arise in the 

mathematical modelling of the viscoelastic flows and 

other branches of mathematical, physical and 

engineering sciences [10,11]. For the solution of 

problems, the following numerical methods have been 

developed: Spectral Galarkin and collocation, B-spline 

method, decomposition method, spline collocation 

method, Chow-Yorke algorithm and homotopy 

perturbation method [10,11] and references therein. 

 

Since the beginnig of 1994, Taylor, Chebyshev, 

Legendre, Berstein, Hermite, Laguerre and Bessel 

matrix methods have been used by Sezer et al. [12-19] 

to solve linear differential, multi-pantograph, 

generalized pantograph, Fredholm integral and 

Fredholm integro-differential-difference equations. 

 

In this study, in the light of the above-mentioned 

methods and by means of the matrix relations between 

the Lucas polynomials and their derivatives, we apply a 

collocation method for solving the high-order linear 

differential equations with variable coefficients 

 

  ( )

0

( ) ( ) ( ) ( ) , 0
m

k

k

k

L y x p x y x g x a x b


      

(1) 

 

under the mixed conditions (initial and boundary 

conditions) 

 

 
1

( ) ( )

0

( ) ( ) , 0,1,..., 1
m

k k

jk jk j

k

a y a b y b c j m




   

(2) 

 

where 
(0) ( ) ( )y x y x  is an unknown function; 

( )kp x  and ( )g x  are the known continuous functions 

defined on interval [ , ]a b ; 
( ) ( )ky x  represents to the 

k th-order derivative of ( )y x ; ,jk jka b  and 
jc  are real 

constants. 

 

Also, by improving the Lucas collocation method with 

the aid of the residual error function [20-24], we gain an 

improved approximate solution of (1) expressed in the 

truncated Lucas series form 

 

, ,( ) ( ) ( )N M N N My x y x e x   

 

where 

 

0

( ) ( ) ( )
N

N n n

n

y x y x a L x


                                       (3) 

 

is the Lucas polynomial solution and 

 

*

,

0

( ) ( ) , ( )
M

N M n n

n

e x a L x M N


   

 

is the Lucas polynomial solution of the error problem 

based on the residual error function. Here 
na  and 

*

na  

are the unknown coefficients; and 

( ), 0,1,...,nL x n N  are the Lucas polynomials 

defined by 

 

0 ( ) 2L x  ;    

 2

2

0

( ) , ( 1)

n

n k

n

k

n kn
L x x n

kn k





 
  

  
    

 
2 , even

2
( 1) 2 , odd

n n
n

n n


 


 

 

[25-27]. The purpose of this study is to develop a Lucas 

polynomial solution for BVPs by means of the residual 

error function and to give an efficient and useful error 

estimation via the error problem. On the other hand, in 

order to find a solution of the equation (1) with the 

conditions (2), we can use the collocation points defined 

by 

 

, 0,1,..., , 0i

b a
x a i i N a x b

N


      .      (4) 

 

2. LUCAS COLLOCATION METHOD 

 

Firstly, we can write the approximate solution ( )Ny x  

given by (3) in the matrix form 

 

( ) ( )L ANy x x                                                        (5) 

 

where 

 

 0 1 2( ) ( ) ( ) ( ) ( )L Nx L x L x L x L x  

 

and 

 

 0 1 2A
T

Na a a a . 

 

Also, we can express Eq.(5) as 

 

( ) ( )X D A
T

Ny x x                                                   (6) 

 

such that 

 
2( ) 1X

Nx x x x     

 

and if N  is odd, 

 



 GU J Sci, 28(3):483-496 (2015)/ Muhammed ÇETİN, Mehmet SEZER, Hüseyin KOCAYİĞİT 485 

 
 

2 0 0 0 0 0

11
0 0 0 0 0

01

1 22 2
0 0 0 0

1 01 2

2 33 3
0 0 0 0

1 02 3

2 3 44 4 4
0 0 0

2 1 02 3 4

( 1) 2 ( 1) 2 ( 3) 21 1 1
0 0 0

( 1) 2 ( 3) 2 ( 5) 2( 1) 2 ( 1) 2 ( 3) 2

D

n n nn n n

n n nn n n

 
 
 

   
   
   

   
   
   


     
     
     

         
     

         

( 1) 2 ( 3) 2
0 0 0

( 1) 2 ( 3) 2 0( 1) 2 ( 3) 2

n n nn n n

n nn n n

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       
      

        

. 

 

If N  is even, 
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. 

 

It is clearly seen that the relations between the matrix ( )X x  and its derivatives ( )X x , ( )X x  and 
( ) ( )X
k x  are 

 

( ) ( )x x X X B , 
2( ) ( )X X Bx x   and 

( ) ( ) ( )X X B
k kx x                                                                                           (7) 

 

where 

 

0 1 0 0

0 0 2 0

0 0 0

0 0 0 0

B

N

 
 
 
 
 
 
 
 

. 

 

Then (6) and (7) yield the matrix relations 

 

( ) ( )X BD A
T

Ny x x  ,  
2( ) ( )X B D A

T

Ny x x   and 
( ) ( ) ( )X B D A
k k T

Ny x x .                                                             (8) 

 

By substituting (6) and (8) into Eq.(1), we obtain the matrix equation 

 

0

( ) ( ) ( )X B D A
m

k T

k

k

p x x g x


                                                                                                                                           (9) 

 

and by using the collocation points (4) into Eq.(9), the system of matrix equations  
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0
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m
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k i i i
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 or the compact form  

 

0

P XB D A G
m
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where 
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 and 

0

1

( )

( )
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G
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g x

g x
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 
 
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 

. 

 

Thus, the fundamental matrix equation (10) corresponding to Eq.(1) can be written in the form 

 

WA=G  or  W;G  ,     
0

W P XB D
m

k T

k

k

 .                                                                                                               (11) 

 

Eq.(11) indicates a system of ( 1)N   linear algebraic equations with unknown Lucas coefficients  0,1,...,na n N . 

Now, by means of Eq.(8), we obtain the matrix forms for the conditions (2) as follows 

 
1

0

( ) ( ) , 0,1,..., 1X X B D A
m

k T

jk jk j

k

a a b b c j m




           

 

or briefly,  

 

U Aj jc     or ;U j jc   ,  0,1,..., 1j m                                                                                                                   (12) 

 

where 

 
1

0 1 2

0

( ) ( ) , 0,1,..., ( 1).U X X B D
m

k T

j jk jk j j j jN
k

a a b b u u u u j m




           

 

Consequently, by replacing the row matrices (12) by last rows of the matrix (11), we have  
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;

;
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N
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N

N
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 
 
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, 

 

which is a linear algebraic system. If rank W  rank ; 1W G N   
 

, then we can write  
1

A W G


 . Hence, the 

unknown Lucas coefficients matrix  0 1 2A
T

Na a a a  is determined and by substituting the coefficients 

0 1 2, , ,..., na a a a  into Eq.(3), the Lucas polynomial solution of the differential equation is obtained. 
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3. RESIDUAL CORRECTION AND ERROR ESTIMATION 

 

In this section, we will give an error estimation for the Lucas polynomial solution (3) with the residual error function [20-

24]. Furthermore, we will improve the solution (3) by means of the residual error function. Firstly, we can define the 

residual function of the method as 

 

 ( ) ( ) ( )N NR x L y x g x  .                                                                                                                                              (13) 

 

Here, ( )Ny x  is the Lucas polynomial solution given by (3) of the problem (1) and (2). Hence, ( )Ny x  satisfies the 

problem 
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( )

0

1
( ) ( )

0
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
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
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




 

 

Also, the error function ( )Ne x  can be defined as 

 

( ) ( ) ( )N Ne x y x y x                                                                                                                                                         (14) 

 

where ( )y x  is the exact solution of the problem (1) and (2). From Eqs.(1), (2), (13) and (14), we gain the error 

differential equation 

 

     ( ) ( ) ( ) ( )N N NL e x L y x L y x R x     
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or openly, the error problem  
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1
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0
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m
k
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k
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k
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                                                                                                  (15) 

 

Here, note that the nonhomegeneous mixed conditions 

 

 
1

( ) ( )

0

( ) ( ) , 0,1,..., 1
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0

( ) ( ) , 0,1,..., 1
m

k k

jk N jk N j

k

a y a b y b c j m



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are reduced to homogeneous mixed conditions 

 

 
1

( ) ( )

0

( ) ( ) 0, 0,1,..., 1
m

k k

jk N jk N

k

a e a b e b j m



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The error problem (15) can be solved by using the prosedure given in Section 2. Thus, we obtain the approximation 

, ( )N Me x  to ( )Ne x as follows 
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*

,

0

( ) ( ) ,
M

N M n n

n

x L x Me a N


  . 

 

Consequently, the corrected Lucas polynomial solution 
, ,( ) ( ) ( )N M N N My x y x e x   is obtained by means of the 

polynomials ( )Ny x  and 
, ( )N Me x . Also, we construct the error function ( ) ( ) ( )N Ne x y x y x  , the estimated error 

function 
, ( )N Me x  and the corrected error function 

, , ,( ) ( ) ( ) ( ) ( )N M N N M N ME x e x e x y x y x    . 

 

4. NUMERICAL EXAMPLES 

  

In this section, the numerical results of fourth, fifth, sixth and eighth-order boundary value problems are given to show the 

efficiency and applicability of the method. In tables, we calculate the values of the Lucas polynomial solution ( )Ny x , the 

corrected Lucas polynomial solution 
, ,( ) ( ) ( )N M N N My x y x e x  , the absolute error function ( ) ( ) ( )N Ne x y x y x  , 

the corrected absolute error function 
, ,( ) ( ) ( )N M N ME x y x y x   and the estimated absolute error function 

, ( )N Me x . 

All numerical computations are calculated by using a computer programme written in Maple. 

 

Example 1 : Let us consider the boundary value problem given by 

 
(4) 3( ) ( ) (8 7 ) xy x xy x x x e     ,      0 1x                                                                                                            (16) 

(0) 0y  ,   (0) 0y   

(1) 0y  ,   (1) 4y e    

 

which has the exact solution ( ) (1 ) xy x x x e   [3,28]. 

 

The approximate solution 
5( )y x  by the truncated Lucas series for 5N   is given by 

 
5

5

0

( ) ( )n n

n

y x a L x


 . 

 

Now, let us compute the coefficients , ( 0,1,2,3,4,5)na n   of the approximate solution. The set of the collocation 

points given by (4) for 0a  , 1b   and 5N   is calculated as 

 

0 1 2 3 4 5

1 2 3 4
0, , , , , 1

5 5 5 5
x x x x x x

 
      

 
. 

 

By applying the procedure given by in Section 2, we gain the Lucas polynomial solution for 5N   as 

 
5

5

4 30.147300000126457 0.333333333333333 0.65452121855119

1.13515455201097 .

( ) x xy x x

x

  


 

 

In order to compute the corrected Lucas polynomial solution, let us consider the error problem 

 
(4)

5 5 5

5 5 5 5

( ) ( ) ( )

(0) 0, (0) 0, (1) 0, (1) 0

e x xe x R x

e e e e

   


    

                                                                                                                  (17) 

 

such that the residual function is 

 
(4) 3

5 5 5( ) ( ) ( ) (8 7 ) xR x y x xy x x x e     . 

 

By solving the error problem (17) for 6M   with the method in Section 2, the estimeted Lucas error function 

approximation 
5,6 ( )e x  to 

5 ( )e x  is obtained as 
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6

5,6

5 3(0.42649685187551 1) (0.25496786604631 1) 0.128259137( 25566

0.11110623867273 .

)e x e x e x x

x

    




 

 

Thus, we can calculate the corrected Lucas polynomial solution 

 
4

5,6

5 3

6

0.121803213521826 0.333333333333333 0.52626208129553

1.02404831333824 (0.42649685187551 1

)

.)

( x x x

x e

y x

x

  

  


 

 

In Table 1, the numerical values of the exact solution, the Lucas polynomial solutions and the corrected Lucas polynomial 

solutions are compared. In Table 2, the actual absolute errors are compared with the estimated absolute errors. Table 3 

shows the numerical results of the corrected absolute error functions for different values of N  and M . 

 

 

Table 1. Comparison of the exact and approximate solutions for 

5,7N   and 6,8,9,11M   of the Problem (16) 

 
Exact 

Solution 

Lucas Polynomial 

Solution 

Corrected Lucas Polynomial 

Solution 

ix  ( )iy x  5 ( )iy x  5,6( )iy x  
5,9( )iy x  

1 8  0.123938112 0.140530082 0.126892923 0.124016671 

1 16  0.062372722 0.070782138 0.063869332 0.062412524 

1 32  0.031234420 0.035453283 0.031985128 0.031254386 

ix  ( )iy x  7 ( )iy x  7,8( )iy x  
7,11( )iy x  

1 8  0.123938112 0.124258347 0.123951009 0.123910335 

1 16  0.062372722 0.062534817 0.062379238 0.062358648 

1 32  0.031234420 0.031315714 0.031237686 0.031227359 

 

 

Table 2. Comparison of the actual and estimated absolute errors 

for 5,7N   and 6,8,9,11M   of the Problem (16) 

 
Actual 

absolute errors 

Estimated 

absolute errors 

ix  
5 5( ) ( ) ( )i i ie x y x y x   

5,6 ( )ie x  5,9 ( )ie x  

1 8  1.6592e-2 1.3637e-2 1.6513e-2 

1 16  8.4094e-3 6.9128e-3 8.3696e-3 

1 32  4.2187e-3 3.4682e-3 4.1989e-3 

ix  
7 7( ) ( ) ( )i i ie x y x y x   

7,8( )ie x  7,11( )ie x  

1 8  3.2023e-4 3.0734e-4 3.4801e-4 

1 16  1.6209e-4 1.5558e-4 1.7617e-4 

1 32  8.1294e-5 7.8028e-5 8.8354e-5 

 

 

Table 3. Numerical results of the corrected absolute error functions 

for 5,7N   and 6,8,9,11M   of the Problem (16) 

 Corrected absolute errors , ,( ) ( ) ( )N M N ME x y x y x   

ix  
5,6( )iE x  5,9( )iE x  7,8( )iE x  7,11( )iE x  

1 8  2.9548e-3 7.8559e-5 1.2897e-5 2.7777e-5 

1 16  1.4966e-3 3.9802e-5 6.5161e-6 1.4074e-5 

1 32  7.5071e-4 1.9966e-5 3.2665e-6 7.0602e-6 

 

In Table 4, we compare the actual absolute errors ( )Ne x  obtained by Lucas collocation method for different values of 

N . In addition, in Table 5, the actual absolute errors of our method and other methods given by [3], [28] are compared 

for different values of N  for the problem (16). 
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Table 4. Actual absolute errors for different values of N of the 

Problem (16) 

ix  5( )ie x  
6( )ie x  

7 ( )ie x  
8( )ie x  

1 8  1.66e-2 2.90e-3 3.20e-4 5.88e-5 

1 16  8.41e-3 1.47e-3 1.62e-4 2.98e-5 

1 32  4.22e-3 7.36e-4 8.13e-5 1.50e-5 

 

 

Table 5. Comparison of actual absolute errors of different methods of the Problem (16) 

ix  
Exact 

Solution 

Quintic Spline 

Method [3] 

Sixth-Order 

Method [28] 

Present 

Method 

(for 8N  ) 

1 8  0.123938112 2.13e-4 1.74e-3 5.88e-5 

1 16  0.062372722 1.32e-6 4.33e-4 2.98e-5 

1 32  0.031234420 3.81e-6 1.08e-4 1.50e-5 

 

 

It is seen from Table 4 and Table 5 that the actual absolute errors in the present method are very close to zero when the 

value of N  is increased and Lucas collocation method gives better approximations than other methods in [3] and [28]. 

 

Example 2 : Let us consider the boundary value problem given by 

 
(5) ( ) ( ) (15 10 ) xy x y x x e    ,      0 1x                                                                                                                   (18) 

(0) 0y  ,   (0) 1y  ,   (0) 0y   

(1) 0y  ,   (1)y e    

 

which has the analytic solution ( ) (1 ) xy x x x e   [4,29,30]. 

 

By appliying the technique introduced in Section 2, we obtain the Lucas polynomial solution for 0a  , 1b   and 

6N   as 

 
6

6

5 4

3

(0.377003259532790 1) 0.125000000000000 0.35518085059922

0.48211882344 .

( )

751

e x x

x x

y x x   

 
 

 

and then the error problem 

 
(5)

6 6 6

6 6 6 6 6

( ) ( ) ( )

(0) 0, (0) 0, (0) 0, (1) 0, (1) 0

e x e x R x

e e e e e

   


      

                                                                                               (19) 

 

where the residual function is 

 
(5)

6 6 6( ) ( ) ( ) (15 10 ) .xR x y x y x x e     

 

By solving the error problem (19) for 7M   we find the estimated error approximation 
6,7 ( )e x  to 

6 ( )e x  as 

 
2 3 4

6,7

6

7

.1 10) (0.156648233 1) (0.1925419347 1) (0.489671273518969( ) 2)

(0.848608291898198 2)

(0 e x e x e x e x

e

e x

x

      

 


 

 

and hence, the corrected Lucas poynomial solution is 

 
6 5 4

6

3

2 7

,7 (0.328036132180893 1) 0.125 0.33592665712922 0.49778364674751

(0.1 10) (0.848608291898

( )

.198 2)

e x x x x

x e e

y x

x x

    

    
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In Table 6, the numerical results of the exact solution, the Lucas polynomial solutions and the corrected Lucas polynomial 

solutions are compared and, in Table 7, the actual absolute errors are compared with the estimated absolute errors for the 

different values of N  and M . Also, in Table 8, the corrected absolute errors are given. 

 

 

Table 6. Comparison of the exact solution and the  approximate solutions for 

6,7N   and 7,8,9M   of the Problem (18) 

 
Exact 

Solution 

Lucas Polynomial 

Solution 

Corrected Lucas Polynomial 

Solution 

ix  ( )iy x  
6 ( )iy x  6,7( )iy x  

6,9( )iy x  

1 10  0.099465383 0.099481075 0.099467340 0.099465355 

1 20  0.049935377 0.049937476 0.049935638 0.049935373 

1 40  0.024992056 0.024992327 0.024992090 0.024992056 

ix  ( )iy x  7 ( )iy x  
7,8( )iy x  

7,9( )iy x  

1 10  0.099465383 0.099467427 0.099465586 0.099465417 

1 20  0.049935377 0.049935650 0.049935404 0.049935381 

1 40  0.024992056 0.024992091 0.024992059 0.024992057 

 

 

Table 7. Comparison of the actual and estimated absolute errors 

for 6,7N   and 7,8,9M   of the Problem (18) 

 
Actual 

absolute errors 

Estimated 

absolute errors 

ix  
6 6( ) ( ) ( )i i ie x y x y x   

6,7 ( )ie x  6,9 ( )ie x  

1 10  1.5693e-5 1.3735e-5 1.5720e-5 

1 20  2.0985e-6 1.8377e-6 2.1022e-6 

1 40  2.7086e-7 2.3724e-7 2.7132e-7 

ix  
7 7( ) ( ) ( )i i ie x y x y x   

7,8( )ie x  7,9 ( )ie x  

1 10  2.0441e-6 1.8411e-6 2.0101e-6 

1 20  2.7248e-7 2.4553e-7 2.6793e-7 

1 40  3.5122e-8 3.1687e-8 3.4528e-8 

  

 

Table 8. Numerical results of the corrected absolute error functions 

for 6,7N   and 7,8,9M   of the Problem (18) 

 Corrected absolute errors , ,( ) ( ) ( )N M N ME x y x y x   

ix  
6,7 ( )iE x  6,9( )iE x  7,8( )iE x  7,9( )iE x  

1 10  1.9557e-6 2.7597e-8 2.0296e-7 3.3994e-8 

1 20  2.6084e-7 3.7035e-9 2.6946e-8 4.5441e-9 

1 40  3.3618e-8 4.6467e-10 3.4352e-9 5.9382e-10 

 

Table 9 shows the actual absolute errors ( )Ne x  obtained by Lucas collacation method for different values of N . These 

errors are very close to zero when the values of N  is increased. In Table 10, the absolute errors of our method are 

compared with the error values given by Khan [30], Caglar et al. [29] and Siddiqi et al. [4]. It is seen that the collocation 

method based on Lucas polynomials is very effective and applicability than the other methods for fifth order boundary 

value problems. 
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Table 9. Actual absolute errors for 6,7,8,9,10,11N   of the Problem (18) 

ix  6( )ie x  
7 ( )ie x  

8( )ie x  
9( )ie x  

10 ( )ie x  
11( )ie x  

1 10  1.5693e-5 2.0441e-6 2.7165e-7 1.0264e-7 8.6681e-8 8.5597e-8 

1 20  2.0985e-6 2.7248e-7 3.6178e-8 1.3728e-8 1.1608e-8 1.1464e-8 

1 40  2.7086e-7 3.5122e-8 4.6609e-9 1.7722e-9 1.4993e-9 1.4807e-9 

 

 

Table 10. Comparison of actual absolute errors of different methods of the Problem (18) 

ix  
Exact 

Solution 

Quartic Spline 

Method [4] 

Sixth-Degree 

B-Spline 

Method [29] 

Finite 

Difference 

Method [30] 

Present 

Method 

(for 11N  ) 

1 10  0.099481075 3.6000e-3 0.1570 0.4025e-2 8.5597e-8 

1 20  0.049937476 5.5531e-4 0.0747 0.3911e-2 1.1464e-8 

1 40  0.024992327 7.6625e-5 0.0208 0.1145e-1 1.4807e-9 

 

 

Example 3 : We  consider the boundary value problem given by 

 
(6) ( ) ( ) 6 xy x y x e   ,      0 1x  ,                                                                                                                                (20) 

(0) 1y  ,   (0) 0y  ,   (0) 1y    

(1) 0y  ,   (1)y e   ,   (1) 2y e    

 

which has the exact solution ( ) (1 ) xy x x e   [31-34]. 

 

This problem was solved by using the Adomian decomposition method [31], sixth degree B-spline functions method [32], 

the variational iteration method [33] and the quartic B-Splines method [34]. Now, we calculate the approximate solutions 

and the absolute errors of the problem by using the Lucas collocation method for the different values of N  (see Table 11) 

and in Table 12, we compare  the obtained results with the results given in [31-34]. 

 

 

Table 11. Actual absolute errors for 6,7,8,9,10,11N  ,12 of the Problem (20) 

ix  7 ( )ie x  
8( )ie x  

9( )ie x  
10 ( )ie x  

11( )ie x  
12 ( )ie x  

0.1 7.6676e-7 1.0496e-7 1.6514e-8 7.3623e-9 6.6409e-9 6.5959e-9 

0.2 4.5773e-6 6.3552e-7 1.0014e-7 4.4204e-8 3.9771e-8 3.9505e-8 

0.3 1.1009e-5 1.5548e-6 2.4556e-7 1.0712e-7 9.6057e-8 9.5399e-8 

0.4 1.7498e-5 2.5212e-6 3.9966e-7 1.7187e-7 1.5348e-7 1.5236e-7 

0.5 2.1074e-5 3.1069e-6 4.9526e-7 2.0944e-7 1.8605e-7 1.8461e-7 

0.6 1.9878e-5 3.0070e-6 4.8311e-7 2.0040e-7 1.7684e-7 1.7534e-7 

0.7 1.4202e-5 2.2100e-6 3.5884e-7 1.4565e-7 1.2747e-7 1.2629e-7 

0.8 6.7004e-6 1.0750e-6 1.7692e-7 7.0120e-8 6.0743e-8 6.0141e-8 

0.9 1.2722e-6 2.1085e-7 3.5277e-8 1.3630e-8 1.1661e-8 1.1517e-8 
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Table 12. Absolute errors of different methods of the Problem (20) 

ix

 

Exact 

Solution 

Adomian 

Decomposition 

 Method [31] 

Sixth 

Degree 

B-Spline 

Method 

[32] 

Variational 

Iteration 

Method [33] 

Quartic 

B-Spline 

Method 

[34] 

Present 

Method 

(for 12N  ) 

0.1 0.99465383 4.0933e-4 1.2159e-5 4.0933e-4 4.5092e-6 6.5959e-9 

0.2 0.97712221 7.7820e-4 2.7418e-5 7.7820e-4 1.2619e-5 3.9505e-8 

0.3 0.94490117 1.0704e-3 2.2053e-6 1.0704e-3 1.9154e-5 9.5399e-8 

0.4 0.89509482 1.2578e-3 2.5033e-6 1.2578e-3 2.1632e-5 1.5236e-7 

0.5 0.82436064 1.3223e-3 5.4836e-6 1.3223e-3 1.9704e-5 1.8461e-7 

0.6 0.72884752 1.2578e-3 1.6212e-5 1.2578e-3 1.4548e-5 1.7534e-7 

0.7 0.60412581 1.0704e-3 2.0682e-5 1.0704e-3 8.2238e-6 1.2629e-7 

0.8 0.44510819 7.7820e-4 2.2619e-5 7.7820e-4 2.9420e-6 6.0141e-8 

0.9 0.24596031 4.0933e-4 1.9460e-5 4.0933e-4 2.3610e-7 1.1517e-8 

 

 

From Table 11 and Table 12, we can say that the Lucas collocation method is very effective and  better than other 

methods for sixth order boundary value problem (20). 

 

Example 4 : We consider the boundary value problem given by 

 
(8) 3( ) ( ) (48 15 ) xy x xy x x x e     ,      0 1x                                                                                                         (21) 

(0) 0y  ,   (0) 1y  ,   (0) 0y  ,   (0) 3y    

(1) 0y  ,   (1)y e   ,   (1) 4y e   ,   (1) 9y e    

 

which has the analytic solution ( ) (1 ) xy x x x e   [11,35]. 

 

In Table 13 and Table 14, the computed results are compared with the results of the methods given by [11] and [35]. The 

obtained results shows that the collocation method based on Lucas polynomials is very effective and applicability than the 

other methods for eighth order boundary value problems. 

 

 

Table 13. Comparison of absolute errors of the Problem (21) 

ix  9( )ie x  
10 ( )ie x  

11( )ie x  
12 ( )ie x  

0.1 1.5743e-8 2.3989e-9 2.5241e-10 2.9618e-12 

0.2 1.6491e-7 2.5487e-8 2.7115e-9 3.6009e-11 

0.3 5.1355e-7 8.0638e-8 8.6914e-9 1.3116e-10 

0.4 9.1991e-7 1.4701e-7 1.6088e-8 2.7701e-10 

0.5 1.1378e-6 1.8536e-7 2.0647e-8 4.0704e-10 

0.6 1.0156e-6 1.6895e-7 1.9204e-8 4.3448e-10 

0.7 6.2580e-7 1.0647e-7 1.2383e-8 3.2192e-10 

0.8 2.2174e-7 3.8633e-8 4.6095e-9 1.3756e-10 

0.9 2.3345e-8 4.1706e-9 5.1178e-10 1.7447e-11 
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Table 14. Comparison of absolute errors of different methods of the Problem (21) 

ix  
Exact 

Solution 

Nonic Spline 

Method [11] 

Adomian 

Decomposition 

Method [35] 

Present 

Method 

(for 12N  ) 

0.1 0.099465398 5.62e-10 3.73e-9 2.9618e-12 

0.2 0.195424606 4.88e-9 6.61e-9 3.6009e-11 

0.3 0.283470863 1.37e-8 2.33e-8 1.3116e-10 

0.4 0.358038847 2.29e-8 5.17e-8 2.7701e-10 

0.5 0.412181455 2.71e-8 9.76e-8 4.0704e-10 

0.6 0.437309528 2.38e-8 1.78e-6 4.3448e-10 

0.7 0.422888694 1.49e-8 4.12e-6 3.2192e-10 

0.8 0.356086770 5.54e-9 1.83e-4 1.3756e-10 

0.9 0.221364303   1.7447e-11 

       

 

5. CONCLUSION 

 

In this paper, we have developed a new method based 

on Lucas polynomials with the aid of the residual error 

function for solving high-order linear boundary value 

problems. When the obtained results are investigated in 

examples, it can be seen that the improved method is 

very effective than other methods for boundary value 

problems. Furthermore, when the exact solution of the 

problem is not known, the actual absolute error ( )Ne x  

can be approximately computed with the aid of the 

estimated absolute error function. It is seen from the 

examples in Section 4 that the actual absolute errors 

( )Ne x  are close to the estimated absolute errors 

, ( )N Me x . Moreover, tables in Section 4 show that the 

errors decrease when the values of N  and M  

increase. In addition, the obtained numerical results and 

comparisons in examples show that the developed 

method based on Lucas polynomials is very effective 

than other methods in the literaure. One of the 

advanteges of the present method that the approximate 

solutions are obtained easily by using computer 

programmes. In this paper, Maple is used. Also, It may 

not be possible to find the analytical solution of the 

equation (1) for each functions ( )kp x  and ( )g x  in 

some methods. But our method is practicable for each 

continuous functions ( )kp x  and ( )g x . 
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